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ABSTRACT: The coupled modified KdV equation

Oov; 4630, . o
+3[J§:lcg,kvjvk]a + 913 =0, 1= 1’2)"')N’

Bv,
ot

is discretized in the form

m+1 m m+1 = ) — .« e
vi;ﬂ ! n + 6 1+ Z CJ:ka nvk n]F [vt n+l vz,n—l] - 0; t= 1’ 2) 1N7
' k=1 '

n+1 - [1 + Z CJ,ka nvkn]rm/ 1 + Z Cj kY m+1v;en’-:-1 ’
Jyk— J)k—

where '™ is an auxiliary variable. We integrate the difference equation numerically and

compare the results with exact solutions.
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1 Introduction -

We have proposed Ya method of constructing nonlinear partial diﬁ'erential equations with-
out destroying integrabiiity." The methqld.use's the bilinear formalism and follows 3 steps.
Fiist, a given nonlinear partial diﬁ'e;gnf.ia.l equation is transformed into the bilinear form
by the dependent variable tranéférmatioﬁ. ‘Se;:oﬁdly fhe biﬁnea£ differentia.l equation is
discretized. Thirdly the bﬂjﬂear difference equation is tra.nsforrﬁed back into the nonlinear
difference equation by the associated del).enciént.‘vari-able tra.nsfo;mation.

In this paper we discuss how to d;scretize fhe vbilinea,r differential equation taking the mod-
ified KdV equation as an example. Then we constrﬁct a system Qf coupled modified KdV
difference-difference equations.

The diﬁ'érence‘equation obtained is féund to be of importance in integrating the coupled

mbdiﬁed KdV equations numerically. We-compare the results with exact solutions.

2 Discretization of the Modified KdV Equation

We have the modified KdV equation.

Ov ,0v P _
§+6'U-é;+'é;§—0, | : (1)

which is transformed into the bilinear form 2)

(Di+ D3)g - f =0, (2)
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Dif-f=2 0O

through the dependent variable transformation v = g / f. The bilinear differential equation

has N-soliton solution. We write 2-soliton solution among them explicitly -

f =‘1 + a(1, 1);2'" + a(1,2)emtm + a(2,2)e’m ‘+ a('1,'1, 2; 2)eﬁﬂl+2"2; o '(4)
g=e™+e™+ a(i, 1, 2)62"‘+”4 + a(1,2,\2)7<>a""+‘2'”,> | (5)
whvgre
com=pi(z—m)~wt, o (6)
Wy = p?a t= 1)27 (7)
2
a’(l’2) - (p1 +p2)'2'$ (9)
1

(22) = G ; . (10)

o1.9) = [PL=P2)
(1,2) = [—-(p1 +._p2)] UM (11)
a(1, 1,2) = a(1, 1)_‘>*_cj(1,2)2, v (12)
a(1,2,2) = a(2,2) *¢(1,2), (13)
o(1,1,2,2) = a(1,1) * a(2,2) (1, 2)%, (14)

where p; and z, are parametes related to an amplitude and a position of a soliton respec-

tively.
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A discrete analogue of the modified KdV equation is obtained 3)

v, '
T:T + (14 93)(¥p41 = ¥a-1) =0, (15)

which is reduced to eq.(1) in the limit of small € (z = ne).

Equation(15) is transformed into the bilinear form
Dign * fr + gnt1fa-1 — gn-1fot1 =0, ' (16)
fn+1fn—1 - f: = gy2u (17)

through the same dependent variable transformation v, = g,/ f,. The bilinear differential-

difference equation has N-soliton solution. We write 2-soliton solution among them explic-

itly
f=1+a(1,1)e™ +a(1, 2)em+m +a(2, 2)e?™ + a(1, 1,2, 2)e?m*+2m (18)
g=-em +eM+a(l,1,2)e®*™ 4 q(1,2,2)em (19)
‘where
o = Pi(n—n.,‘)e_;,,.t, - (20)
wi=P,—1/P, i=1,2, (21) -
a(1,1) = ﬁ?—lif—-ﬁ;; | | (22)
o1,2) = R (29)
P2
a(2,2) = TF}T)E’ | - (24)
(1,2) = [T, @)
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and a(1,1,2),a(1,2,2) and a(1,1,2,2) have the same forms as eqs.(12) (13) and (14). P
and ny are parametes related to an amplitude and a position of a soliton respectively.

We note that the bilinear equations (2) and (3) are invariant under the gauge transformation
f = fer=tP, | (26)
g — geaz"i-ﬂt’ (27)

where « and B are constants. Also invariant are the bilinear equations (16) and (17) under

the transformation

fo = foeomtPt (28)
Gn = gne™™HP". | (29)

Based on these facts we postulate that the discrete-time bilinear equations are invariant

under the gauge transformation

far = fareemtem, (30)

gm — greontem, | (31)

where t = m6,m being integers.
We have by definition |

Dtgn ‘ fn - dtf gdt' (32)

Replacing the differential operator by the forward difference operator

df o iremil em
oo (33)
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dg

dt 6—1[ m+1 ] : o ) e (34) |

we obta.m a dlfference a,ﬁalogue of the blhnear operator
Dg-f - 6f1[g:'f1f,7' e (35)
Accordingly we have a discrete-time bilinear gquaﬁion
TP = I oS — ST =0, (30)

However this equation is not invariant under the gauge transformation (30) and (31). We

find that following two forms are gauge inyaria,nt
gl.nﬂf;r.n fm+1 + 5[9n+1 ot — g ::H] =0, (37)
T = A 4 Sl A - T T = 0 (38)
Tsujimoto ¥ has pointed out that eq.(37) is transformed into eq.(3~8,) by the coordinates
trasformation: |
m —m—n, : (39)
n — n. | (40)
Hereafter we uée eq.(37) as a difference analogue of eq.(16). As a diﬂ'ergncg la;lalogue of

eq.(17) we use the bilinear eqaution (17) as it is because it does not concerned with the

time—development. Then we have the time-discretization of the bilinear forms (16) and (17)
n—1

g:;+1f;n fm+1 + 5[!ln+1 r';njil vy ::-11] =0, (41)

T fmy = () = (o 2. (42)
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We have found that eqs.(41) and (42) exhibit 2-soliton solution of the following

f=1+a(1,1)e’™ + a(1,2)em*™ {va(.z, ‘,2)621.,2 +a(1,1,2, 2)e?m+m (43)
_l-] =e™ +e™ +a(l,1, 2)62’"';"7 +a(1,2,2)em*?m, o B (44)
where
i = P<""‘°’/Q o - (45) |
o= 11__66/ }1; i=1,2, (46)

and a(1,1),a(1,2), a(2, 2),C(1,2),a(1,»1,2),'a(1,2, 2) and a(1,1,2,2) have the same forms
as before.

Now we transform the bilinear eqs.(41) and (42) back into the nonlinear difference-difference

equations. Let
Gn =V fr - (47)

Substituting this into eqs.(41) and (42) we find

m  pm+l

ot — o 4 R ;,:L;'f‘,,t oy — 9721 =0, (48)
Teirdes _ gy (o2, 49
Gy (o)’ . (49)

The term f™, f73t/fm+ f™ in eq.(48) is very similar to the term frfm o J(f™)? which is
Lh.s of eq.(49). Let us define the ratio of the two terms by I'™ which becomes an auxiliary
variable

™ = rTI-l :::—11 . fyﬁlfr"tn—l '

U N GOL




_ fm
Fr

Substituting eq.(49) and I'™ into eq.(48) we obtain .
ottt = o+ 81+ (IR — o] = 0.

On the other hand taking the ratio of I‘,,"‘_,,1 and I'7" we obtain

v s Ol
Tm — folfm " fmHfm,

m m+1 em+1

— n+l n—l - n+1 rf.—l»
()2 (fimt1)?
1+ (vp)?

= 1+ (vrrln+1)2 '
Hence the following two equations

'l)m+1 ’U + 6[1 + (vm)Z]I\m[ n+1 _ ,Um+1] — 0

oyl _ 1+ (v7)?
Ty 14 (op+)

constitute of the modified KdV difference-difference equation.

Here we remark that the nonlinear Schrédinger equation
za¢f5;§¢+2|'/’| p=0

has been discretized 3 by the same -fa.\shion,in the form

67Uy — ] — [ ]+ 1+ |¢"‘I2]F"‘[¢n+1 Y] =0,

1+ |97

I‘n+1 = 1+ I¢,T+1|2 n- ,

150

(50)

(51)

(52)

(53)

(54)

2

(56)

(57)
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Multi-soliton solutions to the nonlinear Schrodinger difference-difference equation are ob-
tained by Tsujimoto .
In the limit of samll é eq.(56) is reduced to a differential-difference equation obtained by

Ablowitz and Ladik 7.

3 System of Coupled Modified KdV Equation

Svinolupov ® has shown that a system of coupled modified KdV equations

ov;
ot

Ov; 0%y, . e '
+ 3[‘1§1 CJ,k'UJ'Uk] a + % = 0 7 = 1,2’ sy N, (58)

where the coefﬁciénté c;r are arbitrary constants, possesses é,n inﬁnite series of general-
ized symmetries and local conservation laws. Iwao and the author ® have shown that it
posseses multi-soliton solutions expressed b& pfaffians under the conditions on the coeffi-
cients,namely c;; = 0 and c;i = ;.

Habibullin and Svinolupov_m) have found that the boundary conditions imposed at the
point x=0 are compatible with the integrability of eq.(58). The author has shown %) that
a system of the coupled modified KdV diﬂerentiﬂ-diﬁ'erehce equations under the boundary

conditions v) =0atn=0, i=1,2,---,N

v kvj'vk] 7(:21] 0 1=1,2,---,N (59)

J,k=1

exhibits exact solutions expressed by pfaffians of the following form

(‘)=yn)/fm ,'=”1‘,2’...,N,’ v (60)
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where

fon = PO, 1,2, .20~ 1), , (8
g5 = pf(pi, 1,2, -+, 20 = 1), | | | (62)
f2n+1 =pf(1,2,3,:--,2n), | (63)
 Gimsa = PP, 0, 1, 2m) | (e

where the elements of the pfaffians are defined as follows

pi(pi, m) = KO(t,m), | (65)
—[pf(l m+ 1) - pf(l +1 m) 2 c; kB9 (t, HR® (¢, m) (66)
: . 7, k=1 - .
Epf(pia m) = pf(pt" m -+ 1)’ » . : (67)
2 pil, m) = pi(t + 1,m) + pi(l,m + 1), (68)

for i = 1,2,---, N and for non-negative integers [ and m, and h¢)(t;m) are arbitrary
functions of ¢ and satiéfy the relations

%h(")(t, m) = hO(t, m + 1). (69)

Following the same procedure developed in the previous section we transform the system

of coupled modified KdV equations

31},
ot

0 t 63 [ .
+3[Z CJ,k'UJ’Uk] av + —5% = 0, 3 = 1,2,- ..’N, (70)
k=1 = ’
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into the bilinear forms

(Dt_D:)gi'f=0,, ‘i=1’2a""’Na (71)
~ | |
DXf-f= 3 cixgigh, - (72)
7,k=1

through the dependént variable transformation
'0,'=g,'/f, ‘1.=1,2,---,N._ (73)

We have a difference analogue of eqs.(71) and (72)

D 955) ) fn gn+1fn—1 + gn—lfn+1 =0, (74)
usifoos - 2= > ca,kyf.”yf.")- — (75)
J,k—

Following the procedure described in the previous section we obtain a time-discretization

of the bilinear forms

g;r,nn+1fm g; nfm+1 + 6[gt n+1 m+1 .q:nn+—11 n+1] = 0 ] (76)
2 _ S | . | | V
n+1 (fm) Z cj;kg;?ngl':,ln’ ‘ (77)
Jk=1 ‘

which are transformed back into the coupled nonlinear difference-difference equations

Q;'Z'"n'l'l Yin i 6 1+ Z CikY;, nvk,n]rm[vc ntl :,:ztll] =0, 1=12,---,N, (78)

Jik=1

Iy =[1+ Z CikVinVia L /1 + Z CikVim Vem ], (79)

Jk=1 Jk=1
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through the dependent variable transformation

g;n = 'U:::. :’r:” 1= 1a2r'.°'aN) . (80)
~ fm+1 m
rr= SR @

We have found!? that multi-soliton solutions to the coupled modified KdV difference- |
difference equations are expressed by pfaffians,which have the same structure as those 9 of

the coupled modified KdV differential equations.

Let N =2and ¢;; =c39 =0, C1z = 621 = 1/2 in eqs (78) and (79). Then we have the

sm1plest form of the coupled modlﬁed Kdv dlﬁ'erence-dlﬁ'erence equations

v{",;"l — o+ 6[1 + v{"'nv;',‘n]r,':‘[v;"'nﬂ vy ml]1=0, (82)
ot vz,.+6[1+v R T [o — o] =0, (83)
o = {1+ oy, v;nn]rm/[l + ”1 m+1] | : (84)

which exhibit the following 1+1 soliton solution

f - 1+ arzexp[m + na], - (85)
go=explm], (86)

ga=expfm ~ (87)

where

exp[n;] = B /7, (88)
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1-6§/P. . R
Q; 1-—_6P;’ i=1,2, (89)
- PP (90)

| 12 = m |
This expression of the 1+1 soliton solutipn shows that a soliton v, = g, /f is damping and
another soliton v, = g,/f is growing as time m increases.v |
The difference-difference equations (82),(83) and (84) are integrated numerically using the
initial conditions of the 141 soliton solutipn with the following parameters: § = 1/5, P, =
2, Pb,=3, n;=12, ny="T. The numerical results agree exactly with the theoretical

ones except round-off errors (see Fig.1).
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Figure Captions

Fig.1 Numerical integration of eqs.(82),(83) and (84) with the initial condition of the 1+1
soliton solultion expressed by egs.(85)-(90). The soliton v; = g;/f is damping and the
other soliton g5/ f is growing as time m increases from 1 to 50. Numerical results agree

exactly with the theoretical ones except _rbund—oﬁ' errors.
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