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1-COCYCLES ON INFINITE DIMENSIONAL SPACES

BY
HIROAKI SHIMOMURA
TH E®  GEH KF)

1. INTRODUCTION

Let us consider a o-finite measure space (X,, ) on which G acts as a measurable
transformation group. We assume that p is G-quasi-invariant. That is, p, is equivalent
to i (g = ), for all g € G, where g is the image measure of by the map z — gz.
It follows that a unitary representation (Rg,L2(X)) of G is defined as follows,

(1.1) Ro(g) : f(z) € Ly(X) — 0(z,9) %(m)f(g‘lx) € Lu(X),

“where 0, so called 1-cocycle*, is a S'-valued function on G' x X such that

(1) for each fixed g € G, 6(z, g) is a measurable function of z, and

(2) for all g1,92 € G, 0(z,01)0(97 2, 92) = 0(z,g192) for p-ae.z.
Moreover if a group topology is induced to G and the following condition (3) is satisfied,
we say that 0 is continuous.

(3) 0(z,9) — linyp, ifg-—einT.
A simple example of 1-cocycles is the one described below which is so called 1-coboundary,

¢(g”'z)
0(z,g) = :
@9 = "5

where ¢ is a S'-valued measurable function. In this report we will pick up infinite dimen-

sional one linear space and two groups as G and will discuss on the 1-cocycles, especially
its characterization, connecting with canonical representations defined by (1.1).
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(*) The names, 1-cocycle and 1-coboundary, come from group cohomological theory (cf.[10]),

which is privately communicated by Y.Yamasaki. Let us explain it briefly. Let G be a
group, A be an Abelian group and assume that G acts on A from the left. Further let Fo,
be a set of all maps from [T, G; to A, where G; is the same copy of G for all 1 <7 < m.
Put 8,, be a map from F,, to Fp, 41 such that

m+1

Om®) (g1, + s gms1) == 3 (=1)'0ilg1, -+ s Gm+1),
=0

where
@o(g1, -+ s gm+1) = G1(92, 93, 1 gm+1)
01091, * 1 9m+1) = ©(9192, 93, ** » Gm+1)

@i(g1,++ s Gms1) = ©(g1,92, ** » GiGi+1, " * , Gm+1)

<Pm+1(917"' ,9m+1) = (91,92 - ,Qm)-
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Then we have Oy, 41 © 8, = 0, and mth cohomology group H™(G; A) = ker0,/Im0m_1 is
defined for m > 1, where Fy := A and (8pa)(g) := ga.— a for all a € A. An element in
- ker®,, , (in Im&,,_;) is called m-cocycle, (m-coboundary), respectively. Now let us apply
the above general theory to our situation. That is, we take A as the equivalence class of
all measurable S-valued function to modulo i, and define the action of G on A such that
(gf)(z) := f(g~'z) forall g € G and for all f € A. Then it is easily checked that 1-cocycle
(1-coboundary) is just the same with 1-cocycle (1-coboundary) in the cohomological sense.

Acknowledgement. I wish my thanks to Prof. T.Hirai at Kyoto University for
introducing me the subject in section 4. I also thank to Prof. H.Omori at Science Uni-
versity of Tokyo for giving me many valuable informations on the topics in section 4. In
particular the proof of Theorem 4.1 owe to him so much.

2. 1-COCYCLES DERIVED FROM COMMUTATION RELATION IN QUANTUM MECHANICS

First we shall consider 1-cocycles on the algebraic dual space X* of an infinite dimen-
sional real linear space X, which come from the representation of commutation relation
in quantum mechanics. So we consider X as the basic space and take a linear subspace
X' of X? as a transformation group G such that for any z € X there exists 2/ € X’ such
that < z,2’ ># 0, where < -,- > is a natural duality bracket for X and X®. The action
of X’ on X is defined by z* — 2/ + z*. Now let us consider unitary representations
(U,H),(V,H) of X and X' respectively which satisfy,

(1) U(z) is continuous on any finite dlmensmnal subspace of X,

(2) U is cyclic, and

(3) U(z)V(z) —exp(\/_—< z,z’ >)V(2")U(z) for all z € X and for all 2/ € X'.

Then the following theorems hold which are already well known.

Theorem 2.1. There exist some probability measure p on the cylindrical o-algebra B
on X® and 1-cocycle 0 on X* x X' such that the representations (U,’H) and (V,H) are
realized as follows,

(2.1) Uz) : f(z%) € L2(X®) — exp(v/—1 < z,2% >) f(2) € LE(X?),

(2.2) V(z'): f(z%) € Li(X“) — 0(z%,2') dg—:(:z:“)f(:z:‘vl -7) e Li(X“).

Theorem 2.2. (1) For the pair of representations (U;, Vi) (i = 1,2) which are defined by
(2.1) and (2.2), (U1, Vi) are equivalent to (Us, V3) if and only if the corresponding p, and
p2 are equivalent as measures and the corresponding 0, and 02 are 1- cohomologus i.e,
‘there exists some I-coboundary ¢ such that 6, = ¢ - 0,.

(2) In order that the representation (U, V) is irreducible, it is necessary and sufficient
that p is X'-ergodic. i.e., p(A) = 0 or 1, provided that u(A © (A — ')) = 0 for all
e X

From the above theorems, we see that the pair of representations (U, V) is charac-
terized by two factors, that is, measure and 1l-cocycle. So we shall look them quickly.

In the finite dimensional case, the problem is so simple. Namely, every translation-
ally quasi-invariant measure is equivalent to the Lebesgue measure and every l-cocycle
is a 1-coboundary. While in the infinite dimensional case the situation is quite compli-
cated. First of all there exist quasi-invarianr measures much enough to nonclassify them.
Secondly, even if a quasi-invariant measure is specified, there exist also many 1-cocycles
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which are essentially different from each other. Therefore it seems to be meaningless to
try to classfy 1-cocycles for a general . However it seems to be meaningful and important
to consider 1-cocycles § for Gaussian measures g picked up among many quasi-invariant
measures. Here the Gaussian measure g on the algebraic dual H® of a Hilbert space H is
defined by,

23) [ exp(VT < 2,2 >)g(ds?) = expl(— g},

It is well known that g is H*-quasi-invariant, Where H* is the topological dual space of
H. So the problem becomes as follows. :

(P) What kinds of 1-cocycles 8 on H* x H* for the Gaussian measure g do there ex-
ist 7 Especially, it is a matter worthy to be considered when 0 is continuous with the
norm topology on H*.

The following: theorem is a modest result along this line.

Theorem 2.3. For any s € R consider a continuous 1-cocycle

(1) Then the canonical representations (R, Lg(H ?)) defined by

dgz*

(24)  Ra(z"): f(2") € Lg(H®) = 0s(a°,2%) g( “)f (=" —z*) € Ly(H")

give mutually znequwalent representatzons for all dzﬁerent 8’s. .
(2) Let g be the image measure of g by a homothety, z* — (1 + 4s2)~32° Then
(Rs, LZ(H ®)) is equivalent to (Ro, L2 (H®)), where the last representation is defined by,

d(Ggs)z
dgs

(2.5) Ro(z*) : f(z") € L2 (H*) — (c%) f(a® — z*) € L2, (H").

(3) There exists another family of representations (Re.,L2(H®)). (c € R) with the
property that (R,,L2(H®)) are inequivalent to (R, L2(H®)) for all ¢c,s € R. Moreover

. $1 g
(Re., L2(H®)) are mutually inequivalent.

The definition of (. is as follows. For any h € H* we take a umque Wy € Cl{< z,2% >
z e H}(C LZ(H“)) such that

<z,h>= AI“ < :c,_:z:ai> Wi (z*)g(dz®).
Put
c(a: h) = expl cz (W35 — ) — Wi (& — ) — WS (2) + 3Wi, ()}
=1 : ‘

, For the further and detailed informations see [13]. |
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3. 1-COCYCLES FOR ROTATIONALLY INVARIANT MEASURES

~ In this section we set up the following situation.
Let H be a real separable Hilbert space (dim(H) < oo or = o), B be a cylindrical
o-algebra on H%, O(H) be a rotation group (O(H)=SO(n),if dim(H) = n < c0), and p
be an O(H)-quasi-invariant probability measure. Now consider a continuous 1-cocycle 8
defined on H® x O(H) which satisfies the following conditions.

(1) For any fixed U € O(H), 6(z%,U) is a S'-valued B-measurable function.

(2) For any Ul,Uz € O(H), ' ’

0(z*, Uy)0( Ula: Us) = 0(2: Uil,) for p—ae.z®

(3) 0(z*,U) — 1 in p, if U — 1d in the strong operator topology.
Such 1-cocycles arises in the representations of the semi-direct product of H and O(H).
That is, let (V,H) and (T',’H) be unitary representations of H and O(H), respectively
which satisfy,

(1) V is cyclic,

(2) V is continuous on any finite dimensional subspace of H and T is continuous with
the strong operator topology, and

(3) for all h € H and for all U € O(H),

T(U)V(h) = V(UR)T(U).

Then there exist an O(H)-quasi-invariant probability measure p on (H% B) and a con-
tinuous 1-cocycle @ for p such that (V,H) and (T, H) are realized as follows.

(3.1) V(h) : f(z°) € Li(H®) — exp(v/—1 < h,z® >) f(z°) € L2(HY).

B2 TW): ") € LLUH — 06Uy B ) f(Us) € L.

Moreover similar results with Theorem 2.2 also holds. We have only to change the
ergodic part to “O(H )-ergodic”. Thus the pair of representations (V, T) is also controled
by the same two factors. However the situation is quite different from the previoue one.
First for the measure the following results are already known.

Theorem 3.1. (1) For any rotatzonally quasi-invariant probability measure u, there ex-
wsts a rotationally invariant probability measure v such that p ~ v.

(2) v is represented as a superposition of probability measures {gc}ecio,00), Where g, is
the uniform measure on the sphere of radious c centered at the origin, zf dim(H) < oo,
and g. is the centered Gaussian measure with variance ¢, if dim(H) =

For the proof, see [12] and [17]. Second the structure of 1-cocycles is very simple as is
shown in the following theorem.

Theorem 3.2. Assume that dim(H) # 3. Then any continuous 1- -cocycle 0 for u is a
1-coboundary. That is, there exists S*-valued B-measurable functzon qb on H® such that
for each fixed U € O(H)

¢(Uz*)
$(z%)

0(z*,U) =

for p-a.e.x”.
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For the proof see [14]. From these theorems, we see that the pair of representation
(V,T) is equivalent to the following one,

(33 V): (@) € LA(H) — exp(vTT < h,2" >)f(a) € LE(H?),

(3.4) L) : f(e*) € Li(H®) — f('Uz®) € Ly(H"),
and the equivalence (irreducibility) of the pair (V,T) deﬁned'.by (3.3) and(3.4) are re-

duced to the equivalence of the corresponding rotationally invariant (ergodic) probability
measure v, respectively. Further single representation of O(H),

iy
| dp
is equivalent to the representation defined by (3.4), and the properties for the decompo-
sition are derived from the decomposition of

v= / gem(dc),
[0,00)

where m is a Borel probability measure on [0, c0) and from the result for the irreducible
decomposition, L2(H?) = ¥ &H,, using multiple Wiener integrals H,(n = 0,1,2,---) for
the Gaussian measure g = g;. Namely, :

Theorem 3.3. Assume that dim(H) = oo . Then (T,,L2(H®)) is completely reducible,
and as its irreducible components,

(1) (Rg,Hz) (n=1,2,---) appears dim(L2,)- times in it and

(2) (Rg,Ho) appears dim(L2)) + 1-times or dim(L2)-times, according to m(0) > 0 or
m(0) = 0. ' ‘

N.B. Here we give a counter example for Theorem 3.2, when dim(H) = 3.
Let e := e3 = %(0,0,1), M :U € SO(3) — Ue € S? and N be a Borel cross section of
M. Then for any z € S? and for any U € SO(3) there exists 7 € R such that

cosT —sinT 0)

U'N(z) = N({U"'z) | sint cosT 0
0 0 1

Ry(U) : £(2%) € L2(H®) — 0(z%,U) (a*) f(tUz") € L2(H®)

Put

‘ O(z,U) := exp(vV —17).
Then 6 is a continuous l-cocycle for the uniform measure on S?. However it is not a
1-coboundary. For the detailed informations in this section, see [14]. ’

4. 1-COCYCLES ON THE GROUP OF DIFFEOMORPHISMS

Let M = M* be a paracompact C*°-manifold and Diffy(M) be the set of all diffeomor-
phisms g with compact supports. This section is a study of 1-cocycle § on M x Diffy(M).
So let p be a o-finite smooth measure on M which is locally equivalent to the Lebesgue
measure on R, and take a canonical representation Uy of Diffy(M) such that

41)  Uslg): f(P) € L2(M) — 0(P,g) %(P)f(g‘l(P))eLi(M),

where 0 is a continuous 1-cocycle. Here the topology 7 on Diffy(M) is the inductive limit
topology of 7, on Diff(K), K T X, where Diff(K) := {g € Diffy(M) | suppg C K}
is equipped with the topology Tk of uniform convergence with every derivative on. the
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compact set K. Exactly speaking, the continuity of § is as follows. 6(P, gn) — 0 in p
if there exists some compact set K such that suppg, C K (n=1,---) and g, — Id in
_ Diff(K). T is never a group topology unless M is compact. (See [16] in this issue). These
1-cocycles often appears in the representation theory of Diffo(M). In this report we will
give some characterization of 1-cocycles which have much stronger continuous property
than the original one. We anew give the deﬁmtlon of our present 1-cocycle 0.

Definition 4.1. A S'-valued function 8 on M x Diffo(M) is said to be continuous I-
cocycle, if and only if the following conditions are satisfied.
(1) For any g1, g2 € Diffo(M),

(P, g1)8(g7 (P), g2) = 0(P, 192)-

(2) For each fixzed P € M, 9(P g) is a continuous functzon of g € Diffy (M ) unth respect
toT.

The analysis of continuous 1-cocycles is based on the following theorems.

Theorem 4.1. (Campbell — Hausdorff formula)
Let X,Y € To(M) and {Exp(tX)}icr, {Exp(tY) }icr be I-pammeter subgroups of d’Lf
feomorphisms generated by X,Y ,respectively. Then as n tends to +oo,

t
(1) {Exp( 2() o Exp(— :L/)}" converges to Exp(t(X +Y)), and
g L tX Y n 2
(2) {EXP(_VT;) oExp(-——\—/—ﬁ) o Exp(%) oExp(ﬁ)} converges to Exp(—t*[X,Y])
in T unifomly on every compact interval of t, respectively, where K s any compact set
containig suppX and suppY . :

Theorem 4.2. The group G generated by Exp(X), where X runs through all C*°-vector
fields with compact supports, forms a dense subset of Diff;(M) which is the connected
component of 1d in Diffg(M).

Using these theorems we restrict 6 to the subgroup G and analize it locally. Then, but
many lemmas are needed, the following results are obta,med which is expected by T. leal
in the case of M = R4

Theorem 4.3. Assume that M is simply connected. Then any continuous 1-cocycle 0
has the following canonical form, '

-1 ) \/—_13
o(pg) = AL () i)

c(P)

, where c is a S'-valued continuous function on M, s is a real number and 1 is a unitary
character on Diffo(M). ( Actually, n is a trivial character on Diffj(M), so it is a function
on the discrete group Diffo(M)/Diff{(M).) S and n are uniquely determined for 6, while
c is determined up to constant factors.

Corollary 4.4. If M is a compact Lie group, then the same holds for any continuous
1-cocycle 0. ‘

If M is not simply connected, then it is possible to exists a new 1-cocycle. For example
in the case M = R x S, we have a following result. Let g € Diffj(R x S') and take
a continuous path {g:}o<i<1 connecting Id and g. Then for each fixed p = (u,2) €
R x S!, the second component of g;*(u, z) has a continuous angular function (¢, u, z).
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The value ¢(u, z) := 0(1,u, z) — 0(0,u, z) only depends on (g,u, 2z) and does not depend
on a partlcular choice of {gt}0<t<1 So forany 2 € [0,1) put ‘

Gal(u, 2), 9) 1= exp(v =1 (u, 2)).

Then (g is a continuous 1-cocycle on Diff(R xS') and it is extended to the whole group
in an essential unique way. We denote it again by (q.

Theorem 4.5. If M = R x S, the general form of continuous I-cocycles is as follows,
_ . Vs l ‘
c(g'(P) (dug DAY '
0(P,g) = P P. .
(P,g) ) \du (P) Sa(P>9)n(9)

Any (o (0 < Q < 1) is never 1-cohomologus with any 1-cocycles appeared in Theorem4.3.
s, and n are uniquely determined from 6§ and c is determined up to constant factors.

Lastly, we shall list the following results with canonical representations defined by (4.1).

Theorem 4.6. Assume that M is connected. Then
(1) The representation (Up, L2 (M)) is irreducible for all continuous 1- cocycle 6.
(2) (Us,, L2(M)) is equivalent to (Us,, L2(M)), if and only if 61 and 8, are 1-cohomologus.

For detailed informations in this section, see [15].
Department of Mathematics
Fukul Un1vers1ty
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