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On solutions of quasi-linear paftial differential equations

—divA(z, Vu) + B(z,u) =0
BILR—BEH /J‘ETK# (Takayori Ono)

§0. Introduction : »
Recently, a nonlinear potential theory has been developed in [1] for quasi-linear elliptic
partial differential equations of second order of the form ’

~divA(z, Vu) = 0,

where A is a mapping of R* x R" to R*(n > 2) satisfying a growth condition A(z, h)-h ~
w(z)|hP (1 < p < oo) with a “weight” w(z), which is'a nonnegative locally integrable
function in R™. A prototype is the so-called weighted p-Laplace equations

| —div(w(z)|Vul[P?Vu) = 0,
This purpose of this paper is to extend some of the results in [1] to the equation
(%) —divA(z, Vu) + B(z,u) = 0,

where B(z,t) is a mapping of R* x R to R, which is non-decreasing in t. A prototype
equation may be given by

—div(w(z)|VulP~2Vu) + w(z)[ul~2u = 0.

'As a matter of fact, we treat the following three topics: (i) Existence and uniquness of
solutions of Dirichlet problems for equation (*) with Sobolev boundary values, or more
generally of obstacle problems (section 3); (ii) Harnack inequality and Holder continuity
for solutions of () (section 4); (iii) Regularity at the boundary for solutions of () (section
We can discuss (i) in the same way as in [1, Appendix I], using a general result of
monotone operators. For (ii) and (iii), the methods in [1] are no longer applicable. We
follow the discussion in [2] (for (ii)) and those in [4] (for (iii)), in which the unweighted
case, namely the case w = 1, is treated. ) ‘ ‘

§1. Weighted Sobolev space
We recall the weighted Sobolev spaces H'P(); ) which are adopted in [1].
Throughout this paper 2 will denote an open subset of R*(n > 2) and 1 < p < co. We
denote B(z,r) ={y € R* : |z —y| <r}, and AB = B(z, \r) if B = B(z,r) and A > 0.
Let w be a locally integrable, nonnegative function in R*. Then a Radon measure y is
canonically associated with the weight w :

(1) w(E) = [ wiz)da.
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Thus dp(z) = w(z)dz , where dz is the n-dimensional Lebesgue measure. We say that
w (or p) is p-admissible if the following four conditions are satisfied:
. 0 < w < oo almost everywhere in R™ and the measure y is doubling , i.e. there is a
‘constant C; > 0 such that
#(2B) < CIM(B)

Whenever B is a ball in R™ . '
- IL If D is an open set and ¢; € C$°(D) is a sequence of functlons such that [p | |Pd,u -

0 and [, |V — v|Pdy — 0(i — oo) where v is a vector-valued measurable function in
LP(D;p; R™) , then v =0 .
III.(Sobolev inequality) There are constants k > 1 and Cj;; > 0 such that

1 1 /
(@ / Wpdu)l/kp < C”’r(@ /B Velrdu)

whenever B =YB(a:0,r) is a ball in R" and ¢ € C§°(B).
- IV. There is a constant Cyy > 0 such that

/B l¢ — @BlPdu < Cryr? /B IVl|Pdp

whenever B = B(zo,r) is a ball in R" and ¢ € C*®(B) is bounded. Here

1
—— du.

¢From now on, unless otherwise stated, we assume that p is a p-admissible measure
and du(z) = w(z)dz.

In this paper, both condition IV and the following inequality are called the Poincaré
inequality.

Poincaré inequality ([1, p.9])
If Q is bounded, then

[, lplPdus < Chyy(diam @) /Q VelPdu

for ¢ € C°(R2).

Throughout this paper let ¢, denote constants dependlng on C’I, CH, Crrr, k and
Crv.
For a py-measurable function f defined on an open set €2, LP-norm of f is defined by -

1l = ( /Q Ifipdu)l/p-

For a function ¢ € C*(Q) we let

Il i = / lwl”du / Veldp)
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where, we recall, Vo = (01, -+, 8,¢) is the gradient of ¢. The Sobolev space H?(§; )
is defined to be the completion of -

{‘P € C™(Q) : “‘P”l,p;ﬂ < oo}

with respect to norm || - |1, ;0. In other words, a function v is in H*?(; i) if and only
if u is in LP(Q; 1) and there is a vector-valued function v in LP(Q; u; R™) such that for
some sequence @; € C*((2)

| »/|<p,-—u|pdu—->0
ﬂ .

and
/s; IV; —v|Pdp — 0

as 1 — 0o. The function v is called the gradient of u in H“P(2; u) and denoted by Vu.
The space Ho?(Q; ) is the closure of C°(2) in H'?(Q; u). The corresponding local

space H.?(; ) is defined in the obvious manner.

§2. Quasilinear PDE’s
A is a mapping of R" x R" to R™ satisfying the following assumptions for some constants
0< a7 S Qo < 00 :

(al) the mappihg z — A(z, h) is measurable for all h € R™ and

the mapping h — A(z, h) is continuous for a.e. z € R";
for all h € R™ and a.e. z € R"

(a2) A(z,h) - h > ayw(z)|h|?,
(a3) |A(z, h)| < agw(z)|h[P~,
(a4) (A(z, h1) — A(z, h2)) - (h1 — h2) > 0

whenever hq, hy € R*, hy # hs.
B is a mapping of R” X R to R satisfying the following assumptions for a constant
O<az<o0:

(b1) the mapping « — B(z,t) is measurable for all ¢ € R and

the mapping t — B(z,t) is continuous for a.e. ¢ € R";
forallt € R and a.e. z € R"

(b2) |B(z,1)| < esw(z)(|t~ + 1),

(b3) (B(z,t1) — B(z, 2))(t, — t2) > 0.
whenever t;,t; € R". Using A and B we consider the quasilinear elliptic equation

(2) —divA(z, Vu) + B(z,u) = 0.
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A function u € H.? (€ u) is a (weak) solution of (2) if
(3) ' /.A(:L' Vu) - V(pdx+/ B(z,u)pdz = 0

whenever ¢ € Cg°(Q). A function u € H, P(; p) is a supersolution of (2) in O if
—drv.A(w, Vu) + B(z,u) >0

weakly in (1 ,ie. | _ . :

(4) /A(m Vu) - Vpdz +/ B(z, u)pdz > 0

whenever @ € C§°(Q) is nonnegative. A function u € Hlo” (€; p) is a subsolution in € if

(4) holds for all nonpositive ¢ € C$°(1).

Lemma 2.1 If u € H"?(Q; u) is a solution (respectwely, a supersolustion) of (2) in Q,
then

(5) : -L.A(:c, Vu) - Vdz +/ B(x,u)pdr =0 (respectively, > 0)

Q
for all ¢ € Hy?(Q; ) (respectively, for all nonnegative ¢ € HyP(Q; 1) ) with compact
support.

Proof . Let Q’ be an open set such that spto C ' CC Q. Since ¢ € HyP(V; ,u) we
can choose a sequence of functions ¢; € C$°(Q') such that ¢; — ¢ in H (). If @ is
nonnegative, pick nonnegative functions ¢; ([1, Lemma 1.23, p.21]). Then by (a3)

’/ﬂ A(z, Vu) - V@dm + /QB(?,U)(,OdQ? - (/Q .A(.i, Vu) - Vy,dz —!—/QB(:c,u)w,-d:c)'
e [ [Vl Ve = Virldu+ as [ (w4 1)l — ildus
< az(/g;l Ivulpdﬂ)(p_l)/p(/ﬂ’ IV — V¢i|pdu)1/p
4205 / (lul + 1)”du)(p—-1')/p / o — pilPdp) ‘Up-”

Because the last integral tends to zero as i — 0 , we have
/ A(z, Vu)- chd:c—l—/ B(z,u)pdz = Jlim (/Q, A(x,Vu)-chid:c+/s-2, B(«:c,u)tp,-dx) = (>)0,

and the lemma follows. O

The proof of Lemma 2.1 implies that (5) holds for all (nonnegatlve) ¢ € Hy?(Q p) if
(1 is bounded.

A function u is a solutlon of (2) if and only if u is a supersolution and a subsolu-
tion. Indeed, if u is a supersolution and a subsolution of (2), since the positive part ot
of a test function ¢ € C(Q), belongs HyP(£; 1) and has compact support, u satisfies
(3) for ™. Similarly, u satisfies (3) for the negative part of ¢. Hence u is a solution of (2).
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§3. The existence of solutions

In this section, The existence of solutions of Dirichlet problems for equatlon (2) with
Sobolev boundary values will be proved, using a general result in the theory of monotone
operators.

Let X be a reflexive Banach space with dual X' and let (-,-) denote a pairing between
X' and X. If K C X is a closed convex set, then a mapping 3 : K —» X' is called
monotone if

(Su—SQw, u—’u) >0

for all u,v in K. Futher, S is called coercive on K if there exists ¢ € K such that

(Su; =S¢, uj — ©)
l|u; — ol|

— 00

whenever u; is a sequence in K with |lu;|| — oo.
We recall the following proposition. ([3, Corollary II1.1.8, p.87]).

Proposition 3.1 Let K be a nonempty closed convez subset of X andlet S : K - X !
be monotone, coercive, and weakly continuous on K. Then there exists an element u in
K such that

(Su,v—u)>0

whenever v € K.

Throughout this section, we assume that €2 is bounded.
Suppose that 9 is any function in Q with values in the extended reals [—00, 00], and
that § € H“P(Q; u). Let

Kyo=Kyp() ={ve Hl'p(Q;u) cv>vpaeinQ, v—0¢€ HyP ()}
Set X = LP(Q; u; B*) x LP(Q; p; R) and K = {(Vv,v) : v € Ky ()}
Lemma 3.2 K is a closed convez set in X.

Proof : K is clearly convex. To show the closedness, let (Vv;,v;) € K be a sequence
converging to (f, ) in X. By Vu; = fin LP(Q;u; R*) and v; = u in LP(Q; 4; R), v; is a
bounded sequence in H?(£2; u1). Since K, is a convex and closed subset of H'?((; i),
there is a function v € Ky ¢ such that v = u and Vv = f ([1, Theorem 1.31, p.25]). Thus
(f,u) € K. The lemma is proved. O '

Let (-, -) be the palnng between X and X',

((f,u),(g, /f gdu+/uvdu,

where (f,u) i s | in X and (g,v) in X' = LP/®1(Q; y; B*) x [P/®-1(Q; ; R).
A mapping S : K — X' is well defined by the formula

(S(Vo,), (f,u)) = /ﬂ Az, Vo(2)) - f(z)dz + /Q B(z,v(x))u(z)dz
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for (f,u) € X; indeed, by (a3) and (b2),
I/A(m,Vv ). fdz| < a /|Vv|Pd M / |FPdy)
|/ B(z, v)udz| < 205 /(]v[—i—l)pd f| Pdu) .

1/p

Lemma 3.3 S is monotone, coercive, and weakly continuous on K.

Proof : By (a4) and (b3), & is monotone.
Next we show that & is coercive on K. Fix (V, @) € K. Hereafter, for simplicity, we
shall write || - || for || - ||, - By (a2), (a3) and (b3)

[ (A, V)~ A, 99) - (Vu— Vo + [ (Blz,w) - Bla, o)) (u - ¢)ds
6) > a(VullP + IVell?) — ca([[VulPH Vel + [Vull [VelP)
2 [|Vu = Vellen27?||[Vu — VolP — ap2P7H|V||([| Vel + [[Vu — Ve|P)
—a|| Vol PVl + | Vu — Vel)).
Since u — @ € HyP(Q; ),
(7) : llu— ol < || Vu - Vel|.

By (6) and (7), S is coercive on K.

Finally, to show that & is weakly continuous on K, let (Vu;, u;) € K be a sequence that
converges to an element (Vu, u) € K in X. For any subsequence (Vu,],u,J) of (Vu;,w;),
there is a subsequence (Vu] ,u} ) of (Vu;;, u;;) such that (Vui,,u;,) = (Vu,u) ae. in Q.
By (al) and (bl), we have

A(z, Vi, (z))w YP(z) — A(i, Vu(z))w VP (z)
B(z, u;, (z))w VP (z) = B(z, u(z))w ?(z)

15 ) 1,

a.e. in 2. Since

/ [A(z, Vu)w PP/ e dg < of/ 7Y / |Vu,Pdu
Q Q

/ |B(z, u;)w™ PP/ * D dg < 208/ /Q(Iuil +1)Pdy,
Q

LP/P=1)(Q; dz)-norms of A(z, Vu;)w='/P and B(z, u;)w~'/? are uniformly bounded. There-
fore
Az, Vu;j)w—l/” — A(zx, Vu)w™ /P
| B(:z:,ugj)w“l/p — Bz, u)w™ /P
weakly in LP/(P=1)(Q; dz). Since the weak limit is independent of (Vu;;,u;,),
Az, Vig)w Y% = Az, Vu)w™ VP
B(z, u;)w™? — B(z,u)w™/P.



152

weakly in L?/?*~1)(§Q; d). Hence we have for all (f,g) € X that
(S(Vuiw), (£,9) = [ A Vu)-fdo+ [ Bla,u)gde
= /A(w Vau;)w P fwl/”da:+/ T, u;) 1/”gwl/”dw
p . f,,1/P 1/p gl /P
— /QA(:L', Vu)w | fw da:—i—/QB(a:,uw gw Pdz
= (S(Vu,u),(f,9))
Therefore the lemma follows. O

Now the following theorem follows form Proposotion 3.1, Lemma 3.2 and Lemma, 3.3.
Theorem 3.4 Suppose that Ky 9(Q2) # 0, then there is a function u in Ky g such that

(8) /Q.A(m, Vu) - V(v — u)dz + /Q B(z,u)(v —u)dz >0

whenever v € Ky 4.

A function u in KCy ¢(€2) that satisfies (8) for all v € Ky () is called a solution to the
obstacle problem in Ky 6(S2).

As a corollaly to this theorem, we have the existence of solutions of Dirichlet problems
with Sobolev boundary values.
Corollaly 3.5 Suppose that 6 € H'P(Q;u). Then, there is a function u € HYP(Q; )
with u — 0 € Hy?(Q; p) such that '

—divA(z, Vu) + B(z,u) = 0
weakly in Q, that is

/Q.A(:c,Vu) -Vpdz + /Q B(z,u)pdz =0

whenever ¢ € Hy®(Q; p).

Proof: Choose 9 = —oco. Let u be the solution to the obstacle problem in Ky and
pE Ho’p(Q p). Since u + ¢, u — @ € Ky 9, we have

/Q.A m,Vu)-chd:c—i—/QB z,u)pdz > 0

and
—/QA(x, Vu) - Vdz — /QB(a:,u)god:c > 0.

Then o '
| A, Vo) - Vodo + [ B, u)pds =0,

Hence Corollary 3.5 follows. O
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The uniqueness of solutions of Dirichlet problems for equation (2) and obstacle prob-
lems in Ky g follows from the following comparison principle Lemma 3.6 and Lemma 3.7
respectwely

Lemma 3.6 Let u € H'Y?(Q; 1) be a supersolutzon and v € HY(Q; ) a subsolution of
(2) in Q. If n = min(u — v, O)GHO”’(Q u) then u > v a.e. in Q.

Proof: By (a4) and (b3),
/Q(A(:E, Vv) — A(z,Vu)) - Vndz < — / (A(z, Vv) — A(z, Vu)) - (Vv — Vu)dz < 0,

u<v}
/(B(m,v) — B(z,u))ndz < —f (B(z,v) — B(z,u))(v — u)dz < 0.
From this we have
< . - .
0< /Q.A(:c, Vo) Vndm—l—/QB(:c, v)ndz (/QA(:U, Vu) Vndx+/ﬂB(:c, u)nda:)g 0.
and, hence

/Q(.A(IE, V’U) - A(I, Vu)) . V'r,da; =0
and . |
[ (B(z,v) - Bz, u)ndz = 0.

Therefore Vi) = 0 a.e. in Q. Because n € H&’p(Q;u), =0ae. in Q ([1, Lemma 1.17,
p.18]). The lemma follows. a ' '

Lemma 3.7 Suppose that u is a solution to the obstacle problem in Kypo(Q). If v e
H?(Q; u) isa supersolutzon of (2) in Q such that min(u,v) € Ky(Q), then v > u a.e.
m Q.

Proof: Since v — min(u,v) € Ho’p (Q; 1) and is nonnegative, the lemma is proved in the
same manner as in the proof of Lemma 3.6. . O

§4. The local behavior of solutions

In this section, we study the local behavior of solutions of (2).

The next theorem can be shown in the same manner as [2, Theorem 1].
Theorem 4.1 Each solution of (2) in Q is locally bounded. -

We obtain, using the Moser iteration technique, the followmg Harnack inequality.
Let B(R) denote an open ball of radius R.

Theorem 4.2 Let u be a nonnegative solution of equation (2) in ). Given Ry > 0 there
18 a constant ¢ > 0 such that

esssup u < c ess 1nf (u + R)
B(R) B(R

whenever B(R) is a ball in Q such that 3B(R) C Q and R < Ry. Here c depends only
on n, p, ai, ag, as, ¢, and Ry. ,
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. We require some lemmas to prove Theorem 4.2.

Lemma 4.3 ([2, Lemma 2, p.252]) Let a be a positive exponent, and let a;, b; (i =
1,---,N), be two sets of N real numbers such that 0 < aZ < oo and 0 < b; < a. Suppose
that z is a positive number satisfying :

2* <Y a2t
z<c) (a;)™

where ¢ depends only on N, a, and bi, and where v; = (a — b;)™ L.

Then

Lemma 4.4 (John-Nirenberg lemma) ([1, Appendix II]) Suppose that v is a locally u-
integrable function in Q with :

1
ZE>Y - dp < 09
supN(B)/B|v vpldu < c

where
v —L/vd
5= uB) Js

and the supremum is taken over all balls B CC Q. Then there are positive constants c;
and c; depending on cy, n, and c, such that

sup / ecrlv-—vs 'du < ¢y,

1
u(B) /s
where the supremum is taken over all balls B CC Q.

Let u be a nonnegative solution of equation (2) in Q and B = B(R) is a ball in

Q. We set & = u+ R. Thus, by Theorem 4.1, if € C$°(B) is nonnegative, then
o(z) = n”uﬁ € HO P(B; p) for any real value of 3 . Moreover,

|B(z,u)| < 2azwmax(1,1/RP~HaP~t.
We set of = 203 max(1,1/RP71).
Next lemma guarantees that v = log # satisfies the hypothesis of John-Nirenberg lemma.

Lemma 4.5 Suppose that u is a nonnegative solution of equation (2) in 2 and B = B(R)
18 a ball in Q such 3B C Q. Then there is a constant ¢ > 0 such that

[ o—vs,ldu < cu(Br) (v=loga), -

whenever By is a ball with B; C 2B. Here c depends on.p,'al, az, o3 RP and c,.

Proof : Setting ¢ = n?%'~?, we have

0= /33.»4(3:, Vu) - Vedz + /33 B(z, u)pdz
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= [, Al Vo) p(o/ay Vi + (1= P/ Vuddo + [ Ble,uppude
— -1 77 \P P 7\p—1 r—1
oa(p—1) [ (n/afIVulPdp +azp [ (/) V]| Vulrdy
! ~1—-p|—~|p—1
+a3/33 nPu "P|a|P du |
_ - — p p—1 /
= —eap=1) [ nVoldut o [ [VnllnVoP-tds+ oy [ rpd,

where v = log 1. Hence

IA

(9) a1(p — 1)Vl 35 < anp /33 IVallnVolP~ldu + of /33 du.

Let B; C 2B be any open ball of radius h. Let n be so chosen that n =1.in B;,0<n <1
in 3B\B;, the support of 7 is contained in (3/2)B;, and |Vyp| < 3/h. Then by Holder’s
inequality we obtain

_ 1/p ' (p—-1)/p
VnllnVolP-tdy < / VnlPd / | VolPd
| IVllnvop-tdu < ([, 197) ™ ( s, I77017d0)

< %{u((3/2)Bl)}1/”l|anllﬁ,E}a,

/33 nPdp < p((3/2)Bi).
By the above inequalities and (9) we have

ar(p = Dl Vol s < L {u((3/2)B) Y Plnvollzsh + SR a/2) ).

Application of Lemma, 4.3 yields,
IVollp,5, < ch™u((3/2)B1)"?,

where 7 = 1 in B; have been used. Finally by the the doubling property, Holder’s
~inequality and Poincaré inequality we have '

. 1/p
= el < clu3/2B)0 ([ 19 d) < cu(B) (0 =tog),

— !
where ¢ = c(p, oq, oz, 04 RP, c,). O

The following estimates will be used when we apply to the Moser iteration technique.
Lemma 4.6 Suppose that u is a nonnegative solution of equation (2) in Q and B = B(R)
is a ball in Q. For B#0, p— 1, let q satisfying pg=p+ B — 1 and v = @9. Then there
15 a constant ¢ > 0 such that
(1)if 8 > 0,

Invllip5 < c{u(B)}~P/* R(1 + ﬁ‘l)(1-+ 9 (v Vllps + lInvllp,5),
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(i)if1—-p< B <0, } |

I7vllip,8 < {u(B)} M R(1 — B71)(lvVnllp,z + lInvllp,5),
(ii)if 6 < 1—p, |

Irvllip.z < c{u(B)Y/42R(1 + [q]? (v Vnll,5 + ||770||p, )s

where ¢ depends only on p, ai, aa, ¢, and oy RPL.

Proof : We prove only (i), the proofs of (ii) and (iii) being similar. For ¢ = nPuf, we
have

0= /BA(:B,VU)-V;pd:c-i—/BB(x, u)pdz
= fB.A(:c, Vu) - (pP @V + ,Bn”ﬁﬂ_IVu)d:v—{—/BB(m,u)npﬁﬁdx
=B—1 Pl — p—1,p-1 7B, — A =B-=p—1
> [ P |VuPdu - pas [ (VP |Val@ds - o [ e tdu
Since pgq = p+ ,3 —landv= = uf,
pan
(10) ool < 22 [ 1onllnoletdu-+ o) [ oo

Here for s1mphclty we have written || - ||, for || llp,B-
By Holder’s inequality,

[ wvnlineltdu < Jovnlylnvol,

(»-1)/p |

[ = ol [ () |
||77’0Hp{ (/B(nv)kpd#)l/k(/B dﬂ)(k-l)/k}(p—1)/p

= u(B)EDEDER) |, |l 7
< B Hmollp(loValle™ + InVollp™),

IA

where we have used Sobolev mequallty By the above inequalities, if we set

_ InVoll, ¢ = ol
MoVl oVl

then (10) can be written as
B2 < c{g" ™ + ¢PC(1+ 2771},
where ¢ = é(p, ay, as, aQRp;l, Cu)- Applicé,tion of Lemma 43 yieldé ; |
z<c(1+B7)(1+q)P(1+),
that is,
(11) Vol < e(1+ 87 A+ @ ([ Vanll, + [lvllp).
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Finally using Sobolev inequality again, from (11) we obtain the desired estimate. o

Proof of Theorem 4.2 : Set v = log 4. By Lemma 4.4 and Lemma 4.5, there are positive
constants ry and ¢y such ‘that

oV —rou _ ro(v—vg,) ro(vp, —v)
([, e ) (f, ) = ([, e ([, eson-ra)
' < (/31 e’°'”'.”31|du) < 2 {u(B)}>.
Because B, is any ball contained in 2B, ‘
woau) ([ ) < AEB)
(fwe u) ([ evdn) < G{u(2B)}
Hence 7
(12) (/ arodp,) i/ro < C{I,L(B)}2/T°(/ a‘rodﬂ)_l/ro_
_ 2B - , ) 2B }
Next, let 0 < &’ < h < 3R. Let the function n € C°(B(h)) be so chosen that =1 in

B(R'),0<n<1in B(h) and |Vn| < 3(h — h')"!. Then Lemma 4.6 yields
(i) if >0, ‘

(13) 15k, By < An(B)Y P R(1 + g)? (A — B) (1 + 71| lp, 300,
(i)ifl-p<B<O,

14 l@lkpswy < Au(B)Y R = B)THL = B @, 50w,

(iii) if 8 < 1 —p, |

(15) 1@ llkp, By < e{u(B)} ¥ R(R — B)7H(1 + |g])?||@?]lp, ),

where ¢ depends only on p, a1, as, ¢, and o RP~L.
Putting r = p¢ = p+F —1in (13) and (14), combining the result in a single inequality,
we obtain

1) ([, @) < {eluEB)OPRG - K1+ 87+ 1Y

_p Ir
X(/B(h)u d,u)l ,

=k v=0,1,2--,

and h, = R(1+27%), h, = h,1, where rj < rg is so chosen that r, # p — 1 for any
v=0,1,2,---. Thus

/r
forall 0 <r#p—1. Let

1Bl =Ir—(p—-1)|2c>0,

whenever r = r,, where ¢ depends only on p, k, ro. The term (1+|3|™!) in (16) can thus
be absorbed into the general constant c. Hence from(16) we have that

(A(h’)ﬂr"ﬂdlll)l/’mwlﬁ {c{u(3B)}(1_k)/’“p2"+1(1 + ru)p}p/r” (/B(h ),ﬂ"‘ud#) 1y
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v R ! v ] v [ 1/7'11
= GV (u(EB) I I (1 ([ )
v v ' TR 1/ry o
< ¥ (uEB) O ([ ardg)”
, B(hy)
By iterating, it follows that
' ’ ! 1 1"
(17) esssup @ < c{u(3B)} /o (/ ﬂ’Odu) o,
B 2B
Setting s = pq in (15), since-s and g are negative, we obtain
—ks 1/ks 1 (1—=k)/kp _pn-1 p p/s / a° 1/s
([ 7o) > {cAB@BY R = 1)1+ sl Y ([ atdu) ™
Let s, = —k"ro, h, = R(1 + 27%) and h), = h,,+1 Then
_ 1/3y+1 _l/k ——l//k (1 k)/kr kY / - 1/8u
Sviid 3B 0 a*d
(o ® u) = {4(3B)}" d o B

By iterating, we obtain

. Sof —1 1/m =T =1/ro
(18) essugfuZC {n(3B)} "(/;Bu °du) .

Finally, by (12), (17), (18), and a simple application of Holder’s inequality, we have

= —1/rg =Tf 1/rg . —1/r =T 1/ro
ess5Up & < c{u(3B)} (ABu d/.L) < c{u(3B)} 0(/;3 a Odu)
1/ro ——ro g\ /™ inf @
< {p(3B)} (/23 a d,u) < cess ugf a.

Since 4 = u + R, this concludes the proof of Theorem 4.2. O

We apply Theorem 4.4 to show that any solutions of (2) has Holder continuous repre-
sentative. ' _

Theorem 4.7 Let u be a solution of (2) in  and z¢ be any point of Q. If 0 <R < o0
is such that B(zg, R) C Q and if |u| < L a.e in B(zo, R), then there are constants c and
0 < A <1 such that

PAA
ess sup u—ess inf u<e
Bleor) B(zo.0) (R) ’

whenever 0 < p < R. Here c and X\ depend only on n,p, oy, 0z, a3, ¢y, R and L.
Proof : We write B(r) B(zo,r) and

M(r) = esssupu, m(r) = ess inf u.
B(r) , : B(r)

Then M(r) and m(r) are well defined for 0 < r < R, and
Ca=M@r)-u, G=u—m(r)



159

are non-negative in B(r). Obviously @ is a solution of
| —divA(z, Vi) + B_(:v,ﬂ) =0
where A(z,h) = —A(z, —h) and B(z,t) = —B(x, M(r) — t). Thus
1B(e, D] < ahw(@)([F" + 1),

where of is a constant depending only on a3, p and L By applying Harnack inequality
to 4, we have

(19) M(r) — m(r/3) = ess Bs(lrl/%) c(ess Bl(nf £ a+r)=c{M(r)— M(r/3) +r}.

Similarly we have

(20) M(r/3) — m(r) = ess ;(1?1};) < c(esg Bl(Ilf u+r)=c{m(r/3) —m(r) +r}.

Here c > 1 depends on n,p, a4, @, a3, ¢,, R and L. By (19) and (20),

(21) M(r/3) —m(r/3) < (r) — m(
Thus setting
c—1 2¢cR
0 = y T = -
c+1 c—1

and
w = M(r) —m(r),
(21) can be written as '
w(r/3) < 6{w(r) +7(r/R)}.
Since w(r) is an increasing function, for any number s > 3 we have also

w(r/s) < 0{w(r)+7(r/R)}, 0<r<R.

By iterating, we obtain

(22) w(R/s") < 0 {w(R) +7{1+ (85) 7 + - + (6s) 1},
for v =1,2,3,---. Let s be so chosen that s = 3. Then (22) implies
(23) w(R/s") < 0°{w(R) +2r}.

For any p such that 0 < p < R/s choose v such that R/s"™! < p < R/s Then from
(23) we have .

(24) - w(p) <w(R/s") < 0"(w(R) + 27).
If we set v = —log, 6, then we have § = s™ where A = v/(y + 1) > 0. Thus

R ,
0" = ‘(s"+1 %)/\ = c(%)/\‘




160

Hence, since w(R) + 27 < ¢(L + R), (22) implies

w(p) <L+ RB)(5)" (o< R),

as desired. O

§5. A regularity at the boundary for solutions
In this section, we are concerned with the continuity of solutions at the boundary.
First, we recall the definition of the (p, u)-capacity which is adopted in {1]. Suppose
that K is a compact subset of . Let "

W(K,Q)={ueCQ): u>1on K}

and define

‘ —  inf 72i|P
cap, (K,9) = _inf [ 1vuldp.

Further, if U C Q is open, set

ca UQ)= su ca K,Q
pp,u( : ) KCUcon)npact pp,u( ’ ),

and, finally, for an arbitary set E C 2

cap, ,(E,Q) = Ecnl}fCQ cap, ,(U, ).
U open

The number cap, ,(E,) € [0, 00] is called the (p, u)-capacity of the condenser (E, Q).
Ifue H,{;f(ﬂ;u), xo € 012, and | € R we say that

(25) ' u(zo) <1 weakly

if for every k > [ there is an r > 0 such that n(u — k)* € Hy?(€; 1) whenever 7 €
C§°(B(zo,7)). The condition

(26) u(zo) > 1 weakly

is defined analogously and u(xo) = | weakly if both (25) and (26) hold. Observe that
if f is a continuous function on R™\Q, f € H.P(R* ), and u — f € HyP(S%; ), then

loc

u(z) = f(x) weakly for every z € 69. ,

Lemma 5.1 Suppose that u € HP(Q; 1) is a subsolution of (2) in Q, that u < L a.e.
in €1, and that u(zo) <l weakly for o € 0. For k > 1, let ,

_J(u—k)* onQ
Uk { 0 otherwise

and define

M(r) = ess sup wu.
B(zo,r)

Choose 1o > 0 so small that nu, € Hy”(Q; p) whenever n € C°(B(zo, o).
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Then there is a constant c depending only on n, p, l, ro, a1, g, a3, ¢, and L such that

/B(mo,r P |V (o) |Pdp < ¢ (M(r) +r)(M (rj — M(r/2) + V" w(B(zo, r))r P

where 0 < r < 19/2, v = M(r) + 1 —u and n € C§&°(B(zo,7/2)) with 0 <1 <1 and
|Vl < 5/r. ‘ |

Before proving Lemma 5.1, we will state its implication.

Theorem 5.2 Let u € HP(Q; u) be a subsolution of (2) which is bounded above on Q,
zo € 00, and u(zo) <! weakly. If

/1 (capp,u(B(xo, t)\Q, B(zo, 2t))>1/(p_1)@ _

(27) cap,, ,(B(zo,t), B(zo, 2t)) ;o

then

esslimsupu(z) < I.
T—rTo

Proof : Since, for any k > [, it follows immediately from Theorem 5.1, the definition of
(p, u)-capacity and [1, Lemma 2. 14] that

cap, ,(B(zo,r/4) N {ux = 0}, B(xo, r/g))>1/(p—1)
cap,,,(B(zo,7/4), B(xo,7/2))
<c(M(r)— M(r/2) +7),

the thorem is proved in the same manner as in the proof of [4, Theorem 2.2]. O

(M(r) + 7')(

If u is a supersolution of (2), then —u is a subsolution of
—divA(z, Vv) + B(z,v) =0,

where A(z,h) = —A(z,—h) and B(z,t) = —B(z,—t). Consequently, Theorem 5.2 has
the obvious counterpart for supersolutions of (2). These results yield

Theorem 5.3 Let u € H.? (% 1) be a bounded solution of (2), that xo € 092, and that

loc

u(zo) = | weakly. If (27) holds, then
lim u(z) = 1.

T—rT9

Proof of Lemma 5.1 : Fix 7 > 0 so that 0 < r < rp/2, let € C’°°(B(x0,r/2)) with
0<n<1land|Vn| <5/r. Set

I(r) = (M(r) +7)(M(r) — M(r/2) + )" u(B(o, 7))r .
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Since - :
/|V(nv'1)|pdu <c (/n"|Vuk|pdu + /v"”anP’du),
we will show that

o /n”|Vuk|pd,u Svcl(r) and /v"’|V17|”d,u <cl(r),

by using following two estimates.
Estimate1 For (1-p)/p<a#0

(em@)™ [ [V(@o)Pdu < v {(wo)? + |Vwl}dp,
B(zo,r) B(zo,r)

whenever w € C§°(B(zo,r)) with 0 < w < 1, where ¢ is a constant depending on p, aj,
az, as, l, ro, and L, and

0<m(a) <1+o® if a>0,
m(a) > 0 and a decreasing function of o if (1 —p)/p<a<0.

Estimate 2 For0<o<p-1,
w(B(20,)) v l1,B(s0,r/2) < (M (r) — M(r/2) + 1),
where c is a constant depending on p, n, a;, as, as, I, ro, L and o.
Let us suppose that Estimate 1 and Estimate 2 are true. Fix a < 0 such that 1 <
(1+ a)p < k, then putting B = B(zo,7/2), we have
[ vuValdy = [ (Ve @0 )y
B B
(28) = ¢ (Ve (ot D)) d
: B

< o ([ miverpa) " ([ @0 npa)
—1
c {( fB IV (mo)ledp) 7 + ( /B Iv"VnI”du)l/p}p
1/p
% ( /B (v_(1+")(”_1)|V7)|)”du)

c (T_p/Bvapdu)(p_l)/p(/B('U_(Ha)(p_l)|V77|)pdu)1/p

(»-1)/p

IA

IN

< e {(M(r) = M(/2) +7)"Pu(Blzo,r))r "}
x{(M(r) — M(r/2) +r)+E=P(B(z,, r))r"’}”p
= ¢ (M(r) = M(r/2) + r)* ™ u(B(zo, 7))r?,

in the last inequality we have used Estimate 2 with o = —ap/k and 0 = (1+a)(p—1)p/k
respectively. Also since 7 < 1, :

(29) [ wdn < w(Blao,r) < cI(r).
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Hence, by (28) and (29),
B0 [Vl < o [ wdut MO) [ Vel Vnldy) < e 1),
Here the first inequality has been obtained by using the facts that o =nPu € HO P(Q; ),
¢ is nonnegative, u is a subsolution and the structure of A and B From Estimate 2
with 0 = (p — 1)/k again
(31) /B v VnlPdu < cr 7P (M(r) +7) /B v Py < c I(r).
Therefore we obtain from (30) and (31) |

LIVt pdu < e 1r).

Finally, we will prove Estimate 1 and Estimate 2. For 8 > 0, let_
W= = (M(r)+7)

and
= w1, |
where w e C?(B(wo,r)) Then ¢ € Ho’p(Q ). Since ¢ =0 on {u;y = 0} and ¢ > 0 on
Q,
/ﬁw”vﬁHA(m, Vu) - Vugdr + /pwp—lzp.A(a:, Vu) - Vwdz + /B(x, u)pdz <0,
where the integrals are taken over B(zo,7)N{u; > 0}. Hereafter we will suppress explicit

indication of this domain of integration.
Using (a2), (a3) and (b2) we have

alﬂ/w”vﬂ“qudeu < pasz”"ltp]Vuklp"l]VwM,u + a3/wp1,b(|u|”_1 + 1)dp.
Since ¢ < vP, v™! < M(ry) +ro and | < u < L, we obtain
(32) c_lﬂ/w"vﬁHIVudeu < /wp‘lvﬂqukl”'lwwldu-l—/w"vﬁﬂdu,
where c depends on p, &y, ag, 3,70, L. Application of Young’s inequality yields that
/wp_lvﬁ]Vukl”‘IIVwMu < eP/P-D(p_1)p? /w”vﬁ+1|Vuk|pd,u
+€_”p"1/vﬁ_p+1|Vw|pd,u,

for any € > 0. By the above inequality and (32) with an appropriate choice for ¢, we
have

(33) c"lﬂ/w”vﬁ+1|Vuk|pdu < /w”vﬁ“du-—i- ,Bl_p/vﬂ;p+1|Vw|”du.
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By letting 8 = pa+ p— 1 with 0 < § # p — 1, , we obtain Estimate 1.
Next we prove Estimate 2. In (33) letting 3 =p—1,

/w”lV(log v)IP < c{(p - i)"i /wpv”du +(p— 1.)"’/ |Vw|pdu}.

Since, by using v < 1/ r and Sobolev inequality,

/w”vpdu < r‘pu(B(mo,r))(k"l)/k(/ ”kdp, < c/ |Vw|Pdp,
we have '
/ WPV (log )P < ¢ / IVwlPdu

whenever 0 < w € C°(B(zo,7)). Using Lemma 4.4(John-Nirenberg lemma) in the same
manner as in the proof of Lemma 4.5 and Theorem 4.2, it follows that there are positive
constants ¢ and og such that

’ 2
34 / v %u vodp < ¢ w(B(xo, s ,
(34) BTy BERLT {u(B(zo,5))}

whenever o < g and 0 < s < 3r/4.

Let 0 < s <t < r and let a function w € C§°(B(zo,t)) be chosen such that 0 <w < 1,
w = 1 on B(x,s) and |Vw| < 2(t — s)™!. Then (wv)? < v? < r7? < 2(t — s)7?. Hence,
from Sobolev inequality and Estimate 1,

ajkp 7, \1/* (1—k)/k p(p _/ o
@) ([, 1lmadn)" < em@u(Blan, ) o= [ oed,

whenever 0 < s <t <rand (1-p)p~! <a#0. :
Let r; = 7(271 +27972) for j = 0,1,---. Then since m(aok?) < c (kP)’ for 0 < ap <
aop~ 1, (35) yields that

(-/B( 0 ) l’l)aokjlkpdu)l/k <c (kp)j{N(B(-’L'o,’r))}(l_k)/k(2p)j/ ,Upaokjd#’,
T0,7j+1

B(xo,rj)

and hence

_ k=3 i
107 [lk5+1,Bzo0.rs0) < {€ {(B@o, 7))} F L7 (2PK2) 7% (107 |as o)

for j = 0,1,---. Hereafter, for simplicity, we shall write || - ||~ for || - ||p,B(zos)- BY
iterating, we have '

(36) (M(r) = M(r/2) +7) 7% < ¢ {u(B(xo, 7))}~ [v7*l1,3r/4,
whenever 0 < pag < 0. From (34) and (36), we obtain that
(37) p(B(x0,7)) " vl 1,3r/a < ¢ (M(7) — M(r/2) + )P

whenever 0 < pag < 0.

Return to (35) with 1 —p < pa < 0. Let 0 < 0 < p—1 and let jo is a positive integer
such that p — 1 < gok¥. Put 0; = gk™. Since 0 < 01k <o <p—1for 0 < j < jo,.
m(—a1k’p™!) < m(—op™?!) for 0 < j < jo. '
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Let r; = (r/4){3 — j/(Go+ 1)} for 0 < j <jo+1. ‘Then (35) yields that

. _ _ . k3
o™ k41,154, < [em(=op™ ) {s(B(@o, )} ™ (4o + DY] o™ s ry-
By iterating for 0 < j < jo, we have .

k(k0+1_1)

w(B(o,m) M o™ Kt /0 < [e m(—op™) {400 + VY]
. - o kio+1
x[{u(B(@o,m))} v~ vy

Since 0 < 01 < gy, from (37) we obtain Estimate 2.
Hence Lemma 5.1 follows. a
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