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1 Introduction |

It is known that the interpolation theorem holds for the logics LR and LRW, which are
obtained from the relevant logic R and RW respectively by omitting the distributive
axiom AA(BVC) — (AAB)V(AAC) (see [7] and [2]). On the other hand, Urquhart
proved in [13] that the interpolation theorem fails for R, RW and some other relevant
logics. He also claims that the interpolation theorem fails for the positive versions of
all the logics discussed, provided that either the language contains the constant ¢ or the
formula,((A D B) A A) D B is provable. This fact shows that the distributive axiom
seems to play a critical role in the interpolation problems for substructural logics. In
the present study we will show that the interpolation theorem holds for the logics
Lpscc and Lpgck, which are obtained from Lpcc and Lgck, respectively, by adding
the distributive law AA (BV C) — (AA B)V (A AC) as an initial sequent. Ono and
Komori proved in [11] that the interpolation theorem holds for Lpcc and Lpck-

Slaney in [12] introduced sequent systems without cut rule which are equivalent to
Lppce and Lpgek. We will take Slaney’s systems, but in a slightly modified form, and
use essentially Maehara’s method introduced in [6] to prove the interpolation theorem
for these'logics. _

A note about the names of the logics discussed. To avoid any confusion with those
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[11] and [12], here we also use the names of logics Lpcc, Leck, Loscc and Lpsck-
However it must be noticed that the letters C and K which appear in them have no
connection with the combinators C and K. Better names for them can be found in
[9] or [10]. In those papers Ono introduced the basic logical system FL (full Lambek
logic) and then gave the names FL,, and FL,,, for Lgcc and Lpck since they can be
obtained from FL by adding the weakening rule and the exchange and weakening rules,
respectively. By the reason mentioned above we will denote our systems, which are
equivalent to Lppcc and Lppck, by LoLpscc and L, Lppck, respectively.

The full version of the present paper will appear as [1]. The authour would like to
express his sincere gratitude to Professor Hiroakira Ono and Dr. Toshiyasu Arai for
their suggestions and comments.

2 Gentzen sequent systems L,Lpgcc and L,Lpgck

Slaney in [12] introduced sequent systems without cut rule LLpscc and LLppck, in the
same way as relevant systems discussed in [3] and [5]. These systems are equivalent to
Lppcc and Lppck. They contain two types of structural connectives, the extensional
structural connective “,” which corresponds to the extensional conjunction and the
intensional structural connective “;” which corresponds to the intensional conjunction
or fusion. Having these two types of structural connective, two types of structural
rules (extensional and intensional) will be formulated in these systems. By using these
rules, the distributive law can be derived. _
In the following, we will give a definition of these systems, but in a slightly mod-
ified form. As in [12] our language will contain the false constant L, implication D,
disjunction V and two kinds of conjunction, i.e. the extensional conjunction A and the
intensional conjunction *. v
First, for our sequent system L,Lppcc, structures (see [5]), which are called bunches
of premises in [12], are defined recursively as follows; '
1) any formula is a structure,
2) for n > 2, if each X; is a structure for i = 1,...,n, then both sequences (X1, ..., Xy,)
and (Xji;. . ; X,) are structures.

Structures of the form (Xj,...,X,) and of the form (Xj;...;X,) are said to be
extensional and intensional, respectively. Each structure X; is called an immediate
constituent of (X1,...,X,) and (X1;...; X,). Here, if X} is of the form (Y3,...,Yn,)
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for-some -structures Y;, j = 1,...,my, then the above (Xi,...,X,) should be un-
derstood as (Xi,...,Xk-1,Y1,---, Ym, Xkt1,...,Xy). Similarly, if X; is of the form
(Yi;...;Ym,) for some structures Y;, j = 1,...,mq, then the above (Xj;. . .; X,) should
be understood as (Xy;...; Xi—1;Y1;- .- ; Y, Xig1; - - - ; X). Thus, we will assume that
no extensional (intensional) structures have an extensional (intensional) structure as
their immediate constituent.

In the sequel, the letters X,Y, Z,U and W with or without subscripts will denote

structures. We will omit parentheses when no confusions will occur.

Substructures of a given structure X in L,Lpgcc are defined as follows;

1) if a structure Xj,..., X, occurs in X then

1.1) each X; is a substructure of X fori =1,...,n,

1.2) any subsequence of the sequence Xj,...,X, is a substructure of X,
2) if a structure Xj;...; X, occurs in X then

2.1) each X; is a substructure of X fori =1,...,n,

2.2) any subsequence of the sequence Xj;...; X, is a substructure of X.

Here, subsequences are defined as usual. Thus, suppose X = Y,(Z;U),W. Then
(Z;U),W and X itself are examples of subsequences of X. On the other hand, Z and
Y, Z,W are examples of sequencés which are not subsequences of X.

Following [12], an expression like I'(X) is used for denoting the structure with an
indicated substructure-occurrence X in it. Then I'(Y") denotes the structure obtained
from ['(X) by replacing the indicated substructure-occurence X in it by a structure
Y. A sequent is an expression of the form X — A, where X is a structure (possibly
empty) and A is a formula. Then L,Lppcc will be given as follows:

It consists of the initial sequents A — A  and 1 - A

the following structural rules

F(Y,X) - C I'X)—C
TX,Y) =C (E — exchange) T(X,Y) = (E weakening)
I(X) = C (E — contraction) I X,Y) C' (I — weakening)
and the following rules for logical connectives
X;A— B X—-A I'(B)—-C

Y5 A58 ) TASExX) =S¢ )
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I(4)—C T(B)—C

X—)14 (—)Vl) X—’B (—>V2)

X—-AVB X->AVB TavE ¢ V™)
X—-A Y- B F(AvB)_’C
XYSArB N Taspoc M)

X;Y - AxB . I(AxB)—-C

For instance, applying (E — contraction) to a sequent of the form (Y, X, X, Z) — C,
we can get the sequent (Y, X, Z) — C. Thus, X, X in I'(X, X) will be understood not
as a substructure but as a subezpression. We will use these sloppy definitions, simply
to avoid unnecessary complications. ( See the footnotes 28 and 29 in Dunn [4]. )

For our sequent system L,Lpgck, if we define intensional structures as sequences,
some difficulties will occur in the proof of the interpolation theorem given in the next
section. So, instead of taking sequences, we will take multisets, since the exchange law
holds in it. Thus for L,Lppck we will modify the definition of structures as follows;
1) any formula is a structure, _ _

2) for n > 2, if each X; is a structure for ¢ = 1,...,n, then both the sequence
(X1,...,X,) and the multiset {X;;...;X,} are structures. |

Substructures are defined similarly to that in the case for L,Lpgcc. Since we define
intensional structures as multisets, we can dispense with the intensional exchange rule.
Thus, L, Lppck will have the same initial sequents, structural rules and rules for logical
connectives as the above L,Lppcc. '

For the equivalence of L.Lppcc ( LoLpscxk ) and Hilbert system Hppec ( Hppek ),
see the proof of the equivalence of LLpscc ( LLppex ) and Hpsec ( Hpsek ) in [12].

3 Interpolation theorem for Lppcc and Lppcxk

We will show that the‘interpolation theorem holds for Lppcc and Lppck by using the
systems L,Lppcc and L,Lpgck, respectively. In the following the e){pressions V(X)
denotes the set of propositional variables which occur in X.

Ono and Komori proved in [11] that the interpolation theorem holds for Lgce and
Lpck by'showing that interpolation theorem of the following form holds for them:
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If a sequent X; Y:Z — D is provable, then there is a formula C such that
1) Y — C is provable, -

2) X;C;Z — D is provable,

3) V(C) c V(Y)n[V(X; Z)u V(D).

Here, all of X,Y and Z are sequences of formulas of the form Ay;...; Ap.

Thus for L,Lppcc and L,Lpsck, & desirable form of interpolation theorem might be
of the following:

Let X — D be a provable sequent. Suppose that Z is a substructure-occurrence in X.
Then there is a formula C such that V

1) Z — C is provable,

2) X{C/é} — D is provable,

$) V(C) C V(2) N V(X¢—/zy) UV(D)].

Here X(c/z} denotes the structure obtained from X by replacing Z by C and X(_;z,
denotes the structure obtained from X by deleting Z.

In fact, even the following stronger form of interpolation theorem holds for them.

Theorem 1 Let Z; be a substructure-occurrence in a structure Z for i = 1,...,n.
Suppose that 1) Z; and Z; do not intersect each another when j # k and 2) there is
no structure-occurrences of the form Z'; 2" in .Z such that Z' contains Z; and Z"
contains Zj, for some j and k. Then, if the sequent Z — D is provable, there exist
formulas C; fori=1,...,n such that

1) each Z; — Cj is provable for j=1,...,n,

2) Ziciyzy: — D is provable,

3) forj=1,...,n, V(C;) € V(Z;) N [V(Z{=zy) UV (D)),

Here Z(c,/z,), denotes the structure obtained from Z by replacing Z; by C; for every
i = 1,...,n, and Z{_/z,, denotes the structure obtained from Z by deleting Z; for
everyi=1,...,n.

To understand the conditions of Z; in the above theorem, let us consider the case
where X = (X1; X2; X3), X4, (X5; Xe). Here the above conditions are not satisfied if
we take n = 2, Z; = X; and Z, = X3, for X; and Xj are substructures of Z =X
and Z" = X,: X3, respectively. On the other hand, if we take n = 2, Z; = X; and
Z, = Xs, then the above conditions are satisfied. In this case the above theorem' says
that if X — D is provable, then there exist formulas C; and C; such that
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1) both X; — C; and X5 — C, are provable,
2) (C1; X2; X3), X4,(C2; Xg) — D is provable,
3) V(C1) C V(X3) N [V((Xa; X3), X4, X6) UV(D)] and
V(C2) C V(X5) N [V((Xg; X3), X4, X6) U V(D)]

Next, let us consider the proof of Theorem 1 for LoLppcc. As usual, the theorem
is proved by induction on the number [ of inferences in the proof figure of the sequent
Z — D. Here we will show the proof for the following case.

Case 1. | > 0 and the last inference is (V —). Here Z — D will be of the form
T(AV B) — D and the last inference will be of the following form;

r(4) »D T(B)— D
TAvB -b V™),

Suppose that Z; is substructure-occurence in I'(A Vv B) for i = 1,...,n, such that the
conditions in the theorem are satisfied. Here we will consider the following subcase;
Subcase 1.1 The 'displayed’ AV B in I'(A V B) occcurs in Z;, for some k.

Let Ur = Zir(ajavpy and U; = Z; when i # k. Then by the hypothesis of induction
there exist formulas C; for i = 1,...,n such that

la) each U; — Cj is provable for j = 1,...,n,

2a) I'(A)¢c;/v:y; — D is provable,

3a) for j=1,...n, V(C;) C V(U;) N [V(T(A){~jviy;) U V(D))

Let Wi = Zi(p/avpy and W; = Z; when ¢ # k. Then by the hypothesis of induction
there exist formulas C; for i = 1,...,n such that

1b) each W; — C; is provable for j = 1,...,n,

2b) I"(B){C yw:y; — D is provable,

3b) for j =1,...,n, V(C ) C V(W n [V(F(B){ /W.}.) U V(D)]

Now, for ¢ # k by applying (— A) to U; — C; and W; — C,-, we can get U;,, W; —
C; A C;. Note that when i # k, U; = W; = Z;. Then, by applying (E — contraction)
to this sequent we can get Z; — C; A C;;

U —-C; W,—C,;

(A=)
U Wi = GiAC; (E - contractzon)
Z,' — C,' A C

By applying (— V1) to Uy — Cj, and (— V2) to W, — C}, we can get U, — CVC}, and
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Wi — CVC,, respectively. Then by applying (V —) to them we can get Z, — C.VCy;

Zigajavy = Cr Ziisjavey — Ci

(— V1) (— Vv2)

Zy.(pjavey — Cr V C v =)

Zi(ajavey — Cc V Cy,

Zi(avpavey — Ce V Cy
So by 1a) and 1b), Z; — Ci. V C, and Z; — C; A C; are provable when i # k.

Next, from I'(A)(c;/v;}; — D, by applying (E — weakening) and (A —) , n — 1 times,
we can get ['(A)(g,/v;}; — D, where E, = Ci and E; = C; A C; when i # k. Also,
from ['(B) ©wy " D, by applying (E — weakening), (E — exchange) and (A —),
n — 1 times, we can get ['(B)(p ), — D, where E, = C, and E; = C; A C; when
¢ # k. Note again that when i # k, U; = W; = Z;. Then by applying (V —) to
F(A){Ei/gi}i — D and F(B){E;/w.-}.- — D we can get ['(AV B){E;'/Z.-}; — D, where
E, =CyVC, and E; = E; = E; = C; AC; when i # k. So by 2a) and 2b), we can get
the proof of I'(AV B)gr 7, — D as follows; ‘

: P(B)cyywy: = D
I'(A)¢ci/viy. = D applications of (E — weakening)

applications of (E — weakening) applications of (E — exchange)
applications of (A —) applications of (A —)
I'(A) ey = D I'(B) g jwyy; = D y
T(AV B) g7y — D V=)

Lastly, by 3a) and 3b) we can easily show that |
a)forh=1,...,k=1,k+1,...,n, V(CLAC}) C V(Zy)N[V(T(AV B){-z3,)UV(D)),
b) V(Ck V Cy,) C V(Z) 0 [V(T(AV B)(~/zy,) U D].

Thus CoAC,, for h=1,...,k—1,k+1,...,n, and Cy V C}, become the interpolants.

- The proof of Theorem 1 for L,Lppck goes similarly to the above proof of Theorem
1 for LyLpgcc. In fact as we define intensional structures by multisets, we can omit
some subcases in the proof.

Cofollary 2 The interpolation theorem holds for Lppcc and Lppck. More precisely,
if the formula A D B is provable (in Lppcc or Lpeck), then there is a formula C such
that both A D C and C D B are provable and V(C) C [V(A) N V(B)].
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As an important application of Theorem 1, we can get the following theorem,
which says that the Maksimova’s principle of variable separation holds for L,Lpgcc
and L, Lppck. The detail of the proof will be announced in [8]. In fact, our intérpolation
theorem in a stronger form is neéessary for proving this.

Theorem 3 Suppose that Ay DO Az and By D By have no propositional variables in

common. Then the following holds for L,Lppcc and L.Lppck- |

1) if the sequent Ay A By — As V By is provable, then either A; — As or By — B, is
provable, ‘

| 2) if the sequent Ay A By — A, is provable, then either Ay, — Ay or B, — is provable,

3) if the sequent Ay — A2 V Bs is provable, then either Ay — Ay or — B, is provable.
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