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Semigroup semantics for orthomodular logic
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Abstract

Quantum logic is usually considered as a logic which is based on orthomodular lattices.
Here we introduce a different type of semantics, in which we use particular semigroups,
and show that these two ways of interpretation of formulas are equivalent.

0 Basic notions

First we will give here some basic notions.
The language of our logics consists of :

(i)  a countable collection { p; | i < w } of propositional variables,
(ii) the connectives = and A of negation and conjunction,
(iii) parentheses ( and ).

The set ® of formulas is defined in the usual way. That is, ® is the minimum set which
satisfies the following three conditions:

(i) foreveryi<uw, p; €9,
(i) if « € P, then (-a) € ¥,
(iii) if «,0 € ®, then (a AB) € &.

The letters a, 3, etc. are used as metavariables ranging over ®. Parentheses may be
omitted by the convention that — binds strongly than A. The disjunction a V 3 of a and
B can be introduced as the abbreviation of —(-a A =().

Definition 0.1 (Orthomodular lattice) An orthomodular lattice A is a structure

(A, <,M,uU,1, 1, 0), which satisfies the following conditions:

(i) (A, < 0,U,1,0)is alattice with 1(maximum) and O(minimum). We denote, for
any z,y € A, zNy:=inf {z,y}, zUy:=sup {z,v}.

(i) The unary operation * (orthocomplement) satisfies the following conditions, (a), (b)
and (c): for any z,y € A,
(a) zMNzl=0
(b) ztt=z

() z<y implies gyt <zt



(d) z<y implies y==zU(z'Ny)

It is easy to see that zLiy = (z1 N y1)" holds in any orthomodular lattice.
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Definition 0.2 (Valuation) A valuation is a function v, which associates with any
formula a € ® an element v(a) in an orthomodular lattice A, and satisfies the following

conditions:
for any formula a, 3,

@) v(-a)=(v(a)"
(i) wv(aApB)=v(a)v(B)
We call this v an orthomodular valuation. 1

It is easy to see that for any valuation v and for any formula a, the value v(a) is uniquely
determined by the values v(p;) for propositional variables p; appearing in a.

Definition 0.3 (Qrthomodular logic) The orthomodular logic L is the set of pairs of
formulas (, 3) satisfying the following conditions: for any orthomodular lattice A and
for any orthomodular valuation v from ® to A, v(a) < v(8). We denote at-13 in place
of (a,B) € L. 1

R.I Goldblatt proposed his “quantum model” for orthomodular logic in 1974[1].

Definition 0.4 (Quantum frame and quantum model) F = (X, 1,£) is a quantum
frame if it satisfies the following conditions (i),(ii) and (iii).

(i) X is a nonempty set.

(i) L is an irreflexive and symmetric binary relation. (orthogonality relation)

e For P C X, zLP means that z 1y for all y € P.
o P (CX) is L-closed iff the following condition holds:

Vz € X(z ¢ P),3y € X [yLP and not(yLz)]
o P (CX)is L-closedin Q ( Q C X ) iff the following condition holds:
Vz € Q(z ¢ P),Jy € Q [yLP and not(yLz))
(iii) ¢ is a nonempty collection of L-closed subsets of X, such that
(a) ¢ is closed under set-inclusion and the following operation t
Pt = {z € X|zLP}
(b) Forany P,Qin&,if PCQ then P is L-closed in Q.

Q = (X, L,¢,V) is a quantum model if it satisfies the following:
(i) F=(X,1,§) is a quantum frame. '

(i) V is a function assigning to each propositional variables p; a member V(p;) of .
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The notion of truth in quantum models is defined inductively as follows: the symbol
\’lezoz’ is read as “formula « is true at z in Q”.

i) QF.p iff  pi € V(p),
() Ok.anf if Ok,aand Q,p,
(i) QF, a iff foranyyeX, (QF, a=zly).

o a implises ;6 in a model Q iff for all z in the model Q, elther O, o does not hold,
or Q. ﬁ holds. :

Using his quantum models, Goldblatt showed the following completeness theorem.

Theorem 0.5 (Completeness Theorem) For given formulas a and £, the statements
(P) and (Q) are mutually equivalent, that is

(P): for any orthomodular lattice .4 and any valuation v : & — A, v(a) < v(8) holds.
(Q): for any quantum model Q, Q : a |= 8 holds.

a
In study of orthomodular lattice, D.J.Foulis [2] found in 1960 the following representation
theorem for orthomodular lattices with a particular kind of semigroups.

Theorem 0.6 (qulis’s representation theorem) Let A be an orthomodular lattice.
Then G(A) = (G(A),-, *) is a Rickart * semigroup and A is isomorphic to P,(G(A)). O

We will give another type of models for orthomodular logic usmg this representation
theorem.

1 Rickart * semigroups

Now we introduce a special type of semigroups called Rickart * semigroups and lead
some properties of them.

Definition 1.1 (Rickart * semigroups) A Rickart * semigroup is a structure G =
(G, -, *) which satisfies the following conditions (i), (ii), (iii) and (iv).

(i) (G,-) is a semigroup, that is,
(a) - is a binary operation on G.
(b) Foranyz,y,z€G,z-(y-2z)=(z-y) 2

(i) There exists the unique element 0 ( zero element ) in G such that 0-z =z-0=10
holds for any z € G.

(iii) #* is a unary operation on G, which satisfies the Afollowing:
For any z,y € G, (a): (z*) ==z (b): (z-y) =9y =z*



18

Before introducing the conditon (iv), it is necessary to introduce some other notions.

e An element e € G is called a projection iff it satisfies e* =e-e=e.
We denote the set of all projections in G by P(G).

e For an element z € G, theset { z }® := {y € G|z -y = 0} is called the right
annihilator for z.

By using these two notions, we formulate the conditon (iv) as follows:

(iv) For any z € G, there exists a projection e such that the right annihilator for z can
be expressed as: { z }{) =e-G = { e-y|y € G}. We call this e a right annihilating
projection for x.

Lemma 1.2 (Properties of P(G)) Let G = (G, -, *) be a Rickart * semigroup.

(i) For any z € G, the right annihilating projection for z is uniquely determined.
Hereafter, this will be written as z*.

(ii) There is the unit element in G, that is, an element 1 satisfying that for any z € G,
z-l=1-z==z.

(iii) Both 0 and 1 are projections.

(iv) For any e, f € P(G), the following three conditions are equivalent.
(a) e-f=e

(b) f-e=e.
(c) e GCf-G.
Proof : '

(i)  Using the properties of the operation *.
(ii) We can show that 0* is the unit element 1.

(iii) By operating * to both sides of the equation 0 = 0-0*, we get that 0* = 0. Similarly
we can show that 1* = 1.

(iv) Not so hard.

a

The above Lemma 1.2 (iv) assures us the possibility of introducing a partially order on

P(G).

Definition 1.3 (Order on P(G)) Let G = (G, -, *) be a Rickart * semigroup. Define
a partial order < on P(G) as follows: fore, f € P(G), e< f iff e-f=e. i
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It is obvious that 1 is the maximum and that 0 is the minimum with respect to this
order. Hence P(G) can be regarded as a bounded partial ordered set.

In the proof of Lemma 1.2, we have defined the unary operation * from G to P(G). Here
we will see some of the basic properties of the operation *in detail, which will be used in
the later discussion.

Lemma 1.4 (Properties of the operation *) Let G = (G,-,*) be a Rickart *

semigroup. For any z,y € G and for any e, f € P(G), the following statements can be
verified.

(i) 0"=1,and 1"=0. (v) Ife< f,then fr<e"

(i) z-z=0,andz"-2*=0. (vi) z=z-2",and e< e™.

(iii) Ifz-e=0,thene<az’ (vii) z'=z".

(iv) =z <(y-=z). (vii) fe-z=z-¢,thene’ -z =z-¢"
Proof : Here we prove only (vi) and (viii). Rest is not so hard.

(vi) By (ii), z* € {z'}!) = 2 . G. Then there exists some s € G, such that z* = 2™ - 5.
By operating * to this equation, we have that z = ** = s* . £™* = s* - 2. Further
operating ™ from the right to the equation z = s* - ™, we can derive that z - z™ =
(s*-2™) 2™ = s* - 2™ = z. In particular, when z is equal to a projection e, we have
that e- €™ = e, that is, e < e™.

(viii) Suppose that e-z =z-e. Then wehavee-z-e'=x-e-€" =0, since e- e’ = 0. So
z- e € {e}) = - G, and there exists some s € G satisfying that - €' = e’ - 5. By
multiplying e’ from the left to both sides of this equation, we have that
e€-z-ef=¢-e-s=€-s5=zx-€ -+ (1)
On the other hand, by operating * to the supposition e -z = z - e, so we have that
z*-e =e-z*. Then e-z*-¢* = z*-e- € = 0, which means that z*-¢* € {e}*) = &*-G.
So there exists some t € G such that z* - e* = ¢’ - t. By multiplying e’ from the left
to both sides of this equation, we have that e’ - z*-e* = €' -e"-t =€ -t =z* - €.
Further operating * again, we get that
e-r-ef=¢e-x -+ (2).
From (1) and (2), we can conclude that z . ef = €* - z.

a

Now we will consider a particular class of projections, called closed projections.

Definition 1.5 (Closed projection) A projection f € P(G) is called closed iff there
exists an element z € G such that f is the right annihilating projection for . This means
that a closed projection f can be written as f = z* for some element z € G. We denote
the set of all closed projections in G by P.(G). 1

In other words, the set P,(G) is the range of the function * from G to P(G). We give
here a necessary and sufficient condition on a projection to be closed.

Proposition 1.6  For any e € P(G), e€ P,(G) ifandonlyif e™=e. O
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We will show that in P.(G) we can always find the supremum and the infimum of any
two elements of it and hence this partially ordered set forms a lattice. Moreover we can
show that P.(G) is an orthomodular lattice.

Lemma 1.7 (Existence of meet in P.(G))

(i)

(i)

For any closed projections e and f such that e- f = f-e, e- f € P,(G) holds, and
there exists the infimum (e f) of e, f, which satisfies the equation e f =e - f.

In general, for any closed projections e and f, there exists the infimum (e M f) of
e, f and the equation eM f=e-(f*-e) = (f*-€)-e=eM(f*-e)" holds.

Proof :

(i)

Suppose that e- f = f-e. We show that e- f € P,(G). Since e, f € P(G) and
e- f =7 -e, we can derive:

(e f)=f-e=fe=ef, and (e-f)-(c-fl=e-e f-f=e-f.
Thus, e, f € P(G). To prove that e - f € P,(G), by Proposition 1.5, it is enough
to show that (e- f)™ = e- f. Then we have only to show that (e- f)" < e- f as
the converse inequality holds always by Lemma 1.4 (vi). Considering the Lemma
1.4 (iv), we have that e < (e- f)". Then by the Lemma 1.4 (v), we can derive
that (e- f)™ < e™ = e, which means e- (e- f)™ = (e- f)”. Similarly we can derive
that f-(e- f)™ = (e f)™. Thereforee- f-(e-f)* =e-(e- )" = (e- f)". Thus
(e-f)"<e-f.

It is easy to see that e - f is the infimum of e and f.

We put u := f*-e. By Lemma 1.4 (iv), we have that e* < (f*-e)" = v". This means
that e" - u* = " = u* - €’. By applying Lemma 1.4 (viii), we have that e- u* = u" - e.
Then by (i) of the present lemma, we can conclude that e - u* € P,(G), and that
eMNu’ = e-u’. So it remains to show that eM f =e - u".

(a) Clearly, e- (e-u") =e-u'. So we have e- u* < e. On the other hand,
ffre-u = ff-e-(ff-e) = 0. So from Lemma 1.4 (iii), we derive that
e-u’ < f* = f. Thus e u" is a lower bound of {e, f}.

(b) Take any g € P.(G) such that g-e =g and g- f = g. Then because f- f* =0,
we have that g- f- f*- e = 0. By our assumption on g, g¢- f*-e = 0, which
means that g - v = 0. By Lemma 1.4 (iii), we can derive that « < g*. So by
Lemma 1.4 (v), g = g™ < u'. This is equivalent to g - u* = g. Again using the
assumption on g, g-e-u’ = g. So we have derived that g < e-u".

Thus we have shown that e f =e - u'.
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Therefore we have the following Proposition.
Proposition 1.8 For any e, f € P.(G), the following equation holds:
e-GNf-G=(enf) -G

a
Next we will see that P.(G) is an orthomodular lattice.

Theorem 1.9 P.(G) forms an orthomodular lattice, where the orthocomplement is the
operation *.
Proof : We can easily check the conditions in Definition 0.1 . O

Next, in Section 2, we will introduce a semantics for orthomodular logic by using Rickart
* semigroups, and prove the soundness.

2 Semigroup semantics and soundness theorem

Definition 2.1 (Orthomodular model) M = (G, u) is a orthomodular model ( OM
model for short ) iff G = (G, -, *) is a Rickart * semigroup and u is a function assigning
to each propositional Va,nable p; an element u(p;) of P.(G).

The notion of truth in OM models is defined inductively as follows: the symbol (M, a:) =
a’ is read as “ a formula « is true at zin M”.

i) M,z)FEp iff =z eu(p)-G.
i) M,z)l=anp if (M,z)}=oaand (M,z)E=pB.
(i) M,z)E-a if VyeG,[(My)l=a onlyif y*-z=0].
]

For each formula a, define ||ja||™ = {z € G| (M,z) = a}. Then we can restate the
above conditions in the following way:

@) lp:ll™ = u(p) - G.

(i) flaABIM = llal™ sl

(ii)) [~o|™={zecG|Vye |l c=0)}
Definition 2.2 Let o and 3 be formulas.

(i) o implies B at zin an OM model M ( (M, z): a |= 3 ) iff either (M, z) = a does
not hold or (M, z) |= 8 holds.

(i) « implies B in an OM model M ( M : a |= B ) iff for all z in the model M,
(M, z) : a |= holds. .

It is easy to see that M : a |=  is equivalent to ||a||* C ||8]|M.
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Lemma 2.3 Let M = (G,u) be an orthomodular model and e such an orthomodular
“ valuation from & to Pc(G) that e(p;) = u(p;) holds for all propositional variables. Then
for any formula a, ||a]|™ = e(a) - G holds.

Proof : Induction on the construction of the formula a. O
Now we can prove the soundness theorem.

Theorem 2.4 (Soundness theorem) For given formulas o and S, let (S) and (T) be
the statements as follows:

(S): for any orthomodular lattice A and any orthomodular valuation v : ® — A,
v(a) < v(B).

(T):  for any orthomodular model M, M : a |= §.

Then (S) implies (T). O

3 Monotone, residuated maps on an ordered set

Next, we will prove the Completeness Theorem. To show the direction ((S) < (T)), we
need to know how to build up an orthomodular model from a given orthomodular lattice.
To do this, we need some preparations.

Definition 3.1 (Residuated, monotone maps on an ordered set) Let (A, <) be
an ordered set.

(i) A map ¢ from A to A is called monotone iff it satisfies the following condition: for
any z,y € A, if < y, then p(z) < ¢(y).

We denote the set of all monotone maps from A to A by G(A).

(i) A map ¢ € G(A) is called residuated iff there exists a map ¢! € G(A) such that for
any z € A, ¢!p(z)) >z and p(p(z)) < 2

We call this map ¢! a residual map for ¢, and denote the set of all residuated, monotone
maps on A by G(A). v 1
Lemma 3.2 (Properties of residual maps) Let (A, <) be an ordered set. Then the
following holds.

(i) For any ¢ € G(A), the residual map for ¢ is uniquely determined.

(ii) For any ¢, € G(A), (¢- P)! = ¢! . o holds, where - means the composition
operator for maps. Therefore G(A) is closed under this operation -

Proof : Using the monotonicity and the inequations which hold for ¢ € G(A) and its
residual map ¢! } O

It is guaranteed by (i) of Lemma 3.2 that we can write the resudual map for ¢ as ot
And (ii) of Lemma 3.2 means that G(A) is a semigroup with respect to the operation -.
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Lemma 3.3 Let (A,<,0,1) be an ordered set with the minimun element 0 and the
maximum element 1 and let § be a map defined by the condition: for all z € A, 6(z) = 0.
Then 6 is the zero element in the semigroup G(A). O
Lemma 3.4 Let A= (A,<,M,U,+,1,0) be an ortholattice. Let * be defined by the
following: for any ¢ € G(A), ¢*(z) := (p'(z))* for any = € A. Then ¢* € G(A).
Moreover the following condtions hold for every ¢, % € G(A). ‘

(a) o™ =¢.

(b) (p-9) =9" ¢

Proof : We put 9(z) := (¢(z+))" for any = € A and show that ¢ = ¢*!.

(i)  First we will show that ¢ is monotone. Suppose that z < y for z,y € A. Then by
the properties of the operation +, we have z' > y'. Since ¢ is monotone, we have

o(z1) > p(y*). Again by the properties of *, we have (p(z1)" < (p(yt))*, which
means 9(z) < ¥(y). Therefore 7 is monotone.

(i) Next we will show that 1 is the residual map for ¢. By the properties of the
operation * and the properties of ¢!, we can derive: ¥ - p*(z) = ¥ - (Pt =
[cp(cp“(wl))“']L = [p(H(z))]" = &t = z. So we have 9 - p*(z) > z. Similarly we

. . . L
can derive: ¢* - 9(2) = ¢* - (w(z))" = [P (p(zH) ] = M) <ot ==
So we have ¢* - ¢(z) < .

Hence we can conclude that 1 = ¢* since the residual map of ¢* is unique. By (i) and
(i) in the above, we have that ¢* € G(A). Thus * is a unary operator on G(A). Now
we will check the conditions (a) and (b). By the properties of the operation L, and the
definition of ¢*, we calculate as follows: for any ¢, ), and for any = € A,

(@) ¢*(z) = [p@Y)]" = [(ple*H)] = o(@)- |
(B): ¥ - 0*(2) = P (P = WA = WP = (e o)D) =
(¢ )’ (). |

Consequently this * satisfies conditions for the operator * in Rickart * semigroups. a

From the above consideration, we can define the notions of projection, closed projection
and right annihilator for an element in G(A). In order to get a Rickart * semigroup from
G(A), we must show that for any element ¢ € G(A), there exists some closed projection

p such that {¢} ;= { € G(A) | @ -9 =0} = p- G(A).

Lemma 3.5 Let A= (A, <,M,U,*,1,0) be an orthomodular lattice. For each a € A,
define a map 7, by 7.(z) := (z U a') Na for every z € A.

i . is a projection in G(A) for any a € A.
v,

(i) For any ¢ € G(A), if we put a := ¢!(0), then {o}®) = 7, - G(A) holds.
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Proof : By our as_sumptilon,vthe following orthomodular law holds. For a,b,c € A,

(1) a<b implies b= (bNat)Ua. (2) c<a implies c=(cUa')Ma.

It is easy to see that (2) follows from (1) and vice versa.

(i) First we will show that 7, € G(A). It is obvious thaty, is monotone. We put
P(z) := (zMNa)Ua™ for any z in A. Clearly 9 is also monotone. Moreover, as shown
below, it is the residual map for 4,.

B b(@) = (GNa)ua)uane
= [(zNa)uat]Na
= zla<uz.
In the last equation in the above, we used (2) since zMa < a.
Y-Ya(z) = [((zUae)Na)Najuat
= [(zUat)Na]uat
= zlat >z
Also, we used (1) since z U at > at.
Therefore ,!(z) = ¥(z) = (zMa) U at. Soy, € G(A).

* Next we will show that 7. satisfies the conditions for projections.

% =0l = (et naue
= (z'n olz)l MNatt
= (zUah)MNa=17,(z)
Yo Ya(z) = [{(zU al) Ma}U al] MNa

‘ = (zUa")Na=7.(z)
Since (zUa')Ma < a, we used (2) in the above calculation. Thus 7, is a projection.

(i)  First we will prove that 7, - G(A) C {¢}). Take any % € 7, - G(A). Then there
exists some element A € G(A) such that 9 = v,-A. Forany z € A, 7,(z) = (zUa*)N
a < a = ¢#(0). So by the monotonicity of ¢, we have that ¢ - v,(z) < - ©'0) < 0.
This means that ¢ -y, =0. Then p- =@ -7,- A =0, that is ¢ € {(p}(’).

Thus we conclude that ,-G(A) C {¢}®). Next we will show that {0} C 7,-G(A).
Take any 1 € {go}(r).

Then 1 satisfies that ¢ - 9 = 6, which means that for any z € A, we have that
¢ - P(z) = 0. Taking 1 for z, we have ¢ - (1) = 0, and hence a = ¢!(0) =
@' - ¥(1) > P(1). Therefore we have that for any z € A, ¥(z) < ¥(1) < a.
By combining this result with the orthomodular law (2), we have that v, - ¥(z) =
(¥(x) Ua') Ma=1(z). Consequently 1 =7, -9 € 7, - G(A).

Thus we have proved {¢}® = 7, - G(A).

Moreover, we can show the following lemma on the set of maps v,.
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Lemma 3.6 For any orthomodular lattice A = (A, <,M,U,1,1,0), the relation
P.(G(A)) = {7.| a € A} holds.

Proof : Take any A € P.(G(A)). Then there exists some p € G(A) such that {u}" =
X- G(A). Now putting b := p#(0), we have {u}"”) = 75 - G(A) by Lemma 3.5 (ii). So the
uniqueness of the right annihilating projection gives us that A =+, € {y,|a € A}.
Conversely, consider +y, for a € A. Since 7, is a projection, 7, = 7, * Yo = 7" holds. We
have that v, - 7," = 6. So by operating * to this equation, we get 7," - 7, = . Then of
course, 7' - 75 - A = 0 for any A € G(A) holds. Therefore we get {7,*}* = 7, - G(A)
Thus v, € P.(G(A)).

Consequently we have proved that P.(G(A)) = {y.|a € A}. o

By all the lemmas 3.2, 3.3, 3.4 and 3.5, we can prove the following theorem.

Theorem 3.7 Let A= (A,<,M,U,1,1,0) be an orthomodular lattice. Then G(A) =
(G(A), -, *) is a Rickart * semigroup, where - is a composition operator of maps and * is
a unary operator defined in Lemma 3.3 .

4 Corresponding model and Completeness Theorem

Now we have prei)ared all the notions for constructing the corresponding model for
orthomodular logic.

Definition 4.1 (Corresponding model) Let A = (A, <,M,U,1,1,0) be an ortho-
modular lattice, and v : & — A an orthomodular valuation. The corresponding model to
A and v is the structure M4 = (G(A), -, *,u4), where

(i) G(A) is the set of all residuated monotone maps on A,
(ii) - is the composition operator of maps on A,

(iii) * is the unary operator on G(A) defined in Lemma 3.4, that is,
for any ¢ € G(A), ¢*(z) := (!zt))" forall z € A,

(iv) uy4 is a function assigning to each propositional variable p; an element of the set
{7a | a € A}, such that, ua(p;) := Yo(py)-

Lemma 4.2 Let A be an orthomodular lattice and v an orthomodular valuation. Then
the corresponding model M 4 = (G(A), -, %,u4) is an orthomodular model.

Proof : This is obvious from Lemma 3.6 and Lemma 3.7 . ]

Since M 4 is an orthomodular model, the notionv of truth in M 4 can be defined similarly
in Definition 2.1 as follows Let a, 8 be formulas, ¢, ¥ elements in G(A). Then:
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(1) Map) Epi if  pi€u(p)- G(A).
(11) (MA1 (P) |= al ﬁ iff (MA7 (P) |= a and (MA7 (P) |= :6
(iii) Map)lE-a if VWeGA), [(Map)Ea onlyif ¢*-p=0]

By denoting ||a||M4 := {¢ € G(A) | (M, ¢) | a}, we can restate the above conditions
in the following way.

@ lpallM4 = u(p:) - G(A).
(i)  JleABIM4 = Jlaf M4 N fIBIMA.
(iii) [-efl™4 = {p € G(A) |V € [la||™4 (¥*- ¢ =0) }.

Here we will make a comment about the order on P.(G(A)), where A is an orthomodular
lattice. Because 7, € P.(G) is a projection, the order on the set {7, |a € A} is defined as
in Definition 1.4, that is,

For a,b € A, Yo <M iff Ya* Vo =.’Ya.

By Lemma 1.3, we have that 4, < 7, is equivalent to v, - G(A) C v - G(A).
We can show the following lemma on this order relation.

Lemma 4.3 Let A = (A,<,M,U,4,1,0) be an orthomodular lattice. Then the
following two conditions are equivalent.

(i) a<b omA.

(i) 7<% onP(G(A)).
Proof : ( (i)=>(ii) ): Suppose that a < b. Then, for all z € A the following holds:

Y-7a(z) = [{(zUat)Ma}ubt)nbd
= (zUa")MNa=1,(z)

Since we have (z U a*)MNa < a < b, we used the orthomodular law (2) in the proof of
Lemma 3.5 . Thus we conclude that v, < 7.
( (i)<=(ii) ): Suppose that v, < 7;. This means that 7,75 = 7 Ya = Ya- Since 7,(1) < 1,
Ya(1) = 75 - Ya(1) = 1(72(1)) < 7%(1). Recall here that v,(z) := (z U at) Ma for any
z € A, then we have that a = 7,(1) < 7(1) = b. O

As in Lemma 3.3, we can also extend the domain of valuation function u4 from the set
of propositional variables to the set of all formulas ®.
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Lemma 4.4 Let A= (A, <,M,U,+,1,0) be an orthomodular lattice and v an ortho-
modular valuation. Let M4 be the canonical orthomodular model corresponding to A.
Then for any formula @, |a||M4 = Yya) - G(A).

Proof : Induction on the construction of the formula a. a
We have now reached the following Completeness Theorem.
Theorem 4.5 (Completeness theorem) For given formulas a and 3, let (S) and (T)

be the same statements in Theorem 2.4 . That is,
(S): for any orthomodular lattice A and any orthomodular valuation v : ® — A,

v(a) < v(B).
(T):  for any orthomodular model M, M : a | S.
Then (T) implies (S). O

5 Relation between two types of models

Theorem 5.1 Let M = (G,u) = (G,-,*,u) be an orthomodular model. Then Q =
(G, R,¢,V) is a quantum model, where, ‘

o G':=G)\ {0},
o (:={e-G'|ee€P(G)},

e R is a binary relation on G’ defined as the following:
forz,ye€ G, zRy& z*-y=0,

e V is a function assigning to each p; an element V(p;) of ¢.

Proof : Check the conditions for quantum model in Definition 0.4 . 0O
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