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Minimization of M-convex Function

Akiyoshi SHIOURA*

Abstract

M-convex function, introduced by Murota (1995), is an extension of valuated matroid of
Dress—Wenzel (1990) as well as a quantitative generalization of the set of integral points in an
integral base polyhedron. In this paper, we study the minimization of an M-convex function.
It is shown that any vector in the domain can be easily separated from a minimizer of the
functiqn. Based on this property, we develop a polynomial time algorithm. We also discuss

the layer structure of an M-convex function and the minimization in each layer.
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1 Introduction

Recently, the concept of M-convex function was introduced by Murota [14, 15, 16] as an extension
of valuated matroid due to Dress and Wenzel [4, 5] as well as a quantitative generalization of
(the integral points of) the base polyhedron of an integral submodular system [7]. M-convexity
is quite a natural concept appearing in many situations, and enjoys several nice properties which
are sufficient to be regarded as convexity in combinatorial optimization. Let V be a finite set

with cardinality n. A function f : Z¥ — R U {+oo} is said to be M-convex if it satisfies

(M-EXC) Vz,y € dom f, Vu € supp™ (z — y), v € supp~ (z — y) such that

@)+ F ) 2 £(@ = xu+x0) + £+ xu = X0

where dom f = {z € ZV | f(z) < 400}, suppT(z —y) = {w € V | z(w) > y(w)}, supp™ (z — y) =
{weV|z(w) < y(w)}, and xy € {0,1}V is the characteristic vector of w € V. For an M-convex
function f with dom f C {0,1}V, —f is a valuated matroid in the sense of [4, 5]. The property
(M-EXC) implies that dom f is a base polyhedron.

In this paper, we consider the problem of minimizing an M-convex function. ‘While the

concept of M-convexity is quite new and no efficient algorithm is known yet, several polynomial
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time algorithms are proposed for special cases of M-convex function. It is well-known that a linear
function can be easily minimized over a base polyhedron by a simple greedy algorithm (see [7]).
A strongly-polynomial time algorithm was given by Fujishige [6] for a separable-convex quadratic
function, and weakly-polynomial time algorithms were given by Groenevelt [9] and Hochbaum
[10] for a general separable-convex function. It was reporfed that there is no strongly-polynomial
time algorithm for a general separable-convex function [10].

The aim of this paper is to develop an efficient algorithm for minimizing an M-convex function.
Since the local optimality is equal to the global optimality, an optimal solution can be found by
a descent method, which does not necessarily terminate in polynomial time. Instead, we propose
a different approach. Our approach is based on the property that any vector in the domain can
be efficiently separated from a minimizer of the function, which is shown later. Each iteration
finds a certain vector in the current domain, and divides the domain so that the vector and an
optimal solution are separated. By the clever choice of the vector, the size of the domain reduces
in a certain ratio iteratively, which leads to a weakly-polynomial time algorithm.

We also discuss the‘layer structure of an M-convex function and the minimization in each
layer, where a layer is the restriction of the function to {z € ZV | z(W) =k} for W CV,k € Z.
Recently, many researchers analyze set systems and functions with respect to the layer structure;
for example, greedoid by Korte, Lovész, and Schrader [11], valuated bimatroid and valuation on
independent sets by Murota [12, 13], well-layered map and rewarding map by Dress and Terhalle
[1, 2, 3], M-convex function on generalized polymatroid by Murota and Shioura [17], and so on.
We reveal that each layer has a nice structure such as M-convexity, and that the minimizers in
consecutive layers are closely related. Exploiting these properties, we can solve the minimization

problems in successive layers efficiently.

2 Minimization of an M-convex Function

2.1 Theorenis

Let f : ZY — R U {400} be M-convex. The global minimality of an M-convex function is

characterized by the local minimality.

Theorem 2.1 ([14, 16]) For any z € dom f, f(z) < f(y) (Vy € ZY) if and only if f(z) <
f-(w._ Xu +Xv) (Vu,v € V) . i

Any vector in dom f can be easily separated from some minimizer of f.

Theorem 2.2 (i) Forz € dom f andv € V, letu € V satisfy f(z—Xut+Xv) = Eéill}l{f(x—xs-l-xv)}. ‘
Set ' = & — xu + Xv- Then, there exists ¢* € argmin f with z*(u) < z'(u).

(ii) For ¢ € dom f and u € V, let v € V satisfy f(z — Xu + Xo) = Itrél‘l/l{f(m — Xu + Xt)}. Set
&' = & — Xu + Xo- Then, there exists z* € argmin f with z*(v) > 2’ (v).



65

Proof. = We prove the first claim only. Let 2* € argmin f with the minimum value of z*(u),
and to the contrary suppose z*(u) > z'(u). By (M-EXC), there exists w € supp~ (z* — z') such
that f(z*) + f(2') > f(z* — xu + Xw) + f(z + Xo — Xw)- The assumptions for z* and z’ imply

¥ — Xu + Xw € arg min f, a contradiction. : B

Corollary 2.3 Let z € dom f with ¢ ¢ argminf and u,v € V satisfy f(z — xu + X») =
ntlél‘l/{f(a’: —xs+xt)}. Then, there exists z* € arg min f with z*(u) < z(u) — 1, z*(v) > z(v) + 1.
s, 7

Let B C ZY be a bounded base polyhedron, and.pB : 2¥ 5 Z the submodular function
corresponding to B, i.e., pp(X) = meaéc{y(X)} (VX C V). For each w € V, set Ig(w) = pp(V) —
v y
pB(V — w)(= min{y(w)}) and ug(w) = pp(w)(= max{y(w)}). Define
y€B yEB

Np = {y € B | lp(w) < y(w) < up(w) (Yw € V)},

where lp(w) = |(1-1/n)ls(w)+(1/n)up(w)], up(w) = [(1/n)lp(w)+(1-1/n)up(w)] (w € V).

- Theorem 2.4 Ng # { for any bounded base polyhedron B.

Proof. We abbreviate the subscript B for notational sirﬁplicity. It suffices to show the following
(see {7, Theorem 3.8]): '

() V(X) < p(X) (VX CV), (i) w'(X) 2 p(V) - p(V-X) (VX C V).

Since (ii) can be shown similarly, we prove (i) only. Let X C V with | X| = k. We claim

o)+ T AV — )~ p(V)} 2 1) + oV ) oV} )

veX veX

Indeed; we have

LHS = kp(X)+ Y Y {p(V=w)=p(V)}+ Y {p(V—-0)=-p(V)}

veX weX—v . veX
> kp(X)+ Y {p(V = (X =v))—p(V)}+ > {p(V—v)—p(V)}
veX veX
= > A{p(X)+p(V - (X =v) = p(V)}+ > {p(V—-v)=p(V)} > RHS,
veX veX

where the inequalities are by the submodularity of p. Since the LHS is nonnegative, k in (1) can
be replaced by n(> k). Thus, '

p(X) > (1=1/n) Y {p(V) = p(V = 0)} + (1/n) 3 plv) > I'(X).

veX veX
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We call Ng the narrowed base polyhedron of B. From its definition, Np is a base polyhedron with
the corresponding submodular function py : 2V — Z such that ‘

pn(X) = min{pp(Y) — l5(Y - X) +up(X -Y)} (VX CV). (2)
Using the function pn, an extreme point z of Npg is written as
1!(1)1') =PN(‘/;§)_RN(%—1) (7’= 1,2,*",7‘&), (3)

where {v1,--,v,} is any ordering of elements in V, Vo =0, and V; = {v1,---,v;} (i=1,---,n).

2.2 Algorithms

In this section we assume that dom f is bounded for the finiteness of the algorithms. Theorem

2.1 immediately leads to the following algorithm.

Algorithm STEEPEST_DESCENT
Step 0: Let ¢ be any vector in dom f.
- Step 1: If f(z) = sntlér‘}{f(m — Xs + Xxt)} then stop. « is a minimizer.
Step 2: Find u,v € V with f(z — xu + Xv) = sr’rtlér‘lz{f(w — Xs +xt)}-
Step 3: Set z := = — xu + Xv. Go to Step 1. O

The algorithm STEEPEST_-DESCENT always terminates since the function value of z decreases
strictly in each iteration. However, there is no guarantee for the polynomiality of the number of
iterations.

The second algorithm maintains a set S(C dom f) containing a minimizer, which is represented
by two vectors a,b € ZV as S = {y € domf | a(w) < y(w) < b(w) (Yw € V)}. We see from
definition that S is a base polyhedron with the corresponding submodular function pg : 2V o Z |
such that

ps(X) = min{p(Y) —a(Y —X) +b(X -Y)} (VX CV). (4)

The algorithm reduces S iteratively by exploiting Corollary 2.3 and finally finds a Im’inimizer. We

assume that the submodular function p: 2¥ — Z corresponding to dom f is also given.

Algorithm DOMAIN_REDUCTION

Step 0: Set a(w) := p(V) — p(V — w), b(w) := p(w) for any w € V.

Step 1: Find a vector z in the narrowed base polyhedron of S.

Step 2: If f(z) = f,?é?/{f(w — Xs + Xxt)} then stop.  is a minimizer.

Step 3: Find u,v € V with f(z — xu + Xv) = :,rtlérxl/{f(w - Xs +Xt)}-

Step 4: Update a(v) and b(u) as a(v) := z(v) + 1 and b(u) := z(u) — 1. Go to Step 1. O
We analyze the number of iterations of the algorithm. Denote by S; the set S in the i-

~ th iteration, and let I;(w) = ;Iélg%{y(’w)}, u(w) = gle%i{{y(w)} for each w € V. It is clear that

u;(w) — I;(w) is monotonically nonincreasing w.r.t. i. Furthermore, we have the following:
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Lemma 2.5 u;1(w) — Liy1(w) < (1 — 1/n){ui(w) — Li(w)} for w € {u,v}, where u,v € V are

the elements chosen in Step 3.

Proof. We show the case w = u. Let = be the vector chosen in Step 1. Then,

uir1(v) = lLiyi(uw) < x(u) —1-1(u)
TA/mli() + (1 = 1/n)ui(w)] =1 = Li(w) < (1= 1/n){ui(u) - L(w)}.

IN

The proof for the case w = v is similar and omitted. ‘ [ |
Let L = max{us (w) — i (w)}(= max{p(w) = p(V) + p(V = w)}).
weV weV

Theorem 2.6 The algorithm DOMAIN_REDUCTION terminates in O(n?In L) iterations.

Proof. Since the value u;(w) — l;(w) (w € V) is a nonnegative integer, the algorithm stops if
u;(w)—l;(w) < 1 for all w € V. Let k be the minimum integer with (1 —1/n)*{us(w) -l (w)} < 1.
If ui(w) # lL(w) and n > 2 then k = [—In{ui(w) — l1(w)}/In(1 — 1/n)], and a well-known
inequality Inz < z — 1 (Vz > 0) implies

—ln{u?(w) - li(w)}/ln(l —1/n) < nln{ui(w) — I1(w)}.
Thus the claim follows. N |

In each iteration, Step 1 finds a vector z in the narrowed base polyhedron of S by using the
equations (2), (3), and (4), which can be done by minimizing certain submodular functions O(n)
times and using floor and ceiling operations O(n) times. Note that a submodular function can
be' minimized in strongly-polynomial time [8], and floor and ceiling operations can be performed
easily since n is the denominator of each value for which floor or ceiling is operated. The 6ther
steps require O(n?)-time evaluation of f. Hence, the algorithm DOMAIN_REDUCTION terminates

in weakly-polynomial time.

3 Greedily Solvable Layer Structure

Suppose we are given an M-convex function f : Z¥ — RU {+oo} We discuss the layer structure
of f and the minimization problem in each layer, where a layer is the restriction of f to {z € ZV |
(W) =k} for W CV and k € Z. For any W C V, set MW = inf{z(W) |z € dom f} and p¥ =
' sup{a:(W) | z € dom f}. For any W C V and k € Z, define a function V7V 5 RU{+oc} as
f¥ (z) = f(z) if (W) = k, and = +o00 otherwise. The following properties reveal that certain

layers have a nice structure.

Theorem 3.1 If|W|=1or [W|=|V|-1, fi¥ satisfies (M-EXC) for any k with W <k< W
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Proof.  Assume [W| =1 and denote by w the unique element in W. Let z,y € dom f}¥ and
u € suppt(z — y). Since z,y € dom f, (M-EXC) for f implies ‘ :

f(w)+f(y)Zf(-’v—xu+xu)+f(y+xu—xv) | (5)
for some v € supp~ (z — y). Since z(w) = y(w) = k, we have w # u,v. Hence, (z — Xu + Xo)(w) =
(y + Xu — Xo)(w) = k, which together with (5) implies (M-EXC) for f}.
~ When |[W|=|V|-1,z(V -W)=y(V - W) for any z,y € dom f}¥ and therefore the proof
is similar. N
Theorem 3.2 f}V satisfies (M-EXC) if either k= AW or k = wv

Proof. Letz,y € dom f} and u € supp*(z — y). Since z,y € dom f, we can apply (M-EXC)
and obtain v € supp™ (z — y) with

F@+ @) 2 f@—xu+x) +FH+xu—x0) (6)

Since (W) = y(W) = AW (or p"), u € W if and only if v € W. Hence, (z — xu + xo)(W) =
(y + xu = Xo)(W) = AW (or u%), which together with (6) implies (M-EXC) for f}V. |

Thus, we can find a minimizer of f,ZV efficiently by the algorithm DOMAIN_REDUCTION in Section
2 if either (i) [W|=1or [W|=|V| =1, or (i) k = AW or k = W | |

The converse of Theorem 3.1 partially holds. For any z € ZY, define ||z|| = {|z(w)| | w €
V}

Theorem 3.3 Let f : ZV — R U {+0} with |V| > 5. Suppose that dom f is a base‘pvolyhedr(on
and that flV satisfies (M-EXC) for any W C V with |W| =1 and k € Z with W<k <AV,
Then, f satisfies (M-EXC). - ‘ U -
Proof. It suffices to show the following [15, Theofem 3.1]:

Vz,y € dom f with ||z — y|| = 4, Ju € supp™(z — y), v € supp~ (z — y) such that
f(w)+f() f(w_Xu+Xv)+f(y+Xu Xv)-

Let z,y € dom f with ||z — y|| = 4. Since [V| > 5, there exists some w € V with z(w) = y(w).
Hence, (M-EXC) for f}¥ with W = {w} and k = z(w) immediately implies the above property.
|

The statement of the above theorem does not hold necessarily when |V| = 4. Let f : Z* -
R U {+00} be defined by ’

domf:{(0,010’0)’(1a0)_1a0))(0$1’—170),(1)0707—1),(0113()’_1))(1)1,—1:;_1)}"
£(0,0,0,0) =0, f(z) =1 for « € dom f — {(0,0,0,0)}.
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The function f fulfills the assumptions of Theorem 3.3 except for |V'| > 5. However, f is not
M-convex since (M-EXC) does not hold for z = (0,0,0,0) and y = (1,1,-1,-1).

Next, we state two properties on the relationship between consecutive layers. For any W C V
and k € Z with AW < k < pW, define off = inf{f(z) | (W) = k}. It is remarked that aff may
take the value —oo. The next theorem shéws the convexity of the sequence {akW}.

Theorem 3.4 Let W C V. Then, oV ; + akW+1 >2 W +1<VE< W —1).

Proof.  Let {z;}2;, {vi}2; be sequences of vectors in dom f such that 111)11;10 fla:) = o,
,lifilo fw)=al . Foreachi=1,2,---, let «},y} € dom f satisfy }(W) =k+1, y)(W) =k -1,
and f(z}) + f(y}) < f(=i) + f(yi), and assume that z},y} have the minimum value of ||z} — ;||
‘of all such vectors. Note that supp™(z} — y}) N W # 0 since z,(W) > y.(W). Apply (M-EXC) to

), y., and some u; € supp™(z; — yi) N W, we have
£@) + FWD) 2 F(&h = Xus + Xar) + £ 04+ 0 = X00)
for some v; € supp™ (z, — y;). By the assumption for z,y}, v; must be in V — W, and therefore
(@} — Xus + Xu:) (W) = (¥} + X — Xe;)(W) = k. Hence,
afpitally = Lim {f (i) + f(y:)}
> nf{ (= s o) 7+ Xu = xu)} > 207
[ |

Coroilaryf 35 Let WCV. If a}” = —oo for some j with A\W < j < uW, then akW = —oo for
any k with min{\" + 1,5} < k < min{pg" - 1,5}.

Proof. Forany k= j+1,7+2,---,4Y =1, we can inductively show that aZV = —oo by

applying Theorem 3.4 since azv_l = —oo by the inductive assumption and aml < oo. In the
similar way we can also show aZV =—cofork=j—-1,7-2,---,2W +1. |

For any W C V and any k € Z with MW < k < u%, define MYV = {z | 2(W) =k, f(z) = o} }
if a}c” is finite. '
Theorem 3.6 Let W C V. ‘

(i) Let k € Z be with AW < k § p —1 and suppose both o} and aml are finite. Then, for
any zy € MV, there exists zp41 € MY\, with ||egy1 — x| = 2.
(11) Let k € Z be with AW +1 < k < u" and suppose both ol and o | are finite. Then, for
~any zj € MZV, there exists zp_1 € M,ZKI with llTe—1 — zx|] = 2.
"Proof. We show (i) only, since the proof of (i) is similar. Let z; € M. Suppose y € M,K/H
minimizes the value ||y—zx||(> 2) of all vectors in M}¥,, and to the contrary assume ||y—z|| > 4.

Note that supp™ (y — z1) nw # 0. For u € supp™(y — z1) N W, (M-EXC) yields

f(y)+f(mk)Zf(y_Xu'FXv')'*'f(mk'*'Xu_X'u)
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for some v € supp~ (y—zx). We have 2+ Xu—Xo € M,Ez_l ifv e V-W,and y—xu+Xo € Mpy1 if
v € W. In either case, it is a contradiction since ||(zx+Xu—Xv)—Zk|| = 2 and ||(y—xu+Xo)—Tk|| =
Ny —zell—2. | : - u

Using this property, we can find a minimizer in each layer by the next algorithm if dom f is
bounded. ' .
Algorithm AUGMENT :

SteP 0: Find any z,w € Myw. Set k= AW.

STEP 1: If k = 4" then stop. .
STEP 2: Find up € W and v € V — W with f(zr + Xu, — Xo,) =
STEP 3: Set Tr4+1 = Tk + Xu, — Xopr K = k+ 1. Go to STEP 1.

wewhorty gy (6 F X0 = x0)}-
The algorithm DOMAIN_REDUCTION in Section 2 can be used in STEP O by Theorem 3.2. The
algorithm REDUCE, which iteratively reduces k, can be constructed similarly. These algorithms

work well if we can find an vector z)w € M}\}[év or z,w € M,w efficiently, in particular if

u
{z € dom f |z(W)= A"} =1or |{z € domf | z(W) = /.LW}| =1.
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