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On GrouiJ Topologie's on the Group of Diffeomorphisms

Hiroak: SHIMOMURA and TAKEsHI HIRAI
(Fukui University) (Kyoto University) -
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- Introduction.

Let M be a connected, non-compact, o-compact C"-manifold with 1 < r <
co. Denote by Diff(M) the group of all diffeomorphisms and by Diffo(M) its

. "'subg'roup consisting of diffeomorphisms with compact supports.i Here we study

. group topologies on the group G = Diffy(M). Usually, as seen in the beginning
of [Ki], we have been considering on G the topology T given by the following way
of convergence: a sequence gy, k = 1,2, -, converges to g if supports of g and of
all g;, are contained in a compact subset K and gr — g on K uniformly together
with all derivatives.

This topology 7 is normally understood as an inductive limit of topologies
of canonical subgroups G, . G,n — oo, as follows. First take an increasing
sequence My C M; C M, C --- of relatively compact open subsets so that
UM, =M and that each K, := M,, the closure of M,, is a manifold with
boundary. Put :

G, = Difi(K,,) := {g € G;supp(g) C K,.}.

Then we have an increasing sequence of subgroups as

GQCG1CG2C"’, UGnZG

n=0

The topology 7, on Gy, is given by considering G, as a topological subgroup of
the Fréchet Lie group Diff(M}), where M) is the compact manifold obtained by
patching M, and its mirror image M through the boundary. For the Lie group
structure of the group Diff( M) of a compact manifold M, we refer [Le] or [Om].
When M = R? and M, = {z € R% || z ||< n}, the topology 7, is nothing but
the uniform convergence of g € G, and also of all derivatives as k — oo.

In an algebraic sense, G = li_ggo G., and as a topology on G, we have 7 =
lim 7,. Since we will consider gther topologies on G later, we denote this induc-

n:—voo . .
tive limit topology as T;n4.



On the other hand; as Tatsuuma|[Ta] proved, when a consistent increasing
sequence of topological groups (Gn,7,), With a group topology 7, on G, is
given, the inductive limit:7;,4 of topologies 7, is not necessarily a group topology,
that is, it does not necessarily make the inductive limit group G = nll_’l'go G, a
topological group. This negative result is contrary to the affirmative statement
in [Iw, Article 75] or in [Enc, Article 210]. In fact, he gave a counter example
even in a case of simple abelian groups (Example 1.1).

It seems for us that this phenomenon is rather general for the case of non-
locally-compact topological groups. '

In this paper, we prove that this is the case for diffeomorphism group Diffo(M)
for any non-compact M. Thus our main theorem here is the following.

Theorem A. Let M be a connected, non-compact, o-compact C"-manifold,
1 <7 < . For the group Diffo(M), the product map GXG 3 (91,92) — 9192 €
G, is not continuous with respect to the inductive limit topology Ting on G.

This fact does not affect so much the theory of unitary representatiohs of the
group G, because we can take, as our background, the topology 7,4 on G which is
defined by means of the set of Tind-continuous positive definite functions (cf. §1).
However it has certainly some effects, for insta.hce, for determining continuous
1-cocycles a(g, p), (9,p) € G x M, depending on which continuity we choose (cf.
). | |

Note that if a sequence g € G,k = 1,2,---, is T;p4-convergent to g € G,
then there exists a compact subset K of M such that supp(gx) and supp(g) are
contained in K, and the cdnvergence is as in [Ki]. To see this last assertion, we
remark that the restriction on G, = Diff(X,,) of the inductive limit 7,4 on G is
exactly the original 7,. In fact, let O, be a Tn-ojjen subset of G,, then, for k > n,
we can choose inductively a 7-open subset Oy, of G such that O, NGy—; = O3,
since the restriction of T, onto Gi_; is equal to 74—1. Put O = U2, Oy, then O
is T;ng-open in G and ON G, = O,,. , A
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§1. Some generalities on inductive limits.

Let us consider an inductive system G, (a € A),Yap(a, B € Aja = B), of

105



topological groups, where A is a directed set and 1,5 : Go — Gg, are injective
continuous homomorphisms. Put G = li_I'Il G, and we identify each G, with
its image in G through ¥,s’s. Denote by 7, the group topology on G, and by
Tind = li_I'll T, their inductive limit. Note that, by definition, a subset U of G is
open with respect 10 ;54 (OT Ting-open in short) if and only if U N G, is 7,-open
in G, for any a € A.

We see easily the following fact on 7;,,4.

Lemma B. On the inductive limit group G = liLn G,, the following maps are
continuous with respect to Tipg = 1i31 To!

(i) the inverse: G g g7 ' € G,

(ii) the left and right translations: for a fired h € G,

G > g~ ghe€Qq, Ga‘thgeG.

However the product map G x G 3 (91,92) — ¢192 € G is not necessarily
Tina-continuous as the following example of Tatsuuma shows.

Example 1.1([Ta]). Let G, = Q x F*, F = R or Q with the usual non-
discrete topology, and imbed G,, into G,11 as z +— (z,0). Then, for G = Jim G,
‘= Q x [T'R, the product map is not 7;,4-continuous. Or, there exists an open
neighbourhood U of the identity element e of G such that V2 is not contained
in U for any open neighbourhood V of e.

Note that, if a sequence g;, € G,k = 1,2,---, converges to e, then there exists
a G, such that g, € G, for all k, and they converge in G,,. ’

‘He also proved the‘following affirmative fact.

Proposition C([Ta]). For an inductive sequence (Gn,Tn),n = 1,2,---, of
topological groups, assume that all G, ’s are locally compact. Then the inductive
limit topology Ting = nlgglo T. gives a group topology on G = Jhn;.o G,.

Example 1.2([Ya]). Let GL(o0, F) with F = R or C be the inductive limit
group of G, = GL(n, F),n=1,2,---, where G, is imbedded into G, as

g 0

Then, by the above proposition, 7,4 is a group topology on GL(oco, F). A basis
for 7;,4-neighbourhoods of e is given by A.Yamasaki. Rewriting it in a different
form, we get another basis as follows. For g € GL(oQ,F), put g=1+z,z =
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(a:;j)ffjﬂ. Take k = (ki;)75-1, With k;; > 0, and put
V() ={g=1+z; |2y| < si; (Vi,5) }.

Note 1.3. Generally speaking, why 7;,4 does not give a group topology is that
Tind has too many open neighbourhoods of e. So we should have some criterion
to decrease the number of these nighbourhoods. In this context, we can refer the
case of locally convex topological vector spaces. In that case the criterion is the
convexity of neighbourhoods.

As a group topology on G weaker than 7;,4, one can propose the topology

Tpd. defined by means of the set P(7;,4) of all positive definite functions on
" @ continuous with respect to T;g. Note that a positive definite function f is
Tind-continuous on G if it is Tind-contihuous at e, because the topology Tinqg is
translation-invariant (by Lemma B(ii)), and the positive definiteness of f gives

£(e) 2 |£(9)l, £(g™) = Coni{£(g)}, and Krein’s inequality [Kx]

[f(9) = F(W)I* < 2f(e) { f(e) - R(f(gh™))} (9,h € Q).

By definition, an open neighbourhood of e with respect to Tp.d. 1S given as
follows. Take a finite number of f; € P(7n4),1 < j < N, and an € > 0, then

U(fu, far-- -5 fni€) ={g € G; |f;(9) — fi(e)] < e(V4) }.

The topology 7,.4. is also defined as a weakest topology on G which makes all
Tind-cONtinuous unitary representations continuous.
Finally we note that P(7ina) = P(7p.4.)-

§2. Preparation for the proof of Theorem A.

Let d = dim M. To express G = Diffy(M) as an inductive limit, we choose
MyCM,C---CM,C --- under the following additional condition.

(Condition 1) There exists a coordinate neighbourhood (Vy, 1) containing
the closure M; and such that, with respect to a C"-class Riemannian structure
on M, My and M; are open balls with the common center, and further that,

under the coordinate map 1,7, the Riemannian structure is of the canonical form
on M;i:

ds? = dp} + dp} + - +dp} for p=(p)i, € M; & RY.
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Denote by p(p, q) the distance of two points p,qg € M. We fix the origin O of
the coordinates on the boundary 8(M,) of My, and put p(p) = p(p, O).

Let C"(My, M;) denotes the set of all maps from M, into M; which are re-
strictions on My of C"-maps from some open sets containing M, into M;. Take
¢ € C™(My, My). For 1 < k < r, finite, and p € M, put alike a jet at p

ipd = (872057 -+ 3 B(D))\a<hs

WIth 8i=_’ a = (a1=a2,°"7ad)7 'a|=a1+a2+"'+ad-

Op;

Considering this value as an element of a Euclidean space (R?)"* for an appro-
priate Ny, we take its norm:

| 1/2
I ip# ll:= (Z || 07857 - - - 83 ¢(p) Ilz) ;

lal<k
and put for ¢, € C"(M,, M;) C C"(M,, R4,
d*(¢,9) := sup || jp(6 - 9) ||
. PEMy
We put also, taking the k-th homogeneous part,
iP¢ = (071057 - - 83°¢(D))aers (0, 9) := sup || 5o —9) |-

pEM,

The next lemma is a key of our proof of Theorem A. Let D;,D; C R? be
connected open sets, and C"™(D;, D;) be the set of all C"-class maps ¢ from D,
to Dy. For ¢ = (¢;)&, € C"(Dy, D2), we have j(1)¢ (8;0i)1<i j<d- Considering
it as a linear map on Rd canomcally, we denote its operator norm by || ](l)qﬁ llops
where we take || z ||= (22 + 22 + - - - + 23)'/2 as the norm of z = (z;)L, € R%,

Lemma 2.1. Let D C R? be an open ball and denote by id the identity map
on D. Assume for ¢ € C"(D, D), the support supp(¢) := Cl{p € D ;é(p) # p =
id(p) } is compact, and

i = 1d) lop=11 75V — 14 Hop< 1 (Vpe D),
where 1; denotes the d X d identity matriz. Then ¢ 1s a diffeomorphism on D.
Proof. Since det( ](l)gb) #£0 (Vp € D),»by the theorem of implicit functions, we
see that ¢ is an open map and locally diffeomorphic. '

On the other hand, ¢ is globally 1-1. In fact, for p,q € D C R?, take p—gq € R?
and put p; = g+ t(p—q) (0 <t <1), then

#p) - da) = [ SopIdr= [ (i09) (- a)at



From the similar formula for ¥ = ¢ — id, we have: |
19®) = v@ I [ ¥ gl 2= g1l dt <l 2 =gl

Hence || ¢(p) — ¢(9) |2 Il - ¢ Il = I (p) — %(g) | > O. |
Now let us prove that ¢ is onto. To do so, it is enough to prove that ¢(D) is rel-

atively closed, i.e., DN Cl(¢(D)) = ¢(D), because we know already that ¢(D) is
open. Here Cl(¢(D)) denotes the closure of ¢(D) in R?%. Take ap € DNCI(¢(D)).
Then there exists a sequence g, € D such that ¢(g,) = p as.n — oco. Since ¢ is
1-1 and = id near the boundary 9(D), g, has an accumulation point q inside D.
Thus we get p = ¢(q). ' QED. '

§3. Behavior of a diffeomorphism on M, andVMO.
3.1. A basis of neighbouhoods of e € Gy. We denote the identity map id
on M also by e, since it is the identity element of G. Put
QI{QGG;QM()CMl}CG.

Then 2 is T;,4-open in G, as is easily seen. Note that, for g € Q, its restriction
glaz, on M, belongs to CT(My, My).
We define subsets W, of {2 as follows depending on the class C”:

Wi :=.{g€Q;dk(g,e)§1/k} in Case r = oo,
Wi = {g€d(9,e) <1/k} in Caser < oo.

Then we have the following lemma.

Lemma 3.1. Put Wy := Wy NGy for k = 1,2,---. Then they form a basis
of neighbourhoods of the identity element e € Gy with respect to the topology To.

3.2. Convex combinatic'),nﬂof maps. Take g € Q. For 0 < s < 1, we can put
(3.1) gs = 8- idy, +(1—s)- gl € CT(MO’MI)‘

More generally we put, for ¢ € C"(My, M),
¢y :=s-idy, +(1—35)-¢ € C™(My, My).
Further put

ak(¢) = lnf{ 510 <s< 1)dk(¢831d) < l/k} in Case r =00,
ar(@) := inf{s;0<s<1,d"(¢,,id) <1/k} in Case r < co.
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Since d*(¢,,id) = sup || ji(¢, —id) ||= (1 —s)- d*(¢,id), we have according as

PEMo
r=00o0rr< oo, :
1 . N
(32) ak(d>) =0V (1 - k—m) in Case 'l"r— 0o,
| | 1
, : , _ _ ‘ : .
(3.2') ar(¢) =0V (1 T (D) dr(qb,id)) in Case r < 0.

Define further, for ¢ € C™(M,, M),

Pi = Bunip) = 0a(9) - idyg, + (1 — an(9)) - ¢ € C" (Mo, My).

Then we have the following facts.
(A1) Let g € W, C Q. Then ax(g) = 0, whence Pkﬁg = g|M0

() Let ‘gle Go C Q. Assume g € Wy o = Wi N Gy with k > 2. Then, for
any 5,0 < s < 1, we can extend g, outside of M as g, = id, and get g, € G C G.

Proof. Since M is an open ball, we have g, € Cj(Mo, Mo). Moreover, for any
P € ‘MO,
| 50 (g, — i) llop< dD(gs,1d) < d*(g,id) < 1/k < 1.

By Lemma 2.1 applied to D = M,, we see g, € Diffo(My) C Gy C G.

3.3. A crutial inequlity on M,. Now put for g € Q2

(3.3) Be:= Jof | P(Q(P))dp=g€1{,},£’o i | 9(p) || dpadpz-- - dpa,

where p = (p)d,, dp = dpydps - - - dpa, and || g(p) ||= (TL, :(p)?)*/2 with g(p)

= (9:(p))i=1-
~ The inequlity in the following lemma reflects the fact that G is not locally
compact and is crutial for our proof of Theorem A.

Lemma 3.2. Letk > 2. The’ri, for any g € Wy o =Wy N Gy, we have

[, pla)dp > B

Proof. STEP 1. Since g € Gy, supp(g) C My and so g and the identity map id
have, at the origin O, C"-class contact. Hence

7&(9) = 36(@d) - (VK < r,finite).

110



We can consider g — id as an element of C"(M;, R?), then
jb(g—id) =0 (VK < r,finite).

We fix k > 2, and take ¥’ = k in Case r = o0, and k¥’ = r in Case r < oo.
Then there exists an open neighbourhood Ujs of O in M such that

Y 1
75 (g=id) || < 55 (VP € Un N M),

gp(g—id) = 0  (Vp & My).

Now take an n = (n;)2_, € C5(Upr N My, R?) satisfying

" 1 . . . ,
(34)  3¥nl< o and | i ll=l 7|l < diam(My) - diam(Mo),
2k

where diam(M;) denotes the diameter of M;. Put ¢ = g — 1. Then,

¢(Mo) Cc M, and ¢=id on M; \ M,, |

' 1 1 1

i —1 -— —_— = —
I35 (¢—id) || < or+gp =17 (Vp€UunM)

Hence ¢ € C"(M;, M;) and, for any p € M,

15066 ~id) lop < 3 (&~ 3d) [} < 7 < 1

Therefore we can apply Lemma 2.1 to ¢ and D = M;, and see that ¢ €

Diffy(M;). Since supp(¢) C My, we get ¢ € Gy = Diff (M) and so ¢ € Wio =
Wi N GO,’

STEP 2. Let us compair the following two values:

A = / p(g(p) dp = / (Zgz p))l/zdp,

d

B = /Mo p(¢(p)) dp = /Mo <Z(gi(p) - m(p))z) " dp.

=1

To get A > B (> f), it is sufficient to have the following:

9:(p)l > 1gi(p) — mi(p)l (Vi,Vp € M),
|9i0(Po)l > 19i0(P0) = mia(po)| (30, 3po € M), |

On the other hand, since the maps g and id are sufficiently near to each other
on Uy N My, there certainly exist i and py € Uy N My such that g;,(po) # 0.
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" Then there exists a small neighbourhood U (po) of po such that, for e= 1 or —1
and some x > 0,

€ giy(p) > & (Vp € Ulpo))-
We can choose 77 = (7;)%, in such a way that 7; = 0 for i # iy, and 7, €
C5(U(po) N Upe N My, RY) satisfies the condition (3.4) and -

€ Mi(po) >0, K > e-my(p) >0 (Vp).

Under this choice of n the above sufficient condition for A > B holds.
This gives that A > [, which is to be proved. Q.E.D.

§84. A Ting -neighBourhood ofe € G.

4.1. Neigh‘bpurhood U. We define a bfi,‘,d-neighbourhood Uofec G, for
which it will be proved that V2 ¢ U for any 7;,4-neighbourhood V of e € G.
Let My = M \ M,, and put, for g € Q C G,

(@) Fo)=] [ AP o=l + [, elo(p).id(p) dp

where id(p) = p. Then the following fact is a consequence of Lemma 3.2.
Lemma 4.1. Letk > 2. Then, Fi(g) > 0 (Vg€ Q).

Proof. Assume that the 2nd term in Fi(g) is equal to zero. Then, g = id on
Mg, and so supp(g) C M, whence g € Gy C C"(My, M;). Then,

Pkg € CT(M(), Ml) C CT(MI,Ml),
~ supp(Pig) C supp(g9) C My and d¥(Prg,id) < 1/k < 1,

Awhere k' = k or = r according as r = 0o or r < 0o. Therefore we can apply
Lemma 2.1 to ¢ = Prgand D = Ml, and see that P.g € lef(Mg) = Gy. Then
by Lemma 3.2 we get

p((Prg)(p)) dp > Br.

0

This means that the 1st term in (3.4) of Fi(g) is positive, and so Fi(g) > 0.

4.2. Proof of Theorem A. Choose hon—empty open sets Oy in such a way
that Oy C M;, \ M;_, for k > 2. Fix 4 > 1, and for k > 2, put

Uei={9€ Qi File) > 7- [ plolp).id(e))ep }.



Since G, = Diff(M,) = {g € G;supp(g) C M, }, we see that, if n < k, then
g = id on Oy. Then, by Lemma 4.1, Uy N G, = 2 N G, and this is 7,-open in
G,. In particular, Go = 2 NGy C U. Put

U= ﬂ Uk C Q.
k=2 '
' Lemma 4.2. The subset U is Ting-open in G.

Proof. For any n > 2, the intersectioh U NG, is Typg-open in G, because
UNG, =NMi(UeNG,) N (2N GL).

Now we come to the final stage of the'proof of Theorem A, and it is enough
for us to prove the following lemma. o

Lemma 4.3. There does not exist any T;nq-neighbourhood V of e € G such
that V2 C U. '

Proof. Suppose the contrary and let V be such that V2 C U. Since V N Gy is
To-open and Wy o’s form a basis of 7g-neighbourhoods of e € Gy, there exsits a
W0 such that V NGy D Wie. Put Vi, =V N Diffg(Ox). Then

WioVi CV2CUCUCQ.
Hence, for any g € Wy, h € V4, '

Fi(goh) > 7- /; p((g © h)(p), id(p)) dp.
k
Note that supp(g) C My, supp(h) C My \ M1, and that

goh=g on My, goh="h on O, goh=id anywhere else.

Hence ‘
| [, A(Pea)p)dp =Bl > (1=1)- [ o(h(p).id(r) dp.

Further, since g € Wy o = Wi N Gy, we have Prg = g, and the above inequality
turns out to be

[ plaw)dp =B > (x=1)- [ plh(),id(p)) dp.
Taking the infimum over g € Wy, we get 0 on the left hand side and so
0= / p(h(p),id(p)) dp.
Oy )

Hence h = id. This means that V N Diff¢(Ox) = {id }. A contradiction.
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