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A Study on Substructural Logics
with Restricted Exchange Rules, (2)

JERRsEIRR AR ER RS ERAEIARL R 5 (Ryo Kashima)

JERRERL R R R A FAFSEA B IR (Norihiro Kamide)

~ In the former paper [1] we have made investigations on the systems which have
restricted exchange rules. In this sequel we introduce restricted weakening rules and
restricted contraction rules, and prove the cut-elimination theorems for the systems
based on FL_,+(e*!*). These include new cut-elimination results for the well-known
relevance logics E_, and S4_,. The detailed proofs of the cut-elimination and other
theorems appear in the authors’ research report [2]. '

6 Restricted weakening and contraction

We introduce restricted weakening rules and restricted contraction rules as follows.
(In those figures, the difference between the lines around (the combinations of) the

rules shows equivalence explained below.)
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We have six combinations (including the null combinations) of the weakenings and
six combinations of the contractions:
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It is known that FL_+(e*'*)+(c%) is a system for the relevance logic E_,, and
FL_ +(e*™*)+(w)+(c?) is a system for the the relevance logic S4_, (see [2]).

Theorem 6.1 The rule (c'°) is derivable in FL_,+ (e!!) + (c'!) and in FL_+
(w'') + (c!). Therefore the rules (c'') and (c'°) are rule-equivalent over FL_,+
(e'!) and over FL_+ (w!); and if (e''!) or (w'!) is derivable in a system L, then
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the two systems L + (c') and L + (c!°) are theorem-equivalent and the two systems
L + (c®) and L + (c'°) + (c*) are theorem-equivalent. ’ :

Proof Let a = a;—a,. The sequent o, ay—ay = a is provable in FL_+ (e'!?)

(by Lemma 3.1 in [1]) and in FL_,+ (w!!) (by one application of (w!!) to an initial
sequent). Then the derivability of

is shown as follows.

E’,az—nxz =>a T, 5), a > p (cut)

—_ —
F, a, a,a—a=>p (cu)

= as— Qg I,a,0000,=>p (cut)
I, o =p

Theorem 6.2 Suppose (e'%°) or (w'°) is derivable in a system L. Then the rule
(e%%°) is derivable in L + (e''!), the rule (w*) is derivable in L + (w'!), and the
rule (c®) is derivable in L + (c!). In other words, the existence of (€!®) or (w'°)
makes the restrictions ineffective.

Proof Let p = (p—p)—p. The sequents p = pand p=p are provable in L. That
is, each propositional variable is equivalent to an implication in L. Then, the nonre-
stricted structural rules are derivable by using the restricted rules and the cut rule. i

7 Cut-elimination for E_,, S4_,, and their sub-
systems |

In this section, we make thorough investigations on the cut-elimination property of
the systems FL_, + e + w + ¢ where

e € {(e1), (61, (671),(67) + (1), (™)} (= (67,
w € {null, (w'), (w)}, and
¢ € {null, (™), (c*%), (™), (™) + (1), (c™)}-
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We will name them L, in:which z denotes a combination of the weakening and
contraction rules and y denotes a combination of the exchange rules as displayed in
the following figure.
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" For example, L! = FL_, + ('), LY = FL_, + (e''%) + (e**!) + (c®*), and L =
FL_ + (e"%) + (w ) + (c™). Note that for each z € {1,...,12}, the five or ten
systems {Lg, Lf'} (y = 1,...,5) are theorem-equiva.lent (by Theorem 3.2 in [1] and
Theorem 6. 1) L1 L3, L;o, and L3? are systems for the relevance logics E,—W,
S4_,—W,E_, and S4_, respectlvely If we add (w'°) to those systems, the restriction
on the inferences becomes ineffective (Theorem 6.2). Therefore those are all the
considerable systems for E_,, S4_, and their subsystems in our setting.

Our results on the cut-elimination property are summarized as follows.
Cut-elimination holds (denoted by Q):
L3—5’ L3—5) L3 51 L3—51 Ll 5 L6—5a L51 L57 L3—5) L1-—57 Lizs
Cut-elimination does not hold (denoted by x):
Ll 27 Ll 2 L1 v3] L12 ’ LIZS’ L8—4, Lgfu Li?2

Unknown (denoted by ?):
L3—5’ L1 5 Ll L) Lg » Lg .
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Before the proofs of the cut-eliminations, we note a fact which will be implicitly
used below. Let L and L™ be systems such that

(1) L and Lt are theorem-equivalent;

(2) Lt is “stronger” than L; that is, each proof in L is also a proof in
L*.

Then the cut-elimination for L implies the cut-elimination for L*: Suppose a se-
quent S is provable in L*. By the condition (1) and the cut-elimination for L, there
is a cut-free proof P of S in L. Then P is also a cut-free proof in Lt by the con-
dition (2). For example, the cut-elimination for L} implies the cut-elimination for
Lj and Lg, and failure in cut-elimination for L} implies the failure for L and L$ for
y=1,..,4.

Now we start proving the cut-elimination theorems.

Lemma 7.1 (Inversion Lemma) Let L = L? (z and y are arbitrarily fized). If
I' = a—f is cut-free provable in L, then also T'ya = B is cut-free provable in L.

Proof By induction on the cut-free proof in L. |

Lemma 7.2 (Atomic Cut-Elimination) Let L = L; (z and y are arbitrarily
fized). For any propositional variable p, the rule (p-cut) (i.e., the cut rule whose
cut-formula is p) is admissible in cut-free L.

Proof By induction on the left upper subproof of (p-cut). B |

We first show the cut-elimination for the systems LE and L}, for which the
cut-elimination fails if (e%'°) is replaced by “weaker” exchange rules. In the cut-
elimination procedure, the following lemma plays an important role like Lemma 3.6
in [1].

Lemma 7.3 (Key Lemma for L and L3) Let L = L§ or LY. If there is a cut-
free proof P of ®, ¥ = ¢ in L and if ¥ = 9 is an implication, then there are a
sequence ®~ and a proof P~ which satisfy the following conditions.

(1) P isa cut-free proof of ®, ¥ = 1 in L.

(2) & is a (possibly empty) sequence of implications. If ® does not contain an
implication, then ®~ is empty.
(3) The rule of inference
I, A=a
) ) &
To.A>a (As)
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is cut-free derivable in L. That is, for any sequence (I',A,a), if A = « is an
implication, then there is a cut-free derivation fromI',®~,A = a tol',®,A = a
in L. '

(The sequences ® and (¥, 1)), which are components of the last sequent of the given
proof P, will be called respectively a redex and an invariant.)

(Note: The rule R in Lemma 3.6 in [1] is stronger than .43", and it will be appear
in Lemma 7.11 as C~.) ' i '
Proof Similar to the proof of Lemma 3.6. Here we show a case of (w'!): P is of
the form )
_—
H; 213 22 = ¢
—
) H;ﬁ’21)22=>¢’
and the redex & is (I1, B, £1). In this case, the required proof P~ is
P Q"
A_) 22 = 'lwb

(w')

and the required sequence ~ is A~ where ™ is a proof obtained by the induction
hypothesis for @ in which the redex is A = (IL, ;). The condition (2) is obviously
satisfied by the induction hypothesis, and (3) — derivability of Af; 3 5, — is shown
by

LA A=

y 42 a - . :
— (Aﬁ,zl) (ind. hyp.)

ILILY, A= a

(Wll).

— .
I,IL, §,51,A = a.

Note that the condition “A = a is an implication” on Aﬁ,_gl is necessary for the
application of (w'!) if ¥, is empty. | i |

Now we show the cut-elimination for L and LY. The “atomic cut” is eliminable
by Lemma 7.2, and then we will show the “non-atomic cut-elimination”. For this,

we introduce a rule named (mix) which is of the form

— — - — —
Ql'_'> ¢ tt T (I:'ﬂ.:> ¢ \I'O) ¢l7‘I'1,"'a ¢7‘I"n=>¢
' ‘I"O, Q1, ‘I’h ey Qm ‘I"n = ")b

(mix)

where n > 0. Note that the “mix formula” ¢ must be an implication.

Lemma 7.4 (Mix-Elimination for L and LY) Let L = L§ or L. The rule
(mix) is admissible in cut-free L. ‘ :
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Proof Let P be a proof

=>4 - B> Uy
U=

(mix) -

where @; and R are cut-free proofs in L, and ¥° denotes the sequence obtained
from ¥ by replacing certain occurrences of ¢ by ®, ..., ®,. (The superscript o will
‘be used similarly.) We define the grade g of this mix to be the length of the formula
¢ and the rank r of this mix to be the length of the proof R. If n = 0, we define

= 0. We prove, by double induction on the grade and rank of this mix, that there
is a cut-free proof of ¥° => 9 in L. We distinguish cases according to the form of R,
and here we show some nontrivial cases concerning the weakening and contraction.
(The other cases are easy; we use the Inversion Lemma 7.1 for the case of (—left)
and use the Key Lemma 7.3 for the case of (e°'°) similarly to the proof of Theorem
3.81in [1].)

(Case 1): The last inference of R is (w!!), and P is of the form

: R
Q1 Q_n) FL,A=>¢ (wil)
Ql = ¢ Qn = ¢ F) ¢ 7A = Il/)

(Subcase 1-1): A° = 9 is an implication. We apply the Key Lemma 7.3 to Qi
in which the redex is ®;, and we get a sequence ®, of implications and cut-free

derivability of the rule A:E. Then, by the induction hypothesis, the required proof
is obtained from the proof

Ql Qn :RO
®,=>¢ .- (Qisdeleted) --- P, =>¢ A=
—_—

I‘°,A‘.’=>1/)

P (wh)

e, ,A°=>1v¢
I°, &, A° = 9. (Am)

— (mix)

(Subcase 1-2): (A®, %)) is a single atom. In this case, P is of the form

: Ry .
_ N D Qr Qe P Qktm L, A=p (wid)
859 o H>P = - 8 LG A2p

Fo,Qk =p
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where A = ¢, ...,¢ and m > 1. Then the required proof is obtained from the proof
Qs Pk Qen C Qrmet ‘R
®, = ? ®. = _{5 = ;5) = Tj; r A:=>0
L 2T 5 - P (mix)
r 7@], =P ’

by the induction hypothesis.
(Case 2): The last mference of R is (w'l), and P is of the form

: : Ry
P Qs P Qn P_A?J/’_( 1)
@24 - 8,24 LAASY

™ Ao‘;} 7 (mix)

If A° = % is an implication, the required proof is easily obtained by the induction
hypothesis. If (A°, %) is a single atom, P is of the form

: Q1 EQk ’Qk+1 7 P Qkim FA=>P (wl)
®=F o B=F ¢ o 2§ LEAIp

T°a=>p
m

b ) —_— pp ( ) ?

Qe |
iQ > ' : Q :
: _1) — — (w”) ;_) +m ERo
b=> ¢ - a=>¢ cee > @ I‘,A=>p(mix)
- Ia=p.

Then the required proof is obtained by the induction hypothesis. -
(Case 3): The last inference of R is (c*!), and P is of the form

iR
Qk Fa?)$,A=>¢ (COI)

Q ¢k=>$ Q' F)?a =>¢(
I°, &, A° = ¢

mix)

where Q and Q' are sequences of cut-free proofs of &; = ¢ (i = 1,...,(k—1),(k+
1),...,n). We apply the Key Lemma 7.3 to Qi in which the redex is ®;, and we
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get a sequence @, of 1mphcat10ns a cut- free proof Q, of &, = ¢, and cut- free

derivability of the rule Aq,"
(Subcase 3-1): ®; is empty By the mductlon hypothes1s the required proof is
obtained from the proof

Qk Qk . ' Ro
Q & =>4 =>¢> Q F¢,¢,A=>¢
Fo @k,Ao = ¢ (ml.X)

(Subcase 3—2) A° = ’(/) is an 1mphcat10n By the induction hypothesm, the
required proof is obtained from the proof

Qk Qk ' :Rd
Q <I>k=>¢ ;=9 Q T46A=9
I‘° <I>k,<I>,,,A°=>¢
) ) ;(om) (c°1)
B <I>k,A°=>¢
.8, A5 ¢, (Aet)

( ix)

(Subcase 3:3): ®; is not empty and (A°,1,b) is a single atom. The condition
(2) in the Key Lemma 7.3 implies the fact that ®; contains an implication, say @
Then we apply (w!!) to Qi , and we get the following proof.

: Qr
. — _) .
D Qy ®, => ¢ 11 : Ry
Q =>4 I, a4 Q T,4,6,A=79
I‘°,<I>,:,<I>,:, o => P
e
re, ‘I’k’ A%

I, &, @ =>¢ ( bl
: (eOIO) (CIO)
Po,@k =>’£/)

(mix)

)

The required proof is obtained from this by the induction hypothesis.
(Case 4): The last inference of R is (c®!), and P is of the form

Ql Qn F‘aaA=>¢(01)
B26 o 856 Tabsy

0,0 > 9, ~ (mix)
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If a or A’ = 7 is an implication, the required proof is easily obtained by the induc-
tion hypothesis and (c!® or c”). Suppose a is atomic and (A°,%) is a single atom.
In this case, P is of the form

. - ‘0 . | : - Ro
@ G Gk P9um TpAsg ()
1> - B> =2 ¢ R I‘,p,A=>q(miX)

I\ p=gq
g m .
where A = ¢, ..., and m > 1. Now we consider two cases:

(Case A): I'° contains an implication, say B . We apply (w'1) to Qx41, and we get
the following proof. '

Q1 , o
1 Q = E: : Qk+
.~ : m .
e ey % g
P, B =g '
‘o — ' (COI.)
I*,p, B =4
E (eOIO)(COI)

I®,p=gq

Then the required proof is obtained by the induction hypothesis.
(Case B): I'° does not contain implications. Consider the proof

: Q1 ! Qrim ‘ Ry
¢1=>¢ =>¢ F,p)p)A:‘}q (mlx)
: I, p,p=q.

Then, by the induction hypothesis, there is a cut-free proof P' of I'°,p,p => ¢ in L.
This sequent consists of atomic formulas, and therefore the only possible inferences
in P"ate (w*') and (c®). If L = L§, then L does not have (w®') and there is no
such proof in L. This means that Case B never happen for LS. If L = L2, then the
fact p = ¢ is easily verified by the form of P’, and we get the required proof

p=>p
P (W)
I'’,p=p.

Theorem 7.5 (Cut-Elimination for Lf and L) The rule (cut) is admissible in
cut-free LE and cut-free L3. -
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Proof By Lemmas 7.2 (for atomic cut) and 7.4 (for non-atomic cut). o 1

Note that the rules (€°1°), (w!!) and (c!°) are used in the Cases 3 and 4 in the
proof of the above Lemma 7.4. Therefore this procedure does not work for the sys-
tems L, L§, LY, L¥, and LY. Indeed we will show that the cut-elimination fails for
LI, L8, and L. (The authors do not know whether the cut-elimination holds for
L) g | | o

Let S be a sequent ol,...,a" = a° Where n >0, a = ai>-- —aly—p,
f(?) > 0, and p; are propositional variables (¢ = 0, ...,n). We say that a propositional
va.nable v occurs badly in S if the following COIldlthIlS are satisfied. ,

1) pp=wv for some i >1.
- (2) K po =, thenp,—p,—-'vforsomei>j2 1.
(3) v does not occur in o for any 1, j. ‘

Lemma 7.6 LetL = Ly wherez € {1,4,4,7,7,10} and y is arbztmry (i.e., L is a
system which has no weakemng rule). If a sequent S is cut-free provable in L then
no propositional variable occurs badly in S. ’

Proof By induction on the cut-free proof of S in L. i

In the following, ot will denote a.’honempty sequence of a.

Theorem 7.7 (Failure of Cut-Elimination for LY) There is a sequent which is
~ provable in LY but not cut-free provable in LL. : -

Proof Let S = p—p—I—q,p = qwhere [ = r—r and p, q, T are m‘iltuallyfdistinct
propositional variables. We have LY I S:

p—p—I—q¢,p,p,I = g
=>1 pop—logpl=> 9 (c
p—p—I—q¢,p=q.

(™)
ut)

We will show that S is not cut-free provable. Suppose there is a cut-free proof P of
S in L{. By Lemma 7.6, the last inference in P must be either (—left) or (°'?) (con-
traction of p—p—I—q never happens). In the former case, two candidates for the
pair of upper sequents of this (—left) contain non-tautologies = p and p—I—¢q = g;
therefore this cannot happen. In the latter case, Lemma 7.6 implies that P must be
of the form

=p pt,p—I-og=gq

PrppIogmg O
()
p,popoI—g= g (219

p—p—I—q,p = q.



However, this cannot happen because = p is not provable. ‘ .‘ 3 |
This counterexa.mple also shows the following.

Theorem 7.8 (Failuré of Cut-Elimination for L8 and L) There is a sequent
which is provable in L§ and in L] but neither in cut-free L§ nor cut-free L.

Proof Take the same sequent S as Theorem 7.7. We show that S is not cut-free
provable in L. Suppose there is a cut-free proof P of S in L}. Then, since p = ¢ is
not an initial sequent, P must be of the form

—left
(p—p—1 -+q)+,p =q ( )
D (e91),(eM0),(wit),(w?), (c“’) (c*); for p—p—I—q
pﬁpﬁfﬂ%pﬂq

'However, this cannot happen because all the candidates for the pair of upper se-
quents of this (—left) contain non-tautologies.

Next we show the cut-elimination for the systems L§ for z = 1, ...,6,10, 11, 12.
Consider the following proof in L3. |
| aza g=g
I=1 "Toa=qa=q

I—a—q,I,a=q (euo)
I—-a—q,a,1 =q (cut)
I-a—gq,a,p=q |

: I
p=:> I (WOI)

- where I = r—r and a is an implication. To get a cut-free proof of this sequent, we
must move the application of (w®) to an ancestor of the right upper sequent of the
cut:

a=a .
a,p=>a(w01) q=>q
=1 a—q,a,p => q

I-a—q,0,p=q.
Such transformation is not described in the cut-elimination procedure for L§ and
L2, and then we need some preparations for L (z =1, ...,6,10,11,12).

Lemma 7.9 (Weakenmg Lemma for (w!l)) Let L = L{ where z € {2, 5, 5, 8,
8, 11} and y is arbitrary (i.e., L is a system which has (w'')). Then, the inference

Io,A=p
I‘7_&)77)A=?ﬁ

(B1)

is admissible in cut-free L.

199



200

“Proof (B;) is an instance of (w'!) if A = f.is an implica,tion.- Therefore we prove,
by induction on the cut-free proof of I', @ => p, that there is a cut-free proof of
T, @, = p. The only nontrivial case is that the proof is of the form -

3 T 3
=>a La=p
I'ay—az = p.

( —left )

In this case, a; is an impliéation because P; is a cut-free prodf. Then the reqiliied
proof is o ' '

B
= a‘_1) (W11 P2

— . —

Y=o : F)az =>p ( left)

Lemma 7.10 (Weakening Lemma for (w%)) Let L = Lt where z € {3, 6, 6/,
9,9, 12} and y is arbitrary (i.e., L is a system which has (w°1)). Then, the inference
I, o,A=p | -

,e,7,A=p

(Bo)

s admissible in cut-free L.

Proof Similar to the previous Lemma 7.9. i

‘Lemma 7.11 (Key Lemi:na for L3,L3,L3,L5,L5,L8,L3°, L' and L}?) Lemma 7.3
(Key Lemma for L§ and Lg) holds for L = Lg where z € {1, ...,6,10,11,12}. More-
over, the sequence ®~ satisfies the following conditions in addition to the conditions
(1)-(3).

(4) The rule of inference .

I,0,9,A=>a

—_—

Io,2,A=a-
.15 admissible in cut-free L. That is, for any sequence (T',0, A, a), if the sequent

- I,8,®7,A = o is cut-free provable in L and if 0 is an implication, then also

[,0,%,A = a is cut-free provable in L.

(Bg)

(5) If @~ is not empty, then the rule of inference

I‘,<I>_;A=>a _
T 8,A5a (C3)

s admissible in cut-free L.



'(Note: A27: a condition is imposed After ®~. B : a condition is imposed Before
®~. C2: no Condition is imposed. Each instance of B; and By (Lemmas 7.9 and
7.10) is an instance of B3 where &~ is empty and & is a formula.)
Proof The construction of the required proof P~ and the required sequence &~
the same as that in the proof of Lemma 3.6 in [1] and Lemma 7.3. Then, to prove
this lemma, we add proofs of the conditions (4) and (5) to each cases. Here we show
some critical cases.
(Case 2-2 in Lemma 3.6): Adm1ss1b1hty of Bn s o and Cp ﬂ’f,., T4 s shown
by
r,(9,) 0", -1, AL,Aza -
T,(0,) T, 6=, Ay, A= a (Oa) (ind. byp)
T,(0,) I, 6= Ar, A = . A ) (ind- byp)
(Case 4-2 in Lemma 3.6): Admissibility (derivability) of B T and Ch .7 is shown
by using AL .
(The case described in the proof of Lemma 7.3): When ¥, is not empty, admis-
sibility of B ; 5, and C} 45, is shown by

— '
(6, A" A=a
—_—
I‘ (0 ) II El,A > a
T, (0)H ﬂ 21,A=>a
When 21 is empty, that is shown by

( nzl) or (Cg 21) (ind. hyp.)
(w')

I,(0,)A",A=a
——

I,(0,)A™, B,A=a
——)

T,(0,)I,8,A= o

(Bl) (Weakening Lémma; 7.9)Jr
(AY") (ind. byp.) |

(T We use another Weakening Lemma 7.10 in the case that the last inference of P

is (w).) | | o |

Lemma 7.12 (Mix-Elimination for L1,L2,L3,L4 L5 L8, LI L' and L}?) LetL
= Lg where z € {1,...,6,10,11,12}. The rule (mix) is admzsszble in cut-free L.

Proof Similar to the proof of Lemma 7.4 (mix-elimination procedure for L and L2).
Here we show some nontrivial cases which are different from those in Lemma 7.4.
(Case 1): The last inference of R is (e!?), and P is of the form

: Ro
Ql Qn P??vF,A‘ﬁ ")b (euo) »
Q1=>¢ @né—g F,F,—J,A'—?,d) .o
T°, B, &, A° = . (mix)

201
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We apply the Key Lemma 7.11 to @ in which the redex is @, and we get a sequence
®; of implications, a cut-free proof Q; of ®; = ¢, and cut-free admissibility of the
rule B::. Then, by the induction hypothesis, the required proof is obtained from
the proof R o . IR

fe i i@ iR
B P o G o B P r.7,7, A=>¢( iy
| Foq)k)ﬁ,Aoé"/)
(ellﬁ)

I°, 5, 8;,A° = ¢
55 Ao . (B8 |
. (Case 2) The last inference of R is (c'?), and P is of the form
: Ry
: Qx ,F¢ ¢A=>¢(m)
_)
Q =>¢ @ T,8,A39
X Y SET (mix)

where Q and Q' are sequences of cut-free preofs of & = d(i=1,.,(k-1),(k+
1),...,n). We apply the Key Lemma 7.11 to Q; in which the redex is ®;, and we
get a sequence ¥, of 1mphcat10ns a cut-free proof Qr of <I>k = ¢, and cut-free
admissibility of the rule Cq, if &, is nonempty. ' ‘

(Subcase 2-1): ®; is empty. This is the same as Subcase 3-1 in Lemma 7.4.

(Subcase 2-2): ®;; is not empty. By the induction hypothes1s, the required proof
is obtained from the proof

P Qx yor ! Ry
Q ¥;=>¢ =24 Q9 L[dpA>9
I°,&;,8;,A° = ¢
; (e119), (c10)
re <I>,,,A°=>¢
1.3, A" o, (Cr)

(mix)

Theorem 7.13 (Cut-Elimination for L},L2,L3,L3,L5,LS,L1%L1! and L1?) LetL
= LE where z € {1,...,6, 10, 11, 12}. The rule (cut) is admzssz’ble‘ in cut-free L.

Proof By Lemmas 7.2 (for atomic cut) and 7.12 (for non-atomic cut). |

This cut-elimination theorem can be extended to the systems L3 if (w'!) and
(c19) exist:



Theorem 7.14 (Cut-Elimination for L,L$,L!! and L1?) Let L = L% wherez €
{5, 6, 11, 12}. The rule (cut) is admissible in cut-free L.

‘Proof The following proof shows the fact that the rule (¢''°) is admissible in cut-free

L.
- 7 -
L a;ﬂ P (Bl or By) (Weakening Lemma 7.9 or 7.10)
— = =
F, a, ﬂ7 a =>p 111
I‘) ﬁ’ a’ a (Clo)
= —
F, ﬁ,"a =>p

Now suppose a sequent is provable in L%. It is also provable in L2, and then the

cut-elimination for L§ (Theorem 7.13) and the above fact imply that it is cut-free
provable in L3. | - i |

'On the other hand, we cannot extend Theorem 7.13 if the system lacks (w'') or

(c'%):

Theorem 7.15 (Failure of Cut-Elimination for L1,L2,L3,L} and L1°) LetL =
L where z € {1, 2, 3, 4, 10}. There is a sequent which is provable in L but not
cut-free provable in L.

Proof Let S = p—q, (p—q)—r = r where p, ¢, 7 are mutually distinct propositional
variables. We have L I S (Theorem 3.2 in [1]). Here we show that S is not cut-free
provable in L. Since L3 has no contraction rule, it is easily verified that S is not
cut-free provable in L3 (Lg, L1). Now suppose there is a cut-free proof P of S in L3°
(L3). By Lemma 7.6, P must be of the form

(r—a)*, (p'—>q)—>r 7 (el
: (c*) and (&), for p—q
p—q, (p—g)—r = 1.

However, this cannot happen because all the candidates for the pair of upper se-
quents of this (—left) contain non-tautologies.

By using our cut-elimination theorems, we can separate the twelve logics.

Theorem 7.16 (Separation of L',...,L'?) The twelve classes L},...,L;* are com-
pletely separated. That is, there are sequents S, ..., Ss which satisfy the following (y
is arbitrary).

(1) L3V Sy, and FL_+ (c*) k- Sy (therefore LA+ ).

(2) LS ¥ Sz, and FL_+ (c™) - S; (therefore L] I S3).
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- (3) L)V S3,'and FL_+ (c%) - Sy (therefore L® I S3).
(4) L)° ¥/ Sg, and FL_+ (w'') - Sy (therefore L2 + Sy).
(5) L' i/ S5, and FL.+ (w") k- Ss (therefore L3 + S5).

Proof Let p,q,r,s be mutually distinct propositional variables.

(1) Take S; = (p—q)—(p—q)—=r—s,p—q,r => s. Since L3 has no contraction
rule, it is easily verified that there is no cut-free proof of S; in L3.. .

(2) Take S; = S which appears in the proofs of Theorems 7.7 and 78 LS S
is shown similarly to Theorem 7.8.

(3) Take S3 = p—)p—»g,p = q. We need a prepara.tlon to. show L5 ¥ S3. If a
sequent is of the form T, @ =>v(visa propositional variable), then we say this
sequent is bad. We have the following fact: If a sequent S is-cut-free provable in L3
‘and if S consists of only subformulas of p—p—q, then S is not bad. This is'proved
by induction on the cut-free proof P of S. Then we show L I/ S5. Suppose there is
a cut-free proof P of S3 in L. By the above fact, P cannot conta.m a bad sequent,
and P must be of the form

—+left
(p—p—9)t,p=>4¢ ( )

§(e°1°)( °1)( )(C‘”) for p—p—gq
p—p—4,p = g.

However, this cannot happen because all the candidates for the pair of upper se-
quents of this (—>left) contain non-tautologies.

(4) Take S, = p—g,7 = r. Suppose there is a cut-free proof P of S in Li°.
Then P must be of the form

(p—g)*,rt = (=left)
(ell(l) (COD)

pog T > 7.

However, this cannot happen because all the candidates for the pair of upper se-
quents of this (—left) contain non-tautologies.
(5) Take S5 =p,q = g. There is no cut-free proof of S5 in L' because atomic

formulas cannot arise by (w!!) and p*, gt => ¢ is not an initial sequent. . |
We can also separate the logics from FL_ + (e%?).

Theorem 7.17 (Separation of L'? from (e%1)) Thereis a sequent whzch is prov-
able in FL_+ (e°*) but not provable in L12. : :

Proof Let S = p,p—I—q = q where I = r—r and p,q,r are mutua.lly distinct
propositional variables. FL_+ (e 0(’1) FSis shown in Theorem 4. 4 in [1], and here
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we show L1% I/ S. Suppose there is a cut-free proof P of S in L3?. Then P must be
of the form

P, (p—I-9)" = ¢ (—left)
g (8110),(W01),(C00)

p,p—I—q=¢q

where p* denotes either p* or the empty sequence. This cannot happen because all
the candidates for the pair of upper sequents of this (—left) contain non-tautologies.
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