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Abstract

We propose a system G of game logic related to Kaneko-Nagashima's GLy,.

Our aim is to make the system more constructive than GL,. Though G is

" an infinitary system, formulae and sequents are finitary. We define a Godel

numbering of formulae, sequents and derivations, and we consider some problems
concerning undecidable sentences.

1 The Language and the Rules of the System G

Terms, formulae and sequents of the semiformal deductive system G are defined in this
section. Derivations (proof figures) are defined in a later section. G has an infinitary
inference rule (— C); all other elements of G are finitary.

Symbols.

Free variables: ag, a, ....

Bound variables: zg, 4, ....

Logical symbols: -, D, A, V, V, 3.

Modal (epistemic) symbols: K;, Ko, C.

Predicate symbols: =.

Function symbols: 0, S, +, X.

*Until March 1998.



Auxiliary symbols: (, ),
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Remark. Though other functions, predicates may be allowed without difficulty, we
confine ourself to this language for the sake of notational simplicity.
Terms, formulae, cedents and sequents are defined as usual. S (t), the successor of

t, is abbreviated as t'.

(ADB)A(BDA)is abbrevm.ted as A~ B.

3z F(x) AVyVz [F(y) A F(2) D y = 2] is abbreviated as 3!z F(z).

Sequents are defined as usual.

For any fo;‘mula A, we define KA (i =1, 2; k € N) inductively as follows:

KioA is A,

K; k414 is KK A where i # j.

- For any formula A, we define NiA (k € N) as follows:

NoAis A, NyyAisKyjppA, NopypaAis Kapnd

Schemata for Initial Sequents:

A

vz K;(F(z))
Vz Ko (F(z))
Vz C(F(z))

s=1,F(s)
=0

s=t

IR A A A A

Inference Rules:
I —6
Al' —6
A AT — 6
Al' —6
I'A,B,A— 6 '
TBAA @ 0™)

(t—)

(c—)

' -6,A A A— A

A

K,(Vz F(z))
Ky(Vz F(z))
C(Vz F(z))
t=1

F(t)

s=1

t+0=1t
t+s) =t+s
tx0=0

txs' =txs+t

l" .
,I‘:—G?A (=)
I'—6,AA

r—e64 (—)c)

I'—6,A,B,A
I'—6,B,A A (= 1)

ra—e,A

(cut)
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r—6,A AT —6
AT —6 =) 7=6,-4 (=)
Al'—6 |

inBr—e "~V r_e4 r—eBn -
B, — 6 I'—6,AAB

A BT —6 "2
r—86A
u vl
AT —6 BT —8 . F=oAvE VY
AVB,I'—6 r—e6,B (—-)V2)
r—e6,AvB

r—6,A BA—A ATI'—6,B

TSBTA—=064 ©7) T=6,4>8 )
e ¥ Toew Hy 9O
= l(ﬂfl()z)rz:? 5@ oo é‘t()a:) =3
- R K0
&",’3’,?:2 coykeny L - aa g':gl(’; ;? N Lo

F(a),I’ — 6, F(a')
F(0),I' — 6, F(t)

(MI) L63]

(1) Restriction on variable: The free variable designated by a, the eigenvariable, must
not occur in the lower sequent.

(2) Restriction will be stated later.

(3) K is either K; or Ka. © consists of at most one formula.

2 Derivations and the Coding

In this section we define derivations and the coding of derivations simultaneously. Let
(Fo, F1, Fa,...) be an effective enumeration of all primitive recursive functions'. First
we introduce some total recursive functions and total recursive predicates needed for
Goédel numbering. : ,

(ag,ay,...,ax) denotes the sequence number po™ - p® - ... % where py = 2,
;= 3, pp = 5, ...is the series of prime numbers. Let Seqnum(a) be the number

1Primitive recursiveness is not essential. For some other subrecursive classes, the argument almost
parallels.
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theoretic predicate denoting that a is a sequence number. Definition is
Seqnum(a) ~ a > 0 A Jk<aVi<a [pila ~ i < &}

We define [a)i = (pz<a—(p*|a)) + 1 and Ih(a) = T.c,58([als). ¥ a = (ao,a1,..., )
then lh(a) = k¥’ and [a}; = a; for any i < Ih(a).
Note. [a]; = (a); = 1.

For any two sequence numbers a = (ay, .. .,ax) and b= (by,...,b), let

axb= (ag,«...,ak,bo,...,b;).

We assign Godel numbers to the symbols and the names of inference rules. The

Godel number of any symbol # is denoted as "#" and similarly for the names of
inference rules.

Successive odd numbers (> 3) are assigned to the symbols and the names of infer-
ence rules: 01 Sv +, X, =, 7, O, A, V, V) 3, Klv K2) 07 -, (t _))1 (_’ t)! (C _')1
(=), (i=), (=), (cut), (= =), (=), (A= 1), (A= 2), (=), (V—), (= V1),
(= v2), (2 =), (= 2), (V=2), (= ¥), @), (= 3), (K= K), (C-), (— C), (MD),
ar (k=0,1,...), 7, (k=0,1, ...). For example, "+7 = 7 and "(cut)? = 45.

Godel numbers of terms and formulae are defined as usual. The Gédel number of
a formal expression F is denoted as "E™. The Goédel number of a sequent

AI)AZV":Ak_'_")BI’B21"')Bm

(Fﬁﬂ, (rA'l-la '-Az—': ey rAk-l)r (er—" ey rBZ-l$ rBlj»-

We omit “the Gédel number of” if no confusions are likely to occur. For instance, we
say “a is a formula” instead of “a is the Godel number of a formula”.

Let Formula(a) be a number theoretic predicate meaning that a is a formula. Now
we define

NFALK) = TNi(A)T,
Cedent(a) ~ Seqnum(a) A Vi<1h(a) Formula([a);),
Sequent(a) ~ lh(a)=3A
A [aJo = "7 A Cedent([a];) A Cedent([a]2).
Let InitialSequent(a) be a number theoretic predicate meaning that a is an initial
sequent. '

Let Infer; (4, b, a1) or Infery(j,b, a1,a2) be the number theoretic predicate meaning
that

a . .
5 @ o AL

is an instance of a one-premise or two-premise inference rule respectively.
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Definition 1 We define derivation and its Godel number simultaneously by induction.
(1) If 8§ is an initial sequent, then S is a derivation of S with the Gédel number
(0,7S7).

(2) If Hy i3 a derivation of a sequent S and

S1
5
1s an instance of a one-premise inference rule, then
Hiooqy
W

1s a derivation of S with the Gadel number ("(J)", rS7,THLT).
(3) If M, is a derivation of a sequent 1, Ha is a derivation of a sequent Sz and

S S
)

is an instance of a two-premise inference rule, then

Hi Hs
)
is a derivation of S with the Gédel number ("(J)7,7S7, "H, 7, TH,T).
(4) If Hy is a derivation of a sequent Sy for each k € N and if
So ‘?91 L)

is an instance of the rule (— C), and if "H}" is a primitive recursive function F,(k)
of k, then _

Ho Hy -+
S (
is a derivation of S with the Gidel number ("(— C)7,787,¢). [

— C)

Lemma 1 The nonmodal fragment Go of G is the first order arithmetic. [

Theorem 2 G is conservative over Gy ]

Proof (outline). Let H be a derivation of a nonmodal sequent S. Delete all modal

symbols Kj, K3, C from H. For every occurrences of (— C) in H, delete all premises
but the leftmost one. []

Corollary 3 Any undecidable sentence in Gy is undecidable in G. []

Problem 4 What is the relation between G and Kaneko-Nagashima’s GL,,? Is prim-
tiwe recursively restricted GL,, conservative over G?

Problem 5 Construct a semantics for G.
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3 Undecidability

Let prov(a, b) be a number theoretic predicate denoting “a is a derivation of a sequent
b”. This predicate is inductively defined as follows:

prov(a, b) . v
~ [a = (0,b) A InitialSequent()] vV _
V(3j, u,z < a)la = (j, b, u) A Infer;(j, b, z) A prov(u, )] V.
V(aj: U, U,y < a)[a = (.77 bv u, U) A
A Infery (4, b, z, y) A prov(u, z) A prov(v, )] V
V(3e, z,u,v < a)[a =((= O\ be) Ab= ("=, u,v) A
ACedent(u) A Cedent(v) A Formula(z) A lh(v) > 0 A
Alvlo = (C7,2) A |
AVE (prov(F, (k), [F(k)1) A [[[F(K)liJzlo = N(z, k)]

Conjecture 6 The predicate prov(a,b) is ITy. []

Let provg(a,b) be a number theoretic predicate denoting “a is a derivation of a
formula b”:

provg(a, b) ~ Formula(b) A prov (e, ("—", (), (B))) .
Conjecture 7 The predicate provg(a, b) ts II,. [
Problem 8 Is the predicate prove(a, b) proper I, # [
Problem 9 Is the predicate provg(a, b) numeralwise expressible in G ¢ [J

Theorem 10 If G is w-consistent and if provg is I1;, an undecidable sentence can be
constructed from provg. []

Proof. Case 1: The predicate provy is numeralwise expressible. The argument is
similar to Godel’s. Let P(u,v) be a formula numeralwise expressing provy. By diago-
nalization lemma, there exists a sentence A satisfying

FA~-3zP(z,TAY),

(i) Proof of | A. If there is a derivation M of A, then provg("H7," A7), hence F
P("H",T A7), hence + 3z P(z,TA0). :

On the other hand, I~ A implies + =3z P(z,"A7). This contradicts the consistency
of G.
(ii) Proof of | —A. The result A implies that provg(m," A7) for no m. By
numeralwise expressibility, -P(m,"A7) for all m. Since G is w-consistent, }
—Vz-P(z,7A7), i. e. |} 3z P(z,7A7). Hence | —A by the definition of A.
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Case 2: The predicate provy is not numeralwise expressible. Because provg is I1y, there
exists a total recursive predicate R such that

provF(a, b) o~ _Vm R(a7 b) IB).

Since R is numeralwise expressible, there exists a formula R(u, v, w) numeralwise ex-
pressing R. Since provy is not numeralwise expressed by Vz R(u,v, z), there exists a
and b satisfying ‘ :

either |  provg(a,b) and ¥ VzR(a,b,z)

or -provg(a,b) and F-VzR(a,b,z).

If the latter holds, there exists a ¢ such that ~R(a,b,c). Therefore I -R(g@,b,c) by
numeralwise expressibility of R, hence - -Vz R(g@, b, z), a contradiction. Therefore we
have '

provg(a,b) and ¥ VzR(a,b,x)

for some a and b. Hence R(a, b, c) for every c, hence I R(g,b,¢) for every c. By the
w-consistency of G, this implies

I -Vz R(a, b, z). CJ
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