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INTRODUCTION

Let g(A) be the complex contragredient Lie algebra associaed to a symmétrizable
real square matrix A = (‘a,-j),-,je‘l indexed by a finite set I (see [K1] and [KK] for
details). In [K2], Kac introduced a complex associative algebra U }-(g(A.)), which can
be thought of as a certain completion of the universal en_veléping algebra U(g(4)) of

- the contragredient Lie a,l_gebrav g(A). In it he showed that there exists an isomorphism
H (called the Harish-Chandra homomorphism) between the center Zx of the algebra
U }-(g(A)_) and, the algebra F of complex-valued fuctions on the set h* \ L, where L is
the union of certa.in infinitely many affine hyperplanes in the algebraic dual h* of thé
Cartan subalgebra b of g(A). |

Moreover, he studied the “holomorphicity” of the elements of the algebra Zr as
“vector-valued” functions on the interior K of the complexified Tits cone Xc in the case

" where g(A) is the symmetrizable Kac-Moody algebra (i.e., the matrix 4 = (aij),‘, jer is
a symmetrizable generalized Cartan matrix).

In this paper, we generalize his results in [K2] to the case where g(A) is the sym-
metrizable generalized Kac-Moody algebra (i.e., the complex contragredient Lie algebra

associated to a certain symmetrizable real matrix A = (a;;)i jer, called a GGCM).

Typeset by AsS-TEX
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1. HARISH-CHANDRA HOMOMORPHISM

In this section we briefly review the setting and some results in [K2], which are valid
for arbitrary symmetrizable contra‘gr‘edientk Lie alge'bras over C, hence for symmetrizable

generalized Kac-Moody algebras over C.

1.1. A completion of the universal enveloping ‘algebra. Let g(A) be the sym-
metrizable generalized Kac-MOody algebra (GKM algebra for éhbrt) over C. Then the
Lie algebra g( A) is nothing but the contragredient Lie algebra as/sdciatedfo a symmetriz-
able real matrix A = (aij)i,jer (called a GGCM) indexed by a finite set I satisfying the

following conditions:
(Cal) either ai; =2 6r ai; S 0 fér 1€ I
(C2) ay SOifi;éj., ;?,ndaij €Zfor j #1if a;; = 2;
(C3) aij = 0&aj; =0.
‘Note that this déﬁnitéion,of GKM algebras is due to Kac (see [K1, Chap. 11]), and

slightly different from the original one by Borcherds in [B1]). From now on we follow

the notation of [Kl], and freely use results in it (see also our previous papers [N1] —

[N3)).

Let h be the Cartan subalgebra of the GKM algebra g(A). Then, since we have been
assur:ﬁing that”thév GGCM A = (@ij)ijer is symmetrizablé, there e?cists a nrondegenerbate
symmetric C-bilinear form (-|-) ofx the dualv h* of b, which is in;rariant under the action
of the Weyl group W. (Heré recall that the Weyl group W of the GKM algebra g(A)is
by definition the subgroup of GL(h*) generated by the fundamental reflections r; with
a; =2.)

Now, for « € @ = ) ;c; Za;, we define the affine linear'fuvncti'oh‘Ta(-) on h* by:ﬂ
To(A) = 2(A + pla) = (ala) (X€ b*), where p € h* is a fixed element of h* such that
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~ HARISH-CHANDRA HOMOMORPHISM

2(plaz) = (a,|a ) for i € I. Then we put

.L:'= U {Aeb* |T,,;,(A+7)—0},

YEQ
BEAL
nEZZl

Let F be the algebra of C-valued functions defined on h* \ L. Because the set h* \ L is
dense in h* in :the usual metr‘ic‘topology,,t/here 'e‘xists_a,’ canonical embedding ¢: S(h) —
F, ‘v‘vhere S (h) iSf viewed as Atllle_ algebra of polynomial functions on h*. Here we define
the ection m of the oniversal en\}eloping algebra U(g(A)) of ‘t‘he GKM algebra g(4)
o_r;:the algebra fby n(ep)e(:) = ¢(- + B) ‘for ¢(-) € F and eg € U(g(A))p, where
h(es) = B(h)es (B € @,h € ).

By using the action 7 of U(g(4)) on F, we can define the structure of an associatyive

algebra on the vector space U(g(A4)) ®c F by:

(ea ® ())(es ® (")) = eats ® (m(ep)p())P(");
for p(-),%(-) € F and ey, e € U(g(A)) with a,8 € Q. Let Ur(g(A)) be the quotient
algebra of this associative algebra U(g(A)) ®c F by the two-sided ideal generated by
the elements f ® 1 — 1 @ 1(f) for f € S(h). Then the associative algebra Ur(g(A)) is
generated by the algebra F and U(g(A)), and the following relation holds in it:

p(-ep —epp(-) = es(e(- + B) — ¢(")),
where <p() e F and eg € U(E(A))ﬁ with 8 € Q Moreover this algebra U]—'(Q(A))
decomposes into the tensor product of vector spaces as:
Ur(9(4)) =U(n-) ®&c F &c U(ny4),
and canonically contains the algebra U(g(A)) = U(n-) ®c S(§) ®c U(ny).
By putting deg(e;) = 1 and deg(fi) = —1 for ¢ € I, and deg(F) = 0, we have a
Z-gradation of Ur(g(A)) as: |

Ur(a(4) = PU(a(4))i, Us(a(4))j:= P U-x(n-)®cF &c Unm(ns),

JEZ -m—k=j
k,m>0
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so that we can “complete” it in a canonical way as:

Uf(g(A)) = @ Ur(G(A))J, Uf(E(A) H U_k(n-) ®c F ®c Unm(ny),
JEZ . —k=j :
k,mZO

where U,,(ny) (resp. U_i(n-)) is the sﬁbspace of U(ng) (resb. U(n_)) of degree m
(tesp. —k). Note that the mulﬁplica‘tio'n in Ur(g(A)) extends to Ux(g(A)), so that
Ur(g(A)) is an associative algebra containing Ur(g(A)).

Moreover, if V(A) is a highest weight g(A)-module with highest weight A € h* \ L,
then the action of U(g(A)) on V(A) can be extended to the action of the algebra
U7(a(A)), while the algebra F acts on V(A) by: |

P ()(vr) = plr)or,

where ¢(+) € F and v, € V(A), is a weight vector of weight 7 € h*.

1.2. Harish-Chandra homomorphism. We denote by Zx the center of the asso-
ciative algebra Ur(g(A)).

Now we prepare some notation. Let [X+ be the multiset in which every positive root
o € A4 appears with its multiplicity. For § € Q4 = }_;c; Z>o«;i, denote by Par 3 the
set of maps k: Ay — Zx such that 8 = EaE.A+ k(a)a, and put Par := Ugeg, Par 5.

For each 8 € Q4+, we can choose a basis {F¥} kép;, g of the vector space U(n-)_g con-
sisting of elements of the form F* = Ha€A+ fo,(a) (finite product) for k = (k(a))aeA+ €
Par 3, where fa Eg_oisa root vector for a root o € A+ such that g_, = &C fx. Then
elements of Ux(g(A)) are expresed in the form

Z VFkka,ma(Fm) (infinite sum),
k,m€Par »

with ¢4 m € F and |deg(F™) — deg(F*)| < constant.

In [K2], Kac proved the following theorem. (Here we also record the full proof by

Kac for later use.)
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Theorem 1 ([K2, Theorem 1]). Let ¢ € F be a function on §*\ L. Then there exists
a um'quc element z, = ZﬂEQ+ E-k,meParﬂFk‘Pk,mU(Fm) in Zx with ¢gm € F such
that @g o = ¢. Here o is the involutive anti—automorphfsm of U(g(A)) det-ermined by
o(e;) = fi,o(fi) =ei fori € I, and o(h) = h for h € b.

Proof. First we note that an element x € U 7(9(A)) is zero if and only if if ac;cs )as
a zero operator on each Verma ﬁlodule M(A) with .higvhest weight A € h*\ L (cf.
the proof of Proposition 1 :beloW)v. So thé elefn;ent z, € U F(9(A)) of the form z, =

ZﬂEQ+ Ek,mEParﬂ Fkgok,ma(Fm) with cpk,m"_e .7:' is in the center Zr if z, acté és the
- scalar g,0(A) on each Verma module M(A) with highest Weightvv A € h*\ L. Therefore,
we will choose @i m € F with k,m € Pér B by induction on FE @+ in such a way that
z, acts as the scalar @g,0(A) = ¢(A) on the weight space M(A)r—g for each g € Q.
Here we use a partial orderiﬁg <onbh*definedby: A\Spu&p—Ae Q4.

. We denote by G8(A) the matrix of the oprator k. mePar 4 Frop ma(F™)on M(A)r—g
in the basis {F?*(va)}separ g for 8,7 € Q4, where vy € M(A) is a highest weight vector
of weight A € h* \ L. Let us fix 8 € Q4. Assume that we have already chosen the
functions @k,m With k,m € Pary for v < §, so that we know the matrices Gg(A) for
4 < B and A € h*\ L. For the matrix Gg(A), we have that

GA(A) = B5(M)BY, @5(A) i= (prm(A)emerarpy BY i= (BS(F ™))t mepacs.

Here BQ(F",F"‘) € C is determined by o(F*)F™(vy) ='B£(Fk,Fm)vA. Moreover,

the condition that z, acts on M(A)a—p as the scalar p(A) can be written as:

(%) | @5(A)Bg + ) GH(A) = (M),
: <8 o :

since G?,(A) = 0 for v £ 8. Here we recall from [KK, Theorem 1} that the determinant

det Bg‘ can be writen as:

det BA = H I1 T, (A)#(Par(B=nc0).
CYEA+ n=1
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up to a nonzero constant factor independent of A. Because A € §*\ L, we have det Bg #

0, so that pi m(A) for A€ h*\ L, k,m € Parf is determined. O
- Conversely we have the following proposition.

Prop051t10n 1. An element z € U;(g(A)) lies in the center Z}- on]y 1f1t is of the form

T = EﬂEQ.{. Zk ,m€EPar B F (Pk mU(F ) fOI‘ some (Pk m € F.

Proof. Let z = 37 & cpoy F*ok,mo(F™) with opm € F and |deg(F™) — deg(F¥)| <
constant be an element of the center Zx. It_; is clear that, for a highest weight vector
vp of the Verma module M(A) with highest weight A € h* \ L, we have z(v)) € Cuy.
So z acts as a scalar on each Verma module M(A) with highest weight A e b\ L
Note that, in the summation above for the expression of z, m is an element of the set
Par = Ugeq, Par 8. We will show by induction on 3 that if m € Par ﬂ, then cpk m =20
for k ¢ Par . -

. Let us fix # € Q4 and A € §*\ L. The element z acts as a scalar (independent of )
on the weight space M(A)s_g. Now fix an arbitrary mq € Par 8. Because the matrix
B}‘g = (Bg(Fk,Fm))k,meparl@ is nonsingular for A € h* \ L, we can choose an element
v € M(A)p—p such that ab(Fm°)(v) =rch for some nonzero ¢ € C, and o(F™)(v) =0

for any m # mg € Par §. Then we have

M(A)A 5D Cv>3z(v)= Z >y F c,okma(F"’)(v)+ > cpkmo(A)F*(va),

k€Pary<B mePary - k€Par

where F*py no(F™)(v) € M(A)A__ﬂ for m € Pary with ¥ < 8 by the inductive as-
sumption. Therefore, we deduce that ¢k m,,(A) = 0 for any k ¢ Par 3 since the vectors
.{Fk('U,A)} kePar are linearly independent. ‘This means that ¢ ;.= 0 as an element of

F for k¢ Parp. 0O

* From Theorem 1 and Proposition 1, we see that there exists an algebra i’somdrphism
H: Zy — F defined by z, — ¢ = ¢ 9. we call this isomrphism H the Harish-Chandra

homomorphism.
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2. HOLOMORPHICITY OF THE FUNCTIONS @i m

2.1. The Tits cone of GKM algebras. From now on, we assume that the GKM
algebra g(A) over C is the complexification of the GKM algebra g(A)g over R (i.e.,
g(4) = C®r g(A)r). So the Cartan. subalgebra § over C is also the complexification
of the ‘Carta‘nv sﬁbalgébra bR (i..e., h = 1(C ®r br), and the set ‘of simpl;: roéts I =
{a;}ier is a linearly independént subset of the algebraic dual b of hg over R. Further
there exits a nondegenerate W-invariant symmetric R-bilinear form (-|-) on hg, whose
complexification on §* is also denoted by (-|-). |

Here we define the fundamental chamber C and the Tits cone X of the GKM algebra
g(A). We put |

' C:={rebg | (Nei)=>0foriel},

and then X := W - C = Uyew w - C. We denote by X° (resp. X ™) the interior (resp.

the closure) of X in the usual metric topology of hg.

Remark 1. In [B3] and [K1], the fundamental chamber was defined to be the set
o= {he by | (Mag) 2 0 for i € T with ag =2},

and the the Tits cone was defined to be X™ := W . C"¢. However this definition is not
appropriate for our purpose here.

The proof of the following lemma is almost the same as in the case of Kac-Moody

algebras (see [K1, Chap. 3] and [W, Chap. 4]).

Lemma 1. (1) The fundamental chamber C is a fundamental domain for the action of
W on X, i.e.,-any orbit W - X of A € X intersects C' in exactly one point.- Moreover, W
operates simply transitively on chambers.

(2) X ={) e bg | (Ma) <0 for only a finite number of @ € A, }. In particular; X
is a convex cone.

(3) X° ={X e bk | (Ma) <0 for only a finite number of « € Ay }.
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" Here we prepare some more notation for GKM- algebras. Let II"® = {ai €Il | ai =
~ 2} be the set ‘of real simple roots, and II'™ = {a,-"E'TI 1 a;; < 0} the set of imaginary
simple roots, AT := W - II"® the set of real roots, and A™™ := A\ A" the set of
imaginary roots. We know from [K1, Chap. 11] that A™ N.Ay = W - N, where

= {a € Q+\{0} I (ala,) <O0fori W1th ai; =2, and supp(a) is connected}\U j-mm,

‘ i>2
In particular, the set A" = Ay NA™ is W- stable.

Now we have the following lemma | |
Lemma 2. (1) X~ C {\ € b5 [(Xa) > 0 for alla € AI™}.

(2) X° c {Aeby| (Ma) >0 for alla € A"},

Proof. (1) Let X' := {\ € b% | (A\|a) > 0 for all @ € A¥™}. Then it is clear that the
set X' is a W-stable closed subset of % since A¥™ is W-stable. Because C' C X' from
the definition, we have X C X', so that X~ C X'.

(2) Put [ := dimg b, and take a basis {vi}i—; of bj. Let A € X°. Then thre exists
€ > 0 such that A+ ev; € X for 1 <: < [. For any a € Af,_m, there exists some v; such
that (vi|a) # 0. If (v;]a) > 0, we have (A|a) > e(vi]a) > 0 since (A — ev;]a) > 0 by (1).
If (vi]a) < 0, we have (M|a) > —e(vi|a) > 0 since (A + ev;la) > 0. O -

Let X¢:= X+v/-1bk = {z++v/-1y |z € X,y € bi} be the complexified Tits cone,

and denote by K the interior of X¢ in the usual metric topology of h*. It is obvious
that K X°+V-1bg.

From the lemmas above, we get the followmg lemma which will be used later

Lemma 3. (1) Let « € AY™ and'n € Zy1. Then the affine hyperplane Tyqo(-) = 0 does
not intersect the domain —p + K.

(2) Let a € ATt andn € Zy;. f XA € —p+ K and Tpo(A) =0, then A—na € —p+ K.

Proof. (1) Let A € —p + K, and suppose that 2(A 4 pla) = n(a|a). Obviously we may

assume that A € —p + X°. We show that (a|a) < 0. Because A¥™ = W - N, we may
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assume that o = ),y kia; € N C Q4. Then we have (ala) = ) ;. ki(ala;) <0, since
(afa;) < 0 for a; € II™ by the definition of N and (ej|a;) < 0 (5 € I) for o; € II'™.
Now the equaity above contradicts part (2) of Lemma 2.

(2) Because a € A™ = W-1II", we can write @ = w-a; for somew € W and a; € TI"™.
In partlcular (ala) = (a,la,) > 0. Here note that the reflection r,, of h* with respect toa
is deﬁned by ra(/\) =A— (2(/\|a)/(a|a))a for X € h* and can be written as To = wriw™ 1,
so that ro € W. Now we have ro(A + p) = A + p— (2(A + ple)/(a]a))a = A + p — na
by the assumption. Since K is W-stable, we deduce that A —na € —p+ K. O

2.2 Holomorphicity of the functions ¢4 ,, on the domain —p+ K. We first recall

the following elementary lemma in [K2].

Lemma 4 ([K2, Lemma 2]). Let B = (b;;)and C =1c;j) be two N x N-marices, where
bi; and c;; are holomorphic functions in the variables z1, .. , zy on some neighborhood
U of the origin 0. PutV := UN{(z,...,z8) € CN | z; = 0}. Suppose that B is
invertible on U \ V and that on V one has: -

(a) det B has zero of multiplicity s € Z>;

(b) dim (Ker B) = s;

(c) Ker B C KerC.
Here Ker B = {z € CV | Bz = 0} (which, in general, depends on (z;,...,zy) € CN).

Then the entries of the matrix CB~1 can be extended to holomorphic functions on U.

We remark that the classification theorem ([Kl Theorem 4. 3]) holds also in the case
of indecomposable GGCMs: -

(1) GGCMs of finite type are ‘exactly GCMs of finite type;

(2) GGCMs of affine type are GCMs of affine type plus the zero 1 x 1 matrix.

(3) If A = (aij);, ]EI is a GGCM of indefinite type, then there exists a positive
imaginary \roe.t o= Zie'f kia; such that k; > 0 and (ala;) < Oforall i € T ‘for the |
GKM algebra g(A) (cf. the proof of [K1, Theorem. 5.6 c))).
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‘From now on we assume that the GGCM A = (a;;);,jer is indecomposable, hence is
either a GCM of finite type, a GCM of affine type, the zero 1 x 1 matrix, or a-GGCM
(possibly GCM) of indefinite type.

Here we recall the following well- known facts about the (ordinary) Kac—Moody alge—
bras g(A) assoc1ated toa GCM A (@ij)ijer: |

(1) if Aisa GCM of finite type, then X = hg; |

(2) 1f A is a GCM of afﬁne type then X° = {Aebg| (/\|6) > O}, where 5 is thé
umque (up to a constant factor) element of @ such that (6 |a,) = 0 for a.ll 1 € I In
partlcula,r we have K — Q4 = K in both of these cases. o
" In addltlon if g(A) is the GKM algebra associated to a GGCM A (a”), jer such
that a;; <0 for all : € I, then obviously we have X — 5 C X for ﬂ € Q+ since X = C
W = {1}, and Q+ = Ea cmim Lx00;. Hence we have K ﬂ CK for ﬁ E Q+, so that
K-Q4 = K in thls case (including the case where A is the zero 1 x 1 matrlx)

We are now in a posﬂ:lon to state our main theorem (compare Wlth [K2 Theorem
2)).
Theorem 2. Let ¢ € F be a function that can be extended to a holomorphic function
on ﬁhe domain —p+ K, and z, = Zﬂ€Q+ theparﬁF_k(,ok,ma(F"n) be the (unique)
element of the center Zx such that H(z,) = ¢
(1) If all the functions @y, can be extended to holomorphic functions on the domain
—p+ K — Q4 = Upeq,(—p+ K — B), then we have for o € AL and n € Zy»q,
v Tna(/\) =0 with \ € —p + K implies p()) = (A — na).
(2) Let the function ¢ satisfy the condition that for a € AL® and n € Zy,,
Tna(/\) =0 with A € .—p + K imi)lies @(A) - w(A— nav): |

Then, for each # € Q 4, there exists a nonempty domain My C K such that the functions

Yk,m € F with k,m € Par 3 can be extended to holomorphic functions on the domain
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—p + Mg. If the GGCM A is of finite or affine type, then we can take Mg = K for
all B € Q4. In the case of indefinite type, as My, we can take a domain of the form

pg + K C K for some pg € V := K N (=Y ,.enre Ryoai). -

Prbhf. (1) Firet“nete that»if the GGCM A is not oflrind..ef.inite type, then we h’a‘vevr
K — Q4+ = K from the remarks above; Second vtle remark that even in the case of

indeﬁnite type, the set 4 + K — @ is really a connected open set 1n h*. In fact it 1s

obv1ous that —p+ K — Q+ is an open set since it is the union of open sets —p + K-

(B € Q). The connectedness of -+ K —-Q+ follows from the connectedness of K

1tself and the fact that K N (K — ,3) #0 for any ﬂ € Q+ The latter fact is because K -
is an open convex cone in f)* = bg + \/— br-

~ Let re p+K We will show that the element 2y € U }-(g(A)) can act on the Verma
module M(N) W1th hlghest welght )\ as the scalar (,o()\), or equivalently, that z, acts as
the scalar 4,9(/\) on each weight space M(A)x—g for BEQs. It clearly snfﬁces to show
that the equatlon (*) (is Well-deﬁned and) holds for this A € —p+ K (see the proof of
Theorem 1).

" Here the entries of the matrix @ﬂ(-) = (§0k7m('))k’m'ep;‘,,rﬂv are holomerphjc on —p +le{
by assumption, so are the entries of the matrix Gg() = @ﬂ()Bﬂ Moreover We show
that for any v < £, the entries of the matrix G# £(-) are holomorphic on —p + K above.
Let \€ —p+K,ve M(/\),\ _p, and s, te Par~. Then we have o(F')v € M(/\)A (8-
so that F g, (o(Ft = @at(A— (8- 7))F"J(Ft)v where A— (B—7) € —p+ K — Q4.
Because the functions ¢, ¢(-) are holomorphic on —p + K — Q4 by assumption, the
i' entries of the matrix G#(-) are holomorphic at any A € —p + K.

On the other hand, for each A € §*'\ L, the equation (*) holds by (the proof of)
- Theorem 1. Since the set h* \ L is dense in h*, we can take a sequence A}, in
(W*\L)N(—p+ K) such that limm_-,o; Am = A for each A € —p + K. Because all the
~ entries of the matrices;Gg(é), Gg() are holomorphie at A\ € —p+ K, by taking the limit

as m — 00, we have the equation (*) for this A € —p + K.
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..~ Now let A € —p + K be such that Tpo(A) = 0 for some o € AZ® and n € Z>;.
. Then we have an.embedding M (A —na) — M(A) by [KK, Prop. 4.1 (b)]. The element
2z, obviously acts on the highest weight vector vj_no # 0 € M(A — na) as the scalar
©(A — na). Thus we have the équality ©(A) = p(A —na) for A € —p + K with
Tha(A)=0.

(2) First of all we remark that, in the case of indefinite type, V' # 0 since there exists

o= EieI k;a; € Af,_m such that k; > 0 and (aja;) < 0 for all ¢ € I (see the coinment
above for the classification theorem of GGCMs).
.. Now we will take domain Mg by induction on 3 € Q4. We first take My = K. Note
that K — a; C K for a; € II'™ by part (3) of Lemma 1. Let us take § # 0 € Q.
Suppose that we have already taken domains M, = p. + K C K with p, € V =
KN (=X 4, enre Ryoei) such that My —a; C M, (o € II'™) for Q4+ > v < B. Put

My = ) N (M + 7).

v<B n<B
‘7€Q+ neza‘- enre Zzoai

For a; € II'™, we have Mp — aj C Mg since M, — aj‘ C M, for v < B by the inductive
assumption. For n € Yasemre Lyoa; with n < B, we obviously have M;, —n C M, for
any 7 < . Hence we have Mg —n C M, forany Q4 5 v < f and @4+ O n < B. We write
My = N2, (vi+K) for v; € 30, cypre Revi. Because the set V = KN (=Y, enre R>o0i)
is an open convex cone in Ea,-en"e Ro;, we can write v; = z; — y; with z;,y; € V for
éach ¢, since V-V = Ea;éﬂra Re;. Then we have
: . : m
My =0T (i +K) DN (zi+ K) DK+ =,
i=1
since K(D V) is a convex set. So we put pg =) v, z; € V, and ’Mﬂ =pug+ K C K.
It is obvious that the set Mj is really a nonempty open connected set in h*. |
We proceed by induction on 3 € Q4. Let us fix 8 € Q4+ and show that the functions
@k,m € F with k,m € Par § can be extended to holomorphic functions on the domain

—p+ Mg. We have Mg —n C M, for any v < B and n < . Therefore the entries of the
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matrices G’g() for v <’ are holomorphic on —p + My, since the functions ¢, ¢(-) with
s,t € Par+y are holomorphic on —p + M, for v < §. Hence, by the equation (%) in the
proof of Theorem 1, we hav;e only to show that the functions ¢, with k,m € Par 3 can
be holomorphically extended on —p + My across the finitely many affine hyperplanes
Too(-) =0 for o € A4, n € Zy; with na < 8. Furthermore, by part (1) of Lemma 3,
we may assume that oo € AL°.

Let us fix arbitrary a € AL* and n € Z>; with na <., and consider the- set
{A € —p+Mp | Tna(A) = 0}. We now want to apply Lemma 4 to the case where B = Bj
and C = ¢(A)IN — Y. 5 G5(A) with N = dim¢ M(A)r—p and s - #(Par(f8 — na))
(remark that dimcge = 1 for a € A} = W - II"). So we will show that for any
A € —p + M with T,4(A) = 0, we have

| e(M)In =) GE(A).
' ¥<B

Because the entries of the matrices Gf’/(-)with v < B are holomorphic on —p + Mg C
—p+ K, we may assume that T,o(A) # O for all @' # o € Ay and m € Zy; (recall that
b*\ L is dense in h*). Then, by [KK, Prop. 4.1 (b) and the formula (4.2) on p. 106],‘W6
can deduce thét the kernel J(A) of the contravariant bilinear form BA(-,-) on fhe Verma
module M(A) is isomorphic to M(A —na), where BA(F*vp, F™vp) = 65,4 By (F*, F™)
for k € Parﬁ; m € Pary. Let R := M(A)r—pg N J(A) = M(A — NQ)(A-na)—(f—na)-
Since J(A) is the kernel of the contravariant bilin;aaf form BA(-, -yon M (A), the matrix

of the operator z, on Ris ). 5 GB(A). We will show that the operator acts as the

¥<B

scalar (A —na) on R. As in the proof of part (1), it suffices to show that the following
. equation (is well-defined and) holds for this A € —p + Mpg:

B—na

(%) Bp_na(A=na)BLZI0+ Y GET"(A—na) = p(A - na)ld.
‘ _ ¥<B-na

(Note that (A —na) —(f —na).= A — B.) Here we have F°p,0(F*)v = 5 :(A — |
(B —na) +v)F*c(F*)v for v € M(A)\—(g—na) With A € —p—na + Mg and s,t € Parvy
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with v S B — na. So, for each v < 3 — na. < B, the entries of the matrix Gg‘""(-)
(including ®_na(-)) are holomorphic on —p — na + Mg by the inductive assumption,
since A € —p—ﬂna+Mﬂ_implies A—(B=na)+y=A+na=-(f—v)€-p+ M, On
the other hand, for each A € h*\ L, the equation () with A replaced with A holds by
- (the proof of) Theorem 1. Hence, by taking the limit, we have the equation (**) for A
above. Thus the operator z, acts on R = M(A — na)s—g as the scalar (A — na).
Due to Lemma 4 above, we deduce that the functions ¢g m with k,m € Par § have
a removable singularity at any A € {A € —p + Mg | Tna(A) = 0, and Tror(A) #
0 for o' # a € ALf,m € Z»; with ma’ < B}. Then we quote the theorem (cf. [GR,
Theorem 1.8]) which asserts that a function of at least two complex variables can be
holomorphically extended across the intersection of finitely many (but at least two)
affine hyperplanes. Therefore we have proved that the functions @i -with k,m € Par 8

can be extended to holomorphic functions on —p+ Mg. O

Remark 2. Let f € S(b) be W-invariant. Then.the function ¢(-) € F defined by
o(A) = f(A+p) (X € h*) satisfies the conditions of Theorem 2 (see the proof of part
(2) of Lemma 3). |
" Finally we consider the domain —p + K — @4 in part (1) and the domain —-p +
Ngeg, Mg in part (2) of Theorem 2 above in the case of indefinite ‘t‘ype. |
We prepare the following lemma, which can be proved élmost in thé same way as in

the case of Kac-Moody algebras (cf. the proof of [K1, Proposition 5.8 c)]).

Lemma 5. Let g(A) be the GKM algebra associated to a GGCM of indefinite type.

Then we have | |
X~ ={rebg|(Aa)>0forallae A}
We now have the following proposition.
Pfoposition 2. ‘Let g(Aj be thé GKM algebre‘m.assoc-iated to aGGCM A = (aij)i jer
of indefinite type. Wl.th‘,’aii‘ = 2 for some 1 € If Then we -ha,x;‘e K.% K — Q4+, and

NpegMp = 0.
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Proof. We first show that there exists a positive imaginary root a € j_m and a real
simple root a;, € II" such that (a|a;,) > 0. We know that there exists o/ € AY™ such
that.(o'|a;) < 0 for all ¢ € I. Take iy € I with a;y;, = 2, and put a :=r;;(a’). We have
(aaiy) = (rig(a')|ai,) = —(a'|ai,) > 0, and & € AY™ since the set AY™ is W-stable. -

If K —a;; C K for this a;;, then we obviously have X° — a;; C X° since K =
X° ++/~=1h3. Then we have X~ — aj, C X~ since (X°)” = X~ from the convexity
of the set X. Because 0 € X, we get —a;, € X, so that (—a;,|a) > O'by Lemma 5.
This is a contradiction. Hence we have K — o, € K, so that K G K — Q.

Let = € Npeg,Mp. Then we have z — 3 € My — f C K for all § € Q4. Because
K 3z is an opén convex cone, we can easily deduce that K — 8 C K for all 8 € Q4,

which contradicts the fact that K g K — Q4 just proved above. O
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