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Abstract

A new soliton cellular automaton is proposed. It is defined by én array of
an infinite number of boxes, a finite number of balls and a carrier of balls.
Moreover, it reduces to a discrete equation obtained from discrete modified
Korteweg—de Vries equation through a limit. Algebraic expression of soliton
solutions is‘a,lso prdposed. » |
In 1990, Takahashi and Satsuma proposed a soliton‘éellular automaton (SCA) [1]. Its
state is defined by using an infinite array of bbxes and a ﬁnite number of balls. Therefore,
the SCA is now called ’box and ball system’(BBS). Time evolution rule is defined by the
following eqﬁation; | | | |
j-1 j-1
T = min(L-T), ¥ T~ 3 T, )
where T]t is a number of balls in j-th box at time ¢t and L means every box holds L ‘ba,ll.s
at most. (Though the box capacity L is restricted to 1 in the original version of BBS in
ref. [1],» we can extend the system to the one with boxes of capacity more than 1 12,3].)
The remarkabie featufe of the system is the existénce of N-soliton soluﬁons and an inﬁhite
numbér of conserved quantities [4]. |
Recently, Tokihiro et. al. including two of authors, have revealed the algebraic properties‘

of BBS by finding the direct relation to discrete soliton equations [5]. The key is the following



identity;
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Using this identity, the discrete Lotka-Volterra (d-LV) equation [6];
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reduces to the ultra-discrete Lotka-Volterra (u-LV) equation;
Wit — W} = max(0,W}_, — L) — max(0, W/} — L) , (4)

if we take w! = exp(W}/e), § = exp(—L/e) and a limit ¢ — +0. Note that if the parameter
L and initial W are all integer, W; for any j and t is always integer.
If we define W; by |
. j
Wi= 3 (Th -T), )
and introduce a transformation of coordinates VT/; = Wjj_t, then we can derive eq. (4) from
eq. (1). Thus we can see solutions of BBS can be expressed by those of u-LV equation.
Indeed, N-soliton solutions of BBS can be derived from those of u-LV equation [5]. The
discretization procedure described above is called ’ultra-discretization’ and sé\}erél ultra-
discrete equations are successfully derived from difference equations preserving their alge-
braic properties. [7-9] |
Tsujimoto and Hirota proposed a discrete version of modified Korteweg—de Vries (d-
mKdV) equation [10];
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where 6 and a are parameter constants, and, j and t are integer variables. If we define a
new variable 7,(t) by v} = r,(—dt) and take a limit § — 0, eq. (6) reduces to the following

modified version of Lotka—-Volterra equation;

ri=ri(l+ar)(rjpa—riz1) . , (M
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Moreover, if we define s(z,t) by r;(t) = ~5 + v-1les((j — i—t)e, %—t) and take a limit
a a

e — 0, then eq. (7) reduces to the following modified Korteweg—de Vries (mKdV) equation;
sr + 6as®s, + is. = 0 (8)
t T 4(1 zTT . ‘

Maruno et. al. showed eq. (6) can be bilinearized and has N-soliton solution with Ca-
sorati determinant [11]. Thus, eq. (6) is a fully-discrete soliton equation analogous to the
continuous mKdV equation (8).

In this letter, we show that d-mKdV eq. (6) can reduce to a ultra-discrete modified KdV
(u-mKdV) equation under appropriate transformations of variables and the limit (2). Then,
we show that ﬁ-mKdV equation is related to an extended version of BBS introducing a
carrier of balls. Finally, we discuss a structure of N-soliton solutions of the system.

First, we derive u-mKdV eq. from d-mKdV eq. Introducing a variable ;= v/ (14 av}),

eq. (6) is rewritten to
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Then, introducing another variable V; by ; = exp(V//e) and taking 6 = exp(—L/c) and
a = —exp(—M/e), eq. (9) reduces to
1+ (7% + e=M/e)eVidi /e

14 Vi M/

1+ (e—L/s + e—M/g)evjt_l/s
14 eV M)/e

V]-t"'1 +clog =V} +¢elog (10)

If L > M, we obtain a trivial equation from eq. (10) under a limit ¢ — +0. Therefore, we

consider L < M case. Taking ¢ — 40, then

VI + max(0, Vi — L) — max(0, Vi — M)

=V} + max(0, VL, — L) — max(0, V., — M), (11)

through the limit (2).
If we take M — oo, the last terms of both sides of eq. (11) disappear and eq. (11)

becomes u-LV eq. (4). This corresponds to the relation between d-mKdV eq. (6) and d-LV



eq. (3) when we take a = 0. If L, M and initial V. are all integer, Vj for any j and ¢ is
always integer. We call eq;, (11) "ultra-discrete modified KdV’ (u-mKdV) equation.

Next, we define ’box and ball system with a carrier’ (BBSC) and show its evolution rule
is derived from u-mKdV eq. Prepare an array of an infinite number of boxes and a finite
number of balls. Assume that all balls are the same, that is, they can not be distinguished
from each other. All boxes are also the same and each box holds L balls at most. A ’state’ is
defined by putting balls into boxes appropriately. Therefore, any state can be distinguished
by the number of balls and the distribution of balls in the array of boxes. Figure 1 shows
an example of a state for L = 3. Note that the array of boxes is fixed in space and we can
identify every box by integer site number j increasing from left to right.

We assume any state can evolve into another state from integer time ¢ to ¢ + 1. In order
to define the evolution rule, prepare a ’carrier’ of balls. Assume that the carrier can carry M
balls at most. From ¢ to ¢+ 1, the carrier moves from —oo site to oo site and passes each box
from left to right. While the carrier passes the j-th box, the following action occurs. Assume
that the carrier carries m (0 < m < M) balls before it passes the j-th box. Also assume
that there are £ (0 < ¢ < L) bzﬂls in the j-th box. There are vacant spaces of M — m balls
in the carrier and those of L — ¢ balls in the box. Then, when the carrier passes the box, the
carrier puts min(m, L — £) balls into the box and gets min(¢, M — m) balls from the box. In
other words, the carrier puts its balls into the box as many as possible, and simultaneously,
gets balls from the box as many as possible. The action of carrier is illustrated in Fig. 2. .

According to the above rule, the number of balls in the j-th box changes from ¢ to
¢+min(m, L — £) — min(4, M —m) = min(m, L — {) +max(0,{+m — M). (Note the identity
—min(4, B) = max(—A, —B).) Finally, if U] denotes the number of balls in the j-th box

at time ¢, an evolution equation to U is

i1 j j-1
Ut = min(L - U;, Z U — Z Uty + max(0, Z Ul — Z Uttt — M) . (12)
Note that Uj ——> 0 (j — =£oo) because the total number of balls is finite and that the
-1 -1
carrier carries Z Ut— > Ut balls just before passing the j-th box. All dependent and
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independent variables of eq. (12) are integer and the dependent variable U always satisfies
0 < U < L. Therefore, BBSC can be considered to be a cellular automaton.

Figure 3 shows an evolution of the state of Fig. 1 for L = 3 and M = 5. In this figure,
each number denotes the number of balls in a box and ’." denotes an empty box. Let us
define S} by

J
St= 3 U. (13)

Using U = S} — S;_, and eq. (12), we can derive

St — St = —max(0,8},, — S;*' — L) + max(0, S}, — St - M) . (14)

In the derivation, we use the identity max(A, B) = A+ max(0, B— A). Moreover, introduce
V=St — S, then V/ satisfies |

Vjt-tf + max(0, ‘7;+1 — L) — max(0, ‘7jt+1 - M)

- Vjlt + max(O? V}t“" ~ L) — max(0, Vjtﬂ - M) . (15)

If we introduce a coordinates transformation, V; = V7, then V/ satisfies eq. (11). Therefore,
we can conclude that BBSC (eq. (12)) reduces to u-mKdV eq. (11) through transformation
of variables and coordinates.

Next, we discuss structure of basic solutions to BBSC. Figure 4 (a) and (b) shows exam-
ples of evolution of a state of BBSC. We can observe groups of neighboring balls separated
by empty boxes at every time. Let us call each group ’ball group’. Moreover, let us define
'size’ of a group by the number of balls included.

Figure 4 (a) shows the following: For ¢ < 3, there are 3 ball groups of which size are 5, 2
and 1, respectively. For t = 4 ~ 6, they interact each other. For ¢ > 7, again 3 ball groups
of the same size appear and they never interact. After the interaction, shift of orbit occurs
for each ball group. We can observe similar phenomena in Fig. 4 (b). In the figure, there
are 4 ball groups of which size are 12, 5, 4 and 2, respectively. Note that we identify a ball

group only by its size, not by its shape. For example, the ball group 23’ at ¢ = 0, '32’ at



t=1and 131’ at ¢t = 2 in Fig. 4 (b) are an identical group. After the interaction, 4 ball
groups reappear and their sizes are the same as those before interaction. Figure 4 (a) and
(b) imply BBSC is a soliton system. In spite of the interaction, every ball group preserves
its own size and speed. Therefore, we can consider each ball group is a soliton.

The most simple solution is 1-soliton solution. A general expression of 1-soliton solution

is
Uj = ;+1 —fi—gn+9;, (16)
with

f]t = max(o,kj _Wt_go) ’

¢t = max(0,kj —wt — & —n) ,

where n is a size of ball group, £° is an initial phase, k& = min(n, L), and w = min(n, M).
In Fig. 5, we show an example of 1-soliton solution in the case of L = 4, M =7, n =19,
€% = 3. Since site number j is not specified explicitly in this figure, £° has a freedom of
additional constant.

Let us define a speed of a soliton (ball group) by an average number of boxes which the
soliton passes per unit time. Then, a speed of a soliton of size n is min(n, M)/ min(n, L).
Therefore, the maximum speed is M /L. This is a remarkable feature of BBSC distinguishable
from BBS, because the speed of a soliton of BBS is unbounded.

General expression of N-soliton solution is
U=fin—fi—9%+9, (17)
with

[ N (N)
f; = max Zuifi - Z .ui,ui’aii’} )
_i:l i<q’
[ N (N)
9; = max Z,Ui(fi —n;) — Z Niﬂ«i’az’i’:l )
=1 .

i<d!




where

0
P

& =kij —wit —
@i = 2min(w;, wy) ,
k; = min(n;, L) ,

w; = min(n;, M) .

Here n; and & are a size and an initial phase of each soliton, respectively. max [X (1))
Hi=U,
denotes the maximum value in 2V possible values of X (ui) obtained by replacing each y; by
(N)
0or 1. z denotes the summation over all possible pairs chosen from N elements.

Noté<tii1at we derived the above expression of solution empirically and can not yet prove
it is truly a general expression. However, we confirmed the expression numerically for wide
range of initial data. About the solutions in Fig. 4, we obtain them by setting N = 3,
m=5mn=2n=1¢&=04£=6¢ =13 (Fig. 4(a)) and N = 4, n; = 12, ny = 5,
ny=4,n,=26 =26 =126 =22 ¢ = 22 (Fig. 4(b)) in the above expression.

Finally, we give concluding remarks. We proposed a new soliton system, BBSC. This
system is an extended system to BBS in ref. [1] and can reduce to u-mKdV eq. (11) newly
obtained from d-mKdV eq. (6). Moreover, we proposed a general expression of soliton
solutions to BBSC. However, this expression is derived empirically. In ref. [11], algebraic
expression of N-soliton solution to d-mKdV eq. is shown. Therefore, it may be possible
to derive solutions to u-mKdV eq. from those to d-mKdV eq. using the limit (2). Such a
derivation is not automatic and we have not yet succeeded. This is a future problem to be

solved.
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FIGURES

FIG. 1. An example of a state for L = 3.

FIG. 2. Action of carrier while passing a box.

FIG. 3. Evolution of the state of Fig. 1 for L = 3 and M = 5. Each number denotes the

number of balls in a box and . denotes an empty box.
FIG. 4. Examples of evolution. (a) L =1and M =3, (b) L =3 and M = 6.

FIG. 5. Example of 1-soliton for L =4 and M =T.
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Figure 1: An example of a state for L = 3.
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min(m, L — /)
+ max(0, £ + m— M)

before passing after passing

Figure 2: Action of carrier while passing a box.



Figure 3 :
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Evolution of the state of Fig. 1 for L=3 and M =5.

Each number denotes the number of balls in a box

and '." denotes an empty box.
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Figure 4 : Examples of evolution. (a) L=1and M =3,
(b)L=3and M =6. '
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Figure 5 : Example of 1-soliton for L=4 and M = 7.
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