0000000000
1016 0 1997 0 94-111 . 94

Continuity properties and exponential integrability
for Riesz potentials of functions in Orlicz classes

EBABRAR TFH B (Tetsu SHIMOMURA)

1 Introduction

In this paper we study continuity properties and exponential integrability for Riesz
potentials of order @, 0 < a < n, of a nonnegative measurable function f on R", which
is defined by

Uaf(z) = ; |z —y|*7" f(y)dy.
Here it is natural to assume that U, f # oo, which is equivalent to
(1.1) A (L+1[yD*"f(y)dy < oo.

To obtain general results, we treat functions f satisfying an Orlicz condition with
weight w of the form

2) [ @ty < .

Here ®,(r) is a positive monotone function on the interval (0,00) with the following
properties:

(1) ®,(r) is of the form rPp(r), where 1 < p < oo and ¢ is a positive monotone
function on the interval (0, 00); set ¢(0) = liII(lJ o(r).
r—>

(p2) o is of logarithmic type, that is, there exists A; > 0 such that

AT o(r) < o(r?) < Asp(r) whenever r > 0.

(wl) w satisfies the doubling condition; that is, there exists A2 > 0 such that

© Ay'w(r) S w(2r) < Ayw(r) whenever r > 0.

Riesz potentials may not, in general, be continuous at any point of R". But, it is
known (see [11]) that if p > 1 and

1
(13) / [rn—apso(,r,—-l)]—l/(ll—l) rldr < 00,
0
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then U, is continuous everywhere on R"; in case ap > n, (1.3) holds by condition (p2)
and the continuity also follows from well-known Sobolev’s theorem. In case ap = n, the
functions '

(e + )], llog(e + P flog(e + log(e + ),

satisfy (1.3) if and only if § > p — 1. :
For simplicity, let w(r) = 7P, where —n < 8 < ap — n, and £ be the nonnegative
integer such that £ < o — (n+ 8)/p < £+ 1. In this case, we treat functions f satisfying

(1.4 [ #lstay <o

In Section 3, we shall show that if (1.3) holds, then there exists a polynomial P, such
that

()  lim (K ()] [Uaf (@) — Pla)] = 0
for any function f satisfying (1.1) and (1.4), where

( [rn—ap+ﬂ‘p(7.—1)]—1/17 ‘ incase £<a—(n+p8)/p<f+1
, andn —ap <0,

r 7 1/p' v ’
-B/p —1\1-p'/pp—1 i ' -
Kr)=4 " (/0 [t )] 7P/Pt dt) _ incase L<a—(n+B)/p<l+1

andn—ap=0,

r 1/p'
rt (/ [cp(t'l)]""/”t"ldt> in case £=a— (n+p3)/p.
\ 0 _ ,

Since lim, o r¢K(r) = 0, (1.5) implies that U, f is £ times differentiable at the origin.
Let Ro(z) = |z|*™ and consider the remainder term of Taylor’s expansion:

lul<e 7

Rop(z) = Ralz— ) — 3 Z{(D*Ro)(~).
Then U, f(z) — Py(z) will be written as

n

Usef(z) = / Ray(z,y) f(y)dy,

provided

) [l @y < oo
- , B(0,1)

here, we may assume a condition weaker than (r1):

(L.7) / ly]*~"t () dy < oo,
R"—B(0,1) .
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where B(z,r) denotes the open ball centered at x with radius r > 0.
Recently Edmunds and Krbec studied almost Lipschitz continuity for Bessel potentials
of order n/p+ 1 of functions f satisfying

- f(y)Pllog(e + f(y))]dy < o0

for some o > 0. Letting J,,f denote the Bessel potential of f of order o (see Meyers [8]
and Stein [19]), they showed in [6, Theorem 3.1] that

(18) Jn/p+1f(m) - Jn/p+1f(0) = O(liB” log |m”(p—l+a)/p) as r — 0’

which gives an extension of the result by Brézis-Wainger [3] in case 0 = 0. These results
are based on general theorems for Orlicz-Sobolev spaces (see Adams [1] and Rao-Ren
[16]). In Section 4, we study differentiability properties for Riesz potentials of order a.
In fact, if £ < a — (n/p) or if £ = a — (n/p) and 0 < 1 — p, then we show that U, f has
differentials of order ¢ which satisfy Holder type condition

 D*Uaf(z + h) — D*Uaf(z) = O(k(|h])) ~ ash—0

with a suitable function , where D* = (8/8x)* is a partial differential operator of order
¢ = |p|. For example, if @ = (n/p) + £+ 1 and ¢(r) = [log(e +r)]~° for o > 1 — p, then
we can take

w(r) = rllog(1/r)| ),

and our result gives the above mentioned result by Edmunds and Krbec.
If (1.3) does not hold, then the potential may not be continuous anywhere, and Mizuta
([12]) studied the fine limits of U, f, that is,

lim . Uasf(z) = Uy f(0)

z—0,z€ER™—

with an exceptional set E which is thin at 0 in a certain sense (see also Adams-Meyers |
[2] and Meyers [10]). To evaluate the size of exceptional sets, for a set £ C R" and an
open set G C R"™, we consider the relative Orlicz capacity

Cas,(B:G) =int [ B(ou)dy,  ECG,
G

where the infimum is taken over all nonnegative measurable functions g on G such that
U,g(z) > 1 for every z € E (cf. Meyers [8] and Mizuta [12]). For simplicity, we write
Cos,(E) =0if Cy3,(ENG;G) = 0 for every bounded open set G. If a property holds
except for a set E with Cy5,(E) = 0, then we say that the property holds C, g,-quasi
everywhere. In Section 5, we extend the result by Mizuta [12] and in fact show that if
f satisfies (1.1) and (1.4), then there exist a set £ C R" and a polynomial P, such that

lim ~ [&(j)] " {Uaf(2) - Pe()] = 0

z—0,z€R™ —
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and

> 2o p(2)] 1 C, 6, (Ej; By) < o0,
i=1

where E; = {z € E:27 < |a| <21}, B; = {2 : 2797 < |o] < 2797} and

1-1/p

I{('r’) = re (/" [tngaé+ﬁ+b(p(t_1)]_1/(p_1)t_1dt)
Note here that |
Cae,(Aj; Bj) ~ 270P)p(27), A; = B(0,277!) — B(0,27)

(cf. [12, Lemma 7.3]), and our definition of thinness differs from that of Adams-Meyers
[2]. If in addition (1.3) holds, then the exceptional set F is empty and the above fine
limit is seen to be replaced by the usual limit similar to (1.5).

In Section 6, we are concerned with the existence of radial limits. We shall show that
if f satisfies (1.1) and (1.4), then there exist a set E* C 0B(0,1) and a polynomial P,
such that Cy0,(E*) = 0 and '

lim r(”_"‘ijﬁ)/”[U;f(rﬁ) — Py(r§)] =0  for any { € 0B(0,1) — E*.

r—0

In Section 7, we deal with L%-mean limits for Taylor’s expansion of Riesz potentials

Uaf

r—0

) i/q
(1.9 lim r~* ( r‘"/ |Uaf(z) — Py (x)|? da:) =0
B(zo,r)

for functions f satisfying
[ s <o

and for 0 < ¢ < oo satisfying 1/¢ > 1/p — a/n; if 1/g = 1/p — a/n, then q is called the
Sobolev exponent.

If (1.9) holds, then U,f is said to be L?-differentiable of order £ at zy (cf. Meyers
[9], Stein [19] and Ziemer [21]), where ¢ is a positive integer such that £ < a. We
discuss quasi every L?-differentiability in case £ < a and in fact show that U, f is L9-
differentiable of order £ C,_ ¢,-quasi everywhere. In view of the behavior at the origin of
Bessel kernels, our results can be considered as generalizations of the results by Meyers
[9], [10] concerning Bessel potentials of functions in LP(R™). In case a = £, U, f is shown
to be Li-differentiable of order £ almost everywhere. If (1.3) holds, then U, f is known
to be £ times differentiable almost everywhere (see [11, Theorem 2]).

In the final section, we consider the Riesz potential of order o for a nonnegative
measurable function f on a bounded open set G C R" satisfying the Orlicz condition

/G £()Pllog(e + £())]°log(e + log(e + f(y))Pdy <00,  p=n/a,
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for some numbers p, a and b. We aim to show the exponential integrability such as
/ explA (U, f(z))? (log(e + Unf(x)))"]dz < 0o for any A > 0.
G

See [1]; [3], [4], [5], [6], [15], [20], [21]. Moreover, we show double exponential integrability
such as

/G explA exp(B(Uaf (z))?)|dz < oo.
See [4], [5].

2 Fundamental facts

Throughout this paper, let M denote various constants independent of the variables in

question. . ‘
First we collect properties which follow from conditions (¢1) and (¢2) ([7] and [18,
Section 2]). , ,

(p3) ¢ satisfies the doubling condition, that is, there exists A > 1 such that
A7lp(r) £ p(2r) £ Ap(r) whenever r > 0.

(¢4) For any 7 > 0, there exists A(y) > 1 such that
A(Y)7to(r) £ (") S A(7)e(r) whenever r > 0.

(p5) If v > 0, then
Tp(s7h) S Ap(t™h) whenever 0 < s < t.

Let R,(z) = |z|*™ and consider the remainder term of Taylor’s expansion:
IH
Rou(z,y) = Ra(z —y) — Z —'[(D“Ra)(—y)].

ju<e F-
In our discussions, the following estimates are fundamental (see [7] and [18, Section
3]). :

LEMMA 2.1. Ify € B(0,|z|/2), then

|Ra(z,y)| < Ma|ly*"".

LEMMA 2.2. Ify € B(0,2|z|) — B(0, |z|/2), then
|Ras(z,y)| < Mlz—y|*™.

LEMMA 2.3. If |y| > 2|z|, then
|Rae(2,y)] < Mlz|™Hy]*~
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3 Continuity

Throughout this section, let ¢ be a positive nondecreasing function on (0, 00) satisfying
(1) and (¢2).
We have the following result by Holder’s inequality.

LEMMA 3.1 (cf. [12, Lemma 2.1]). Let p > 1 and f be a nonnegative measurable
function on R*. If 0 < 2r <a<1and 0 < § < (3, then

Lo WS [ Py« pa
Rr—B(0,r) Rn—B(0,q)

vt ([ [t"—ﬂpn(tn-P’/Pt-ldt),l/p' ( / y ¢>p(f(y))w(lyl)dy) "

and if0 < 2r <a <1andé > 0> 0, then |

Lo W [ ey e
R"—B(0,r)

R"—B(0,a)
a . 1/p' 1/p
o ([ oy ooea) ([ aantona)

r B(0,a)
where 1(r) = ¢(r ')w(r) and 1/p+1/p' = 1.
For an integer ¢, we consider the poténtial

Ua,ff(x) = Ra,g(.’L‘, y)f(y)dy’

Rn
in case £ < —1, Uy f(x) is nothing but U, f(z), so that, in this paper, we assume that

£>0.
Write Uy e f (z) = Ui () 4 Uz(x) + Us(z) for z € R — {0}, where

U(z) = / Rao(z,9)f(y)dy,
Rn—B(0,2|2])

Un(z) = / Rae(z,9)f(y)dy,
B(0,|z}/2)

Us(z) = Roe(z,y) f(y)dy.

/B(o,z|z|)—B(0,lzl/2)

Setting n(r) = p(r~!)w(r) as above, we define

o 1 1/p'
. (/ [t""a"+(z+1)”17(t)]””'/pt_ldt) , in case p > 1,
K1(r) = " '

sup =1 ()], - in case p = 1,
r<t<1
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for 0 <7 < 1/2; further, set k1(r) = K;(1/2) when r > 1/2.
REMARK 3.1. In view of the doubling conditions on ¢ and w, we see that

ki(r) > M [r"'ap+(l+1)1’77(r)]"1/p whenever 0 < r < 1/2.

LEMMA 3.2. Let f be a nonnegative measurable function on R*. If0 < 2|z| <a < 1
and0<d<a—{—1, then

Ui(z)] < M|z|*! {/ lyla_t_l_"f(y)dy—kMa"‘_t‘l*‘;}
R"—B(0,a)

+ Miaf (o)

and if0 < 2|z|<a<land§>0>a—£¢—1, then

1/p
‘I’p(f(y))w(lyl)dy) ,

(0,0)

Ui@)| < M| / ly]*~4 " () dy + Mla]*?
R"—B(0,a)
1/p
+ Mzl*y (Je]) ( / %(f(y))w(lyl)dy) |
B(0,a)

where M is a positive constant independent of x and a.

The case p > 1 follows readily from Lemma 2.3 and Lemma 3.1 with r = |z|, and the
case p = 1 is trivial.

In view of Lemma 3.2, we have the following results.

COROLLARY 3.1. Let f be a nonnegative measurable function on R™ satisfying (1.2)
and (1.7). If a — £ —1 > 0 and k;,(0) = oo, then

lim [|z|**'k;(|z])] " Us(z) = 0.

z—0

COROLLARY 3.2. Let f be a nonnegative measurable function on R" satisfying con-
ditions (1.2) and (1.7). Ifa—¢—1<0 and

lim ro=® [rftlg, (r)]_1 =0 for some § > 0,

then
lim [|2[“ 4 (|z])] ™ Us(z) = 0.

z—0

In view of Lemmas 2.1 and 3.1, we can establish the following result.



LEMMA 3.3. If0< é < a— ¥, then there exists a positive constant M such that

1/p
‘Pp(f(y))w(lyl)dy) + M|z|*?

Ua(o)] < Miafla) (f

(0,]1/2)

for any = € B(0,1/2) — {0}, where

T o, 7 1/p'
' (/ [thmeP ey ()] P /”t‘ldt) , in case p > 1,
Ko(r) = ° .
sup t* “[n(t)] 7, in case p = 1.
0<tlr .

REMARK 3.2. As in Remark 3.1, we see that

Ko(r) > M [r”"apﬂpn(r)]—l/p.

With the aid of Lemma 3.3, we have the following result.
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COROLLARY 3.3. Let f be a nonnegative measurable function on R" satisfying (1.2).

If0<éd <a—1{ky(l) < oo and

lim ro0 [renz(r)_]—l =0,

then .
. ¢ - _
lim [[oftra(lal)] ” Uala) = 0.

REMARK 3.3. Let w(r) =rP. If a — (n + ) /p < £+ 1, then

Ki(r) ~ [r""’”(eﬂ)”ﬁ@(r—l)]—l/p asr— 0

and thus
k1(0) = 00.

If in addition n 4 8 > 0, then we see by (5) that

lim sup =% [r”lnl(r)] - < M limsup r(®+8)/p=3 [90(7,—1)] P _ g

r—0 r—0 .

for 0 < d < (n+B)/p.
REMARK 3.4. Let w(r) =rP. If £ < a — (n + 8)/p, then

Ka(r) ~ [P oPtethp(r~1)] ~i/p asr — 0.
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If in addition n + 8 > 0, then we see by (¢5) that

lim sup r*~° [rlnz(r)]_l < M limsup r®+#)/p=6 [(P(T—l)] 1@ —0

r—0 r—0

for 0 < 6 < (n+ B)/p. Ifp>1land£=a— (n+ B)/p, then ka(1) < oo is equivalent to

1
/ ,[go(r_l)]_”'/pr_ldr < 00.
0

For p > 1, set
1/p'

co=([ (o )

and

Rs(r) = [(r)] 7 ().
If ¢*(1) < oo, then U, f is continuous everywhere on R™ possibly except at the origin
when f satisfies (1.1) and (1.2) (see [11, Theorem 1]).

LEMMA 3.4. If0 < d < a, then there exists a positive constant M such that

1/p
Ua(@)| < Mis(jal) ( i <I’p(f(y))w(|yl)dy) T Mgt

(0,21al)-B(0,Js1/2)

for any z € B(0,1/2) — {0}.

PrOOF. Let 0 < § < a, and consider the function

f@), for y € B(0,2|z() — B(0, |z|/2),

0, otherwise.

Note by Lemma 2.2 that

Us(z)] < M |z —y|*7"f(y)dy
B(0,2|z|)—B(0,||/2)

= M 2] f(z + z)dz.
B(0,3|z)

Now Lemma 3.4 can be proved by Lemma 3.1.
We consider the function
K(r) = f”lnl(r) + rtra(r) + K3(r).

Here note that
K() > Mr=erq(r)]

for r > 0.



103

- THEOREM 3.1 ([18, Corollary 4.1]). Assume that £ < a, lim,_,o K(r)' =0 and

k1(0) = oo incasea—£—1>0,

liII(l) ro—? [r”lm(r)] =0 forsomed>0incasea—£f—1 <0,
T

lir% ro—? [reﬁg(r)]_l =0 for some 0 such that 0 < § < a — ¢,
r— ,

liII(l) r* O [kg(r)] ' =0 for some § > 0.

r—

If f is a nonnegative measurable function on R™ satisfying conditions (1.2) and (1.7),
then
lim [K (Jal)] " Unef (@) = 0.

PROOF. We may assume that 0 < § < a. Since lim, ,o 7* %[k3(r)]~! = 0, we see by
Lemma 3.4 that - ' '
lim [ (Ja])| Ui (z) = 0.

In view of Corollaries 3.1, 3.2 and 3.3, we have

lim [K(|2])] ™ {U) (z) + Va(2)} = 0,

and hence
lim [K (|z)] ™ Uaef(z) = 0.

Thus we complete the proof of Theorem 3.1.
REMARK 3.5. Let w(r) =7°. If n + 8 > 0, then we see by (©5) that

limsup r*[k3(r)] ' = 0
r—0

for 0 <6 < (n+0B)/p.
REMARK 3.6. Let w(r) = 7%, where —n < 8 < ap—n. Let £ be the integer such that
(<a—-(n+0)/p<i+1
Then we see with the aid of Remarks 3.3, 3.4 and 3.5 that
K(r) ~ [proptBp(r1y /P when £f<a—(n+08)/p<fl+1,n—ap<0,

r 1/p
K(r) ~r=P/P (/ [@(t_l)]_P'/pt_ldt) when {<a—(n+p)/p<l+1,n—ap=0,
0 v

K(r) ~7rt (/OT [(p(t—l)]—P’/Pt*bldt> l/pl when £=a— (n+(6)/p.

In all cases, if K(1) < oo, then :
lim K(r)=0.

r—0



104

REMARK 3.7. Let w(r) =, where -n < < ap—n. Ifa—(n+)/p<£+1and
f satisfies (1.2), then the proof of Lemma 3.1 shows that (1.7) is fulfilled.

COROLLARY 3.4 ([18, Corollary 4.1]). Let w(r) = r? with —n < 8 < ap — n. Let
f be a nonnegative measurable function on R" satisfying conditions (1.1) and (1.2). If
<a-—(n+pP)/p<{+1and K(1) < oo, then there exists a polynomial P, of degree
at most ¢ such that
tim (K (ol)] [Ua (&) — Pia)] =0

with K as in Remark 3.6.

In fact, since x2(1) < oo, (1.6) holds, and further (1.7) holds by Remark 3.7. Hence
Tt
Unaf(@) = Ua(0) = Y- 71 [ (D" Ro) (=)l @)y
luige TR

With the aid of Remarks 3.3, 3.4, 3.5 and 3.6, Theorem 3.1 gives the present corollary.
Since lim,_,or*K(r) = 0, Corollary 3.4 implies that U,f is £ times differentiable at
the origin.
Here we discuss the best possibility of Corollary 3.4 as to the order of infinity in case
ap =n and w(r) = 1.

PROPOSITION 3.1 ([18, Proposition 4.1]). Assume ¢*(1) < co. Then, for any € > 0,
there exists a nonnegative measurable function f on R"™ satisfying (4.2) with p = n/a
such that U, f(0) < oo and

lim [K(|z])] ™" {Uaf(2) — Uaf(0)} = —o0.

4 Differentiability

In the section, we are concerned with differentiability properties for Riesz potentials of
functions f satisfying

(4.1) . f(y)Pllog(e + f(y))]™°dy < oco.

THEOREM 4.1 ([14, Corollary 4.1]). Let f be a nonnegative measurable function on
R" satisfying (1.1) and (4.1). If p is a multi-index with length { and z is in a fixed
compact set in R"™, then

(?) incasea =€+ (n/p) andp—1+0 <0,

D”Uaf($ + h) — DuUaf(:I}) = o([log(l/ihl)](p_l‘f'o)/l)) as h — 0;
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(73) in case £ ‘< a—(n/p) <£+1,
D*Usf(z + h) = D*Uaf(z) = o([RI*/*~[log(1/|R)]"?)  ash—0;

(4ii) in casea =£¢+ 1+ (n/p) and p — 1+0> 0,

DU f(x + h) — D*Unf(z) = of[lflog(1/|R)]®P)  ash = .

Incase a = £+ 1+ (n/p) and p— 1+ o < 0, D*U,f is differentiable, and all partial
derivatives of order ¢ + 1 satisfy Holder condition as in (i) of Theorem 4.1.
If we consider the second difference, then we can establish the following result.

THEOREM 4.2 ([14, Corollary 5.1]). Let f be a nonnegative measurable function on
R" satisfying (1.1) and (4.1). If z is in a fixed compact set in R", then

(¢7) incasea=n/pandp—1+0<0,

Uof(z +2h) — 2U, f(z + h) + Uy f(z) = o([log(1/|h|)]P~1+)/P) as h — 0;

(1) in case 0 < a — (n/p) < 2,

Uaf(z +2h) — 2Uaf(z + h) + Uaf(z) = o(|h|*"/?[log(1/|h|)]*/?) as h— 0;

(¢43) in case a =2+ (n/p) andp—1+0 >0,

Uaf(z +2h) — 2U,f(z + h) + Us f(z) = o(|h|*[log(1/|R)]P~19)/P) as h — 0.

Compare this result with Theorem 4.1 and (1.8).

5 Fine limits

To evaluate the size of exceptional sets, for a set E C R™ and an open set G C R", we
consider the relative Orlicz capacity

Couy(BiG) = inf [ Do)y, EcG,
where the infimum is taken over all nonnegative measurable functions g on G such that
Uag(z) > 1 for every z € E (cf. Meyers [8] and Mizuta [12]). For simplicity, we write
Cas,(E) =0if Co5,(ENG;G) = 0 for every bounded open set G. If a property holds
except for a set E with Cy,5,(E) = 0, then we say that the property holds C, ,-quasi
everywhere. '

THEOREM 5.1 ([18, Corollary 5.1]). Let f be a nonnegative measurable function on
R" satisfying (1.1) and (1.4). If{ is the nonnegative integer such that £ < a—(n+8)/p <
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¢+ 1 and k(1) < oo, then there exist a set E C R" and a polynomial P, of degree at
most £ such that

(5.1) olim  [w(la])] " [Uaf (@) ~ Pa(z)] =0
and
(52 S 2o ()] Ca, (B By) < o,

where E; = {x € E: 279 <|z| <279*'}, B; = {z:279"! < |g| < 279*?} and
r 1-1/p
Kk(r) = rt ( / [trap Bt (1)~ (”‘l)t_ldt) .
0 . v

REMARK 5.1. In view of [12, Lemma 7.3], we see that

Coo.(A;; B;) ~ 27900 p(23) . A; = B(0,279%") — B(0,277).
1<p J J )

6 Radial limits

We are concerned with the existence of radial limits. For this purpose, we have to modify
the fine limit result as follows: there exist a set E C R" and a polynomial P, such that

; (n—ap+8)/p _ =
(6.1) olm, 12l [Uaf(2) = Pof)] = 0
and
(6.2) . Z Ca,2,(2° Ej; Bo) < 005
i=1

note here that r("~°P+8)/P < M[k(r)]~!, and hence (6.1) is weaker than (5.1). It will
be seen that (6.2) is more convenient than (5.2) to our aim of deriving the radial limit
result.

THEOREM 6.1 ([18, Corollary 6.1]). Let f be a nonnegative measurable function on
R™ satisfying (1.1) and (1.4) for —n < 8 < ap — n. If  is the nonnegative integer such
that £ < o — (n+ B8)/p < £+1 and k(1) < oo, then there exist a set E* C 8B(0,1) and
a polynomial P, of degree at most { such that :

(63)  lim r"POPU,f(ré) — P(r€)] =0 for any £ € B(0,1) — E*
and

(6.4 | Caa,(B*) = 0.
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7 Li-differentiability

Throughout this section, let ¢ be a positive nondecreasing function on (0, 00) satisfying

(p1) and (p2). |
For ¢ > 0, g € R and r > 0, we define the LI-mean of a measurable function u over

B(zo,r) by
, 1 1/q
Vitwanr) = (25 [ G

where o, denotes the volume of the unit ball B(0,1).
We say that u is LI-differentiable of order ¢ at g if

li_r)r(x) rV, (u(z) — P(z),zo,7) =0

for some polynomial P (see Meyers [9], Stein [19] and Ziemer [21]).
In this section, we discuss Li-differentiability for Riesz potentials of functions f sat-
- isfying

(71) [ &)y <o

THEOREM 7.1 ([17, Theorem 5.1]). Let ap < n. Let f be a nonnegative measurable
function on R" satisfying conditions (1.1) and (7.1). If £ is a nonnegative integer smaller
than o, then U, f is Li-differentiable of order ¢ Ca-t,3,-quasi everywhere for ¢ > 0 with

1/921/p—a/n.

For similar results for Bessel potentials of LP-functions, see Meyers [9].
In case ¢ = o, we show the following result.

THEOREM 7.2 ([17, Theorem 5.2]). Let ¢ be a positive integer with £p < n. Let f be
a nonnegative function in L, (R") satisfying condition (1.1) with o = £. Then U,f is

loc

LA-differentiable of order £ almost everywhere for ¢ > 0 with 1/¢ > 1/p — ¢/n.

REMARK 7.1. For LP-differentiability of Bessel potentials, we refer the reader to
Ziemer [21, Theorem 3.4.2]. In case { = a = 1 and p < n, Theorem 7.2 implies the
result by Stein [19, Theorem 1, Chapter 8].

8 Exponential integrability

We give the following theorem, which deal with the limiting cases of Sobolev’s imbed-
dings. '

THEOREM 8.1 ([13, Theorem A]). Let f be a nonnegative measurable function on a
bounded open set G C R™ satisfying the Orlicz condition

/G F () llog(e + £(y))]"[log(e + log(e + £(4)))Pdy < oo
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for some numbers p, a and b. Ifop =n, a < p—1, 8 =p/(p—1—a) andy =b/(p—1-a),
then

(81) /Gexp[A (Uaf(z))? (log(e + U.f(z)))"ldz < o0 for any A > 0.

In case a = b = 0, inequality (8.1) is well known to hold (see [1], [15], [20], [21]). The
case a < p — 1 and b = 0 was proved by Edmunds-Krbec [6] and Edmunds-Gurka-Opic
[4], [5] ; see also Brézis-Wainger [3].

In view of Theorem 8.1, we see that (8.1) is true for every 8 > 0 (and v > 0) ‘when
a 2 p — 1. In particular, in case a > p — 1, we know that U, f is continuous on R" (see
Corollary 3.4 and Theorem 4.1).

In case a = p — 1, we are also concerned with double exponential integrability given
by Edmunds-Gurka-Opic [4], [5].

THEOREM 8.2 ([13, Theorem B]). Let f be a nonnegative measurable function on a
bounded open set G C R" satisfying the Orlicz condition

| 76 ogte + (@) los(e + log(e + Su)'dy < oo

for some numbers p and b. Ifap=n,b<p—1 and B3 =p/(p—1—0b), then

(8.2) / exp[A exp(B(U,f(z))?)ldz < oo for any A> 0 and B > 0.
G _

In case b > p — 1, U,f is continuous on R" (see Corollary 3.4 and Theorem 4.1), so
that (8.2) holds for every G > 0.

REMARK 8.1. Here we discuss the sharpness of 8 in case p = n. For § > 0, consider
the function

; — _ yl1—n
“”*iﬂme Y £(y)dy

with ‘
f(y) = |yl *[log(e/Iy])]*"*  for y € B(0,1).
Then f satisfies

(8.3) | (Amnﬂwm%@+f@mWw<w

if and only if n(6 — 1) + a < —1. We see that

mmzc/ )y 2 Cllog(e/la)
{yeB(0,1):|y|>2|z|}
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for |z| < 1/4. Hence, if 36 > 1, then
(8.4) / explu(z)P]dz = oo
B(0,1) _

If 3>n/(n—1-a), then we can choose § such that
1/ﬂ<5< (n—1-a)/n.

In this case, both (8.3) and (8.4) hold. This implies that the exponent 8 in Theorem
8.1 is sharp.

REMARK 8.2. For § > 0, consider the function

_ P e )
u(z) = /B ol

with
F(y) = |y log(e/|y])]*[log(elog(e/|y|))]**  for y € B(0,1).
Then f satisfies '

(8.5) /B oy [0 og(e + 7)) hogle + log(e + Sy < oo

if and only if n(d — 1) + b < —1. We see that

uz) 2z C lyl'™" f(y)dy 2 Cllog(elog(e/|z]))]’

{yeB(0,1):|y|>2|=|}

for |z| < 1/4. Hence, if 86 > 1, then

(8.6) / exp exp(u(z)?)dz = co.
. ~ JB(03)

If 3> n/(n—1-1b), then we can choose ¢ such that

1/8<é < (n—1-1b)/n.

In this case, both (8.5) and (8.6) hold. ThlS implies that the exponent B in Theorem
8.2 is sharp.

REMARK 8.3. Here we also discuss the sha.rpness of vincasep=mn. Fora<n—1
and 6 > 0, consider the function '

u(z) = / |z —y|' " f(y)dy
B(0,1)
W_ith

£(y) = ly| ™ [log(e/ly])] =/ "[log(elog(e/ W)t fory € B(0,1).
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Then f satisfies
(8.7) [ Hwrlog(e + £(6))log(e + logle + f(u))'dz < o0
B(0,1) |
if and only if n(d — 1) + b < —1. We see that
u(z) 2 C/ |y|1—"f(y)dy 2 Cllog(e/|x|)]* =1/ (log(e log(e/|=]))]**
{yeB(0,1):|y[>2|x|}
for |z| < 1/4. Hence, if 8 =n/(n — 1 —a) and B(6 — 1) + v > 0, then
(8.8) / explu(z)® (log(e + u(x)))")dz = oo.
B(0,1)

If y > (b+1)/(n — 1— a), then we can choose d such that
m-b-1)/n>6>(B-7)/8=m—-(n—a—-1)y)/n

In this case, both (8.7) and (8.8) hold.
Thus we do not know whether the exponent v in Theorem 8.1 is sharp or not.
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