Semigroup semantics for orthomodular logic

Yutaka Miyazaki (宮崎裕) Japan Advanced Institute of Science and Technology

Abstract

Quantum logic is usually considered as a logic which is based on orthomodular lattices. Here we introduce a different type of semantics, in which we use particular semigroups, and show that these two ways of interpretation of formulas are equivalent.

0 Basic notions

First we will give here some basic notions. The language of our logics consists of:

- (i) a countable collection $\{p_i \mid i < \omega\}$ of propositional variables,
- (ii) the connectives ¬ and ∧ of negation and conjunction,
- (iii) parentheses (and).

The set Φ of formulas is defined in the usual way. That is, Φ is the minimum set which satisfies the following three conditions:

- (i) for every $i < \omega, p_i \in \Phi$,
- (ii) if $\alpha \in \Phi$, then $(\neg \alpha) \in \Phi$,
- (iii) if $\alpha, \beta \in \Phi$, then $(\alpha \land \beta) \in \Phi$.

The letters α, β , etc. are used as metavariables ranging over Φ . Parentheses may be omitted by the convention that \neg binds strongly than \wedge . The disjunction $\alpha \vee \beta$ of α and β can be introduced as the abbreviation of $\neg(\neg\alpha \wedge \neg\beta)$.

Definition 0.1 (Orthomodular lattice) An orthomodular lattice \mathcal{A} is a structure $\langle A, \leq, \sqcap, \sqcup, ^{\perp}, \mathbf{1}, \mathbf{0} \rangle$, which satisfies the following conditions:

- (i) $\langle A, \leq, \sqcap, \sqcup, 1, 0 \rangle$ is a lattice with 1(maximum) and 0(minimum). We denote, for any $x, y \in A$, $x \sqcap y := \inf \{x, y\}$, $x \sqcup y := \sup \{x, y\}$.
- (ii) The unary operation $^{\perp}$ (orthocomplement) satisfies the following conditions, (a), (b) and (c): for any $x, y \in A$,
 - (a) $x \sqcap x^{\perp} = 0$
 - (b) $x^{\perp \perp} = x$
 - (c) $x \le y$ implies $y^{\perp} \le x^{\perp}$

(d) $x \le y$ implies $y = x \sqcup (x^{\perp} \sqcap y)$

It is easy to see that $x \sqcup y = (x^{\perp} \sqcap y^{\perp})^{\perp}$ holds in any orthomodular lattice.

Definition 0.2 (Valuation) A valuation is a function v, which associates with any formula $\alpha \in \Phi$ an element $v(\alpha)$ in an orthomodular lattice A, and satisfies the following conditions:

for any formula α , β ,

- (i) $v(\neg \alpha) = (v(\alpha))^{\perp}$
- (ii) $v(\alpha \land \beta) = v(\alpha) \sqcap v(\beta)$

We call this v an orthomodular valuation.

It is easy to see that for any valuation v and for any formula α , the value $v(\alpha)$ is uniquely determined by the values $v(p_i)$ for propositional variables p_i appearing in α .

Definition 0.3 (Orthomodular logic) The orthomodular logic L is the set of pairs of formulas (α, β) satisfying the following conditions: for any orthomodular lattice \mathcal{A} and for any orthomodular valuation v from Φ to A, $v(\alpha) \leq v(\beta)$. We denote $\alpha \vdash_L \beta$ in place of $(\alpha, \beta) \in L$.

R.I Goldblatt proposed his "quantum model" for orthomodular logic in 1974[1].

Definition 0.4 (Quantum frame and quantum model) $\mathcal{F} = \langle X, \bot, \xi \rangle$ is a quantum frame if it satisfies the following conditions (i),(ii) and (iii).

- (i) X is a nonempty set.
- (ii) \perp is an irreflexive and symmetric binary relation. (orthogonality relation)
 - For $P \subseteq X$, $x \perp P$ means that $x \perp y$ for all $y \in P$.
 - P ($\subseteq X$) is \perp -closed iff the following condition holds:

$$\forall x \in X(x \notin P), \exists y \in X [y \perp P \text{ and } not(y \perp x)]$$

• P ($\subseteq X$) is \perp -closed in Q ($Q \subseteq X$) iff the following condition holds:

$$\forall x \in Q(x \notin P), \exists y \in Q [y \perp P \text{ and } not(y \perp x)]$$

- (iii) ξ is a nonempty collection of \perp -closed subsets of X, such that
 - (a) ξ is closed under set-inclusion and the following operation \dagger .

$$\mathbf{P}^{\dagger} = \{x \in \mathbf{X} | x \bot \mathbf{P}\}$$

(b) For any P, Q in ξ , if P \subseteq Q then P is \perp -closed in Q.

 $Q = \langle X, \bot, \xi, V \rangle$ is a quantum model if it satisfies the following:

- (i) $\mathcal{F} = \langle X, \bot, \xi \rangle$ is a quantum frame.
- (ii) V is a function assigning to each propositional variables p_i a member $V(p_i)$ of ξ .

The notion of truth in quantum models is defined inductively as follows: the symbol $Q \models_x \alpha$ is read as "formula α is true at x in Q".

- (i) $Q \models_x p_i$ iff $p_i \in V(p_i)$,
- (ii) $Q \models_x \alpha \wedge \beta$ iff $Q \models_x \alpha$ and $Q \models_x \beta$,
- (iii) $Q \models_x \neg \alpha$ iff for any $y \in X$, $(Q \models_y \alpha \Rightarrow x \perp y)$.
 - α implies β in a model Q iff for all x in the model Q, either $Q \models_x \alpha$ does not hold, or $Q \models_x \beta$ holds.

Using his quantum models, Goldblatt showed the following completeness theorem.

Theorem 0.5 (Completeness Theorem) For given formulas α and β , the statements (P) and (Q) are mutually equivalent, that is

- (P): for any orthomodular lattice \mathcal{A} and any valuation $v:\Phi\to A$, $v(\alpha)\leq v(\beta)$ holds.
- (Q): for any quantum model Q, $Q : \alpha \models \beta$ holds.

In study of orthomodular lattice, D.J.Foulis [2] found in 1960 the following representation theorem for orthomodular lattices with a particular kind of semigroups.

Theorem 0.6 (Foulis's representation theorem) Let \mathcal{A} be an orthomodular lattice. Then $\mathcal{G}(\mathcal{A}) = \langle G(A), \cdot, * \rangle$ is a Rickart * semigroup and A is isomorphic to $P_c(G(A))$. \square We will give another type of models for orthomodular logic using this representation theorem.

1 Rickart * semigroups

Now we introduce a special type of semigroups called Rickart * semigroups and lead some properties of them.

Definition 1.1 (Rickart * semigroups) A Rickart * semigroup is a structure $\mathcal{G} = \langle G, \cdot, * \rangle$ which satisfies the following conditions (i), (ii), (iii) and (iv).

- (i) $\langle G, \cdot \rangle$ is a semigroup, that is,
 - (a) is a binary operation on G.
 - (b) For any $x, y, z \in G$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.
- (ii) There exists the unique element 0 (zero element) in G such that $0 \cdot x = x \cdot 0 = 0$ holds for any $x \in G$.
- (iii) * is a unary operation on G, which satisfies the following: For any $x, y \in G$, (a): $(x^*)^* = x$. (b): $(x \cdot y)^* = y^* \cdot x^*$.

Before introducing the conditon (iv), it is necessary to introduce some other notions.

- An element $e \in G$ is called a projection iff it satisfies $e^* = e \cdot e = e$. We denote the set of all projections in G by P(G).
- For an element $x \in G$, the set $\{x\}^{(r)} := \{y \in G \mid x \cdot y = 0\}$ is called the right annihilator for x.

By using these two notions, we formulate the condition (iv) as follows:

(iv) For any $x \in G$, there exists a projection e such that the right annihilator for x can be expressed as: $\{x\}^{(r)} = e \cdot G = \{e \cdot y | y \in G\}$. We call this e a right annihilating projection for x.

Lemma 1.2 (Properties of P(G)) Let $\mathcal{G} = \langle G, \cdot, * \rangle$ be a Rickart * semigroup.

- (i) For any $x \in G$, the right annihilating projection for x is uniquely determined. Hereafter, this will be written as x^{r} .
- (ii) There is the unit element in G, that is, an element 1 satisfying that for any $x \in G$, $x \cdot 1 = 1 \cdot x = x.$
- (iii) Both 0 and 1 are projections.
- (iv) For any $e, f \in P(G)$, the following three conditions are equivalent.
 - (a) $e \cdot f = e$.
 - (b)
 - $f \cdot e = e$. $e \cdot G \subseteq f \cdot G$. (c)

Proof:

- (i) Using the properties of the operation *.
- (ii) We can show that 0^r is the unit element 1.
- By operating * to both sides of the equation $0 = 0.0^{\circ}$, we get that $0^{\circ} = 0$. Similarly we can show that $1^* = 1$.
- (iv) Not so hard.

The above Lemma 1.2 (iv) assures us the possibility of introducing a partially order on **P**(**G**).

Definition 1.3 (Order on P(G)) Let $\mathcal{G} = \langle G, \cdot, * \rangle$ be a Rickart * semigroup. Define a partial order \leq on P(G) as follows: for $e, f \in P(G)$, $e \leq f$ iff $e \cdot f = e$.

It is obvious that 1 is the maximum and that 0 is the minimum with respect to this order. Hence P(G) can be regarded as a bounded partial ordered set.

In the proof of Lemma 1.2, we have defined the unary operation r from G to P(G). Here we will see some of the basic properties of the operation r in detail, which will be used in the later discussion.

Lemma 1.4 (Properties of the operation ') Let $\mathcal{G} = \langle G, \cdot, * \rangle$ be a Rickart * semigroup. For any $x, y \in G$ and for any $e, f \in P(G)$, the following statements can be verified.

- (i) $0^r = 1$, and $1^r = 0$. (v) If $e \le f$, then $f^r \le e^r$.
- (ii) $x \cdot x^{r} = 0$, and $x^{r} \cdot x^{*} = 0$. (vi) $x = x \cdot x^{rr}$, and $e \le e^{rr}$.
- (iii) If $x \cdot e = 0$, then $e \le x^r$. (vii) $x^r = x^{rrr}$.
- (iv) $x^{r} \leq (y \cdot x)^{r}$. (viii) If $e \cdot x = x \cdot e$, then $e^{r} \cdot x = x \cdot e^{r}$.

Proof: Here we prove only (vi) and (viii). Rest is not so hard.

- (vi) By (ii), $x^* \in \{x^r\}^{(r)} = x^{rr} \cdot G$. Then there exists some $s \in G$, such that $x^* = x^{rr} \cdot s$. By operating * to this equation, we have that $x = x^{**} = s^* \cdot x^{rr*} = s^* \cdot x^{rr}$. Further operating x^{rr} from the right to the equation $x = s^* \cdot x^{rr}$, we can derive that $x \cdot x^{rr} = (s^* \cdot x^{rr}) \cdot x^{rr} = s^* \cdot x^{rr} = x$. In particular, when x is equal to a projection e, we have that $e \cdot e^{rr} = e$, that is, $e \le e^{rr}$.
- (viii) Suppose that $e \cdot x = x \cdot e$. Then we have $e \cdot x \cdot e^{r} = x \cdot e \cdot e^{r} = 0$, since $e \cdot e^{r} = 0$. So $x \cdot e^{r} \in \{e\}^{(r)} = e^{r} \cdot G$, and there exists some $s \in G$ satisfying that $x \cdot e^{r} = e^{r} \cdot s$. By multiplying e^{r} from the left to both sides of this equation, we have that $e^{r} \cdot x \cdot e^{r} = e^{r} \cdot e^{r} \cdot s = e^{r} \cdot s = x \cdot e^{r}$... (1) On the other hand, by operating * to the supposition $e \cdot x = x \cdot e$, so we have that $x^* \cdot e = e \cdot x^*$. Then $e \cdot x^* \cdot e^{r} = x^* \cdot e \cdot e^{r} = 0$, which means that $x^* \cdot e^{r} \in \{e\}^{(r)} = e^{r} \cdot G$. So there exists some $t \in G$ such that $x^* \cdot e^{r} = e^{r} \cdot t$. By multiplying e^{r} from the left to both sides of this equation, we have that $e^{r} \cdot x^* \cdot e^{r} = e^{r} \cdot e^{r} \cdot t = e^{r} \cdot t = x^* \cdot e^{r}$. Further operating * again, we get that $e^{r} \cdot x \cdot e^{r} = e^{r} \cdot x$... (2). From (1) and (2), we can conclude that $x \cdot e^{r} = e^{r} \cdot x$.

Now we will consider a particular class of projections, called closed projections.

Definition 1.5 (Closed projection) A projection $f \in P(G)$ is called *closed* iff there exists an element $x \in G$ such that f is the right annihilating projection for x. This means that a closed projection f can be written as $f = x^r$ for some element $x \in G$. We denote the set of all closed projections in G by $P_c(G)$.

In other words, the set $P_c(G)$ is the range of the function r from G to P(G). We give here a necessary and sufficient condition on a projection to be closed.

Proposition 1.6 For any $e \in P(G)$, $e \in P_c(G)$ if and only if $e^{rr} = e$.

We will show that in $P_c(G)$ we can always find the supremum and the infimum of any two elements of it and hence this partially ordered set forms a lattice. Moreover we can show that $P_c(G)$ is an orthomodular lattice.

Lemma 1.7 (Existence of meet in $P_c(G)$)

- (i) For any closed projections e and f such that $e \cdot f = f \cdot e$, $e \cdot f \in P_c(G)$ holds, and there exists the infimum $(e \sqcap f)$ of e, f, which satisfies the equation $e \sqcap f = e \cdot f$.
- (ii) In general, for any closed projections e and f, there exists the infimum $(e \sqcap f)$ of e, f and the equation $e \sqcap f = e \cdot (f^r \cdot e)^r = (f^r \cdot e)^r \cdot e = e \sqcap (f^r \cdot e)^r$ holds.

Proof:

- (i) Suppose that $e \cdot f = f \cdot e$. We show that $e \cdot f \in P_c(G)$. Since $e, f \in P(G)$ and $e \cdot f = f \cdot e$, we can derive: $(e \cdot f)^* = f^* \cdot e^* = f \cdot e = e \cdot f$, and $(e \cdot f) \cdot (e \cdot f) = e \cdot e \cdot f \cdot f = e \cdot f$. Thus, $e, f \in P(G)$. To prove that $e \cdot f \in P_c(G)$, by Proposition 1.5, it is enough to show that $(e \cdot f)^{rr} = e \cdot f$. Then we have only to show that $(e \cdot f)^{rr} \leq e \cdot f$ as the converse inequality holds always by Lemma 1.4 (vi). Considering the Lemma 1.4 (iv), we have that $e^r \leq (e \cdot f)^r$. Then by the Lemma 1.4 (v), we can derive that $(e \cdot f)^{rr} \leq e^{rr} = e$, which means $e \cdot (e \cdot f)^{rr} = (e \cdot f)^{rr}$. Similarly we can derive that $f \cdot (e \cdot f)^{rr} = (e \cdot f)^{rr}$. Therefore $e \cdot f \cdot (e \cdot f)^{rr} = e \cdot (e \cdot f)^{rr} = (e \cdot f)^{rr}$. Thus $(e \cdot f)^{rr} \leq e \cdot f$.
 - It is easy to see that $e \cdot f$ is the infimum of e and f.
- (ii) We put $u := f^r \cdot e$. By Lemma 1.4 (iv), we have that $e^r \leq (f^r \cdot e)^r = u^r$. This means that $e^r \cdot u^r = e^r = u^r \cdot e^r$. By applying Lemma 1.4 (viii), we have that $e \cdot u^r = u^r \cdot e$. Then by (i) of the present lemma, we can conclude that $e \cdot u^r \in P_c(G)$, and that $e \cap u^r = e \cdot u^r$. So it remains to show that $e \cap f = e \cdot u^r$.
 - (a) Clearly, $e \cdot (e \cdot u^{r}) = e \cdot u^{r}$. So we have $e \cdot u^{r} \leq e$. On the other hand, $f^{r} \cdot e \cdot u^{r} = f^{r} \cdot e \cdot (f^{r} \cdot e)^{r} = 0$. So from Lemma 1.4 (iii), we derive that $e \cdot u^{r} \leq f^{rr} = f$. Thus $e \cdot u^{r}$ is a lower bound of $\{e, f\}$.
 - (b) Take any $g \in P_c(G)$ such that $g \cdot e = g$ and $g \cdot f = g$. Then because $f \cdot f^r = 0$, we have that $g \cdot f \cdot f^r \cdot e = 0$. By our assumption on g, $g \cdot f^r \cdot e = 0$, which means that $g \cdot u = 0$. By Lemma 1.4 (iii), we can derive that $u \leq g^r$. So by Lemma 1.4 (v), $g = g^{rr} \leq u^r$. This is equivalent to $g \cdot u^r = g$. Again using the assumption on g, $g \cdot e \cdot u^r = g$. So we have derived that $g \leq e \cdot u^r$.

Thus we have shown that $e \sqcap f = e \cdot u^{r}$.

Therefore we have the following Proposition.

Proposition 1.8 For any $e, f \in P_c(G)$, the following equation holds:

$$e \cdot G \cap f \cdot G = (e \sqcap f) \cdot G$$
.

Next we will see that P_c(G) is an orthomodular lattice.

Theorem 1.9 $P_c(G)$ forms an orthomodular lattice, where the orthocomplement is the operation r.

Proof: We can easily check the conditions in Definition 0.1.

Next, in Section 2, we will introduce a semantics for orthomodular logic by using Rickart * semigroups, and prove the soundness.

2 Semigroup semantics and soundness theorem

Definition 2.1 (Orthomodular model) $\mathcal{M} = \langle \mathcal{G}, \mathbf{u} \rangle$ is a orthomodular model (OM model for short) iff $\mathcal{G} = \langle \mathbf{G}, \cdot, * \rangle$ is a Rickart * semigroup and u is a function assigning to each propositional variable p_i an element $\mathbf{u}(p_i)$ of $P_c(\mathbf{G})$.

The notion of truth in OM models is defined inductively as follows: the symbol $'(\mathcal{M}, x) \models \alpha'$ is read as "a formula α is true at x in \mathcal{M} ".

- (i) $(\mathcal{M}, x) \models p_i$ iff $x \in u(p_i) \cdot G$.
- (ii) $(\mathcal{M},x) \models \alpha \wedge \beta$ iff $(\mathcal{M},x) \models \alpha$ and $(\mathcal{M},x) \models \beta$.
- (iii) $(\mathcal{M}, x) \models \neg \alpha$ iff $\forall y \in G, [(\mathcal{M}, y) \models \alpha \text{ only if } y^* \cdot x = 0].$

For each formula α , define $\|\alpha\|^{\mathcal{M}} := \{x \in G \mid (\mathcal{M}, x) \models \alpha\}$. Then we can restate the above conditions in the following way:

- (i) $||p_i||^{\mathcal{M}} = \mathbf{u}(p_i) \cdot \mathbf{G}$.
- (ii) $\|\alpha \wedge \beta\|^{\mathcal{M}} = \|\alpha\|^{\mathcal{M}} \cap \|\beta\|^{\mathcal{M}}$.
- (iii) $\|\neg \alpha\|^{\mathcal{M}} = \{x \in G \mid \forall y \in \|\alpha\|^{\mathcal{M}} (y^* \cdot x = 0) \}.$

Definition 2.2 Let α and β be formulas.

- (i) $\alpha \text{ implies } \beta \text{ at } x \text{ in an OM model } \mathcal{M} ((\mathcal{M}, x) : \alpha \models \beta) \text{ iff either } (\mathcal{M}, x) \models \alpha \text{ does not hold or } (\mathcal{M}, x) \models \beta \text{ holds.}$
- (ii) α implies β in an OM model \mathcal{M} ($\mathcal{M}: \alpha \models \beta$) iff for all x in the model \mathcal{M} , $(\mathcal{M}, x): \alpha \models \beta$ holds.

It is easy to see that $\mathcal{M}: \alpha \models \beta$ is equivalent to $\|\alpha\|^{\mathcal{M}} \subseteq \|\beta\|^{\mathcal{M}}$.

Proof: Induction on the construction of the formula α .

Now we can prove the soundness theorem.

Theorem 2.4 (Soundness theorem) For given formulas α and β , let (S) and (T) be the statements as follows:

- (S): for any orthomodular lattice \mathcal{A} and any orthomodular valuation $v:\Phi\to A$, $v(\alpha)\leq v(\beta)$.
- (T): for any orthomodular model \mathcal{M} , $\mathcal{M} : \alpha \models \beta$. Then (S) implies (T).

3 Monotone, residuated maps on an ordered set

Next, we will prove the Completeness Theorem. To show the direction $((S) \Leftarrow (T))$, we need to know how to build up an orthomodular model from a given orthomodular lattice. To do this, we need some preparations.

Definition 3.1 (Residuated, monotone maps on an ordered set) Let $\langle A, \leq \rangle$ be an ordered set.

(i) A map φ from A to A is called *monotone* iff it satisfies the following condition: for any $x, y \in A$, if $x \leq y$, then $\varphi(x) \leq \varphi(y)$.

We denote the set of all monotone maps from A to A by $\overline{G}(A)$.

(ii) A map $\varphi \in \overline{G}(A)$ is called residuated iff there exists a map $\varphi^{\sharp} \in \overline{G}(A)$ such that for any $x \in A$, $\varphi^{\sharp}(\varphi(x)) \geq x$ and $\varphi(\varphi^{\sharp}(x)) \leq x$.

We call this map φ^{\sharp} a residual map for φ , and denote the set of all residuated, monotone maps on A by G(A).

Lemma 3.2 (Properties of residual maps) Let $\langle A, \leq \rangle$ be an ordered set. Then the following holds.

- (i) For any $\varphi \in G(A)$, the residual map for φ is uniquely determined.
- (ii) For any $\varphi, \psi \in G(A)$, $(\varphi \cdot \psi)^{\sharp} = \psi^{\sharp} \cdot \varphi^{\sharp}$ holds, where \cdot means the composition operator for maps. Therefore G(A) is closed under this operation \cdot .

Proof: Using the monotonicity and the inequations which hold for $\varphi \in G(A)$ and its residual map φ^{\sharp} .

It is guaranteed by (i) of Lemma 3.2 that we can write the resudual map for φ as φ^{\sharp} . And (ii) of Lemma 3.2 means that G(A) is a semigroup with respect to the operation .

Lemma 3.3 Let $\langle A, \leq, 0, 1 \rangle$ be an ordered set with the minimum element 0 and the maximum element 1 and let θ be a map defined by the condition: for all $x \in A$, $\theta(x) = 0$. Then θ is the zero element in the semigroup G(A).

Lemma 3.4 Let $\mathcal{A} = \langle A, \leq, \sqcap, \sqcup, ^{\perp}, \mathbf{1}, \mathbf{0} \rangle$ be an ortholattice. Let * be defined by the following: for any $\varphi \in G(A)$, $\varphi^*(x) := (\varphi^{\sharp}(x^{\perp}))^{\perp}$ for any $x \in A$. Then $\varphi^* \in G(A)$. Moreover the following conditions hold for every $\varphi, \psi \in G(A)$.

- (a) $\varphi^{**} = \varphi$.
- (b) $(\varphi \cdot \psi)^* = \psi^* \cdot \varphi^*$.

Proof: We put $\psi(x) := (\varphi(x^{\perp}))^{\perp}$ for any $x \in A$ and show that $\psi = \varphi^{*\sharp}$.

- (i) First we will show that ψ is monotone. Suppose that $x \leq y$ for $x, y \in A$. Then by the properties of the operation $^{\perp}$, we have $x^{\perp} \geq y^{\perp}$. Since φ is monotone, we have $\varphi(x^{\perp}) \geq \varphi(y^{\perp})$. Again by the properties of $^{\perp}$, we have $(\varphi(x^{\perp}))^{\perp} \leq (\varphi(y^{\perp}))^{\perp}$, which means $\psi(x) \leq \psi(y)$. Therefore ψ is monotone.
- (ii) Next we will show that ψ is the residual map for φ . By the properties of the operation $^{\perp}$ and the properties of φ^{\sharp} , we can derive: $\psi \cdot \varphi^{*}(x) = \psi \cdot (\varphi^{\sharp}(x^{\perp}))^{\perp} = \left[\varphi(\varphi^{\sharp}(x^{\perp}))^{\perp}\right]^{\perp} = \left[\varphi(\varphi^{\sharp}(x^{\perp}))\right]^{\perp} \geq x^{\perp \perp} = x$. So we have $\psi \cdot \varphi^{*}(x) \geq x$. Similarly we can derive: $\varphi^{*} \cdot \psi(x) = \varphi^{*} \cdot (\varphi(x^{\perp}))^{\perp} = \left[\varphi^{\sharp}(\varphi(x^{\perp}))^{\perp \perp}\right]^{\perp} = \left[\varphi^{\sharp}(\varphi(x^{\perp}))\right]^{\perp} \leq x^{\perp \perp} = x$. So we have $\varphi^{*} \cdot \psi(x) \leq x$.

Hence we can conclude that $\psi = \varphi^{*\sharp}$ since the residual map of φ^* is unique. By (i) and (ii) in the above, we have that $\varphi^* \in G(A)$. Thus * is a unary operator on G(A). Now we will check the conditions (a) and (b). By the properties of the operation \bot , and the definition of φ^* , we calculate as follows: for any φ, ψ , and for any $x \in A$,

(a):
$$\varphi^{**}(x) = \left[\varphi^{*\sharp}(x^{\perp})\right]^{\perp} = \left[\left(\varphi(x^{\perp\perp})^{\perp}\right)^{\perp}\right]^{\perp} = \varphi(x).$$

(b):
$$\psi^* \cdot \varphi^*(x) = \psi^*(\varphi^{\sharp}(x^{\perp}))^{\perp} = \left[\psi^{\sharp}(\varphi^{\sharp}(x^{\perp}))^{\perp\perp}\right]^{\perp} = \left[\psi^{\sharp} \cdot \varphi^{\sharp}(x^{\perp})\right]^{\perp} = \left[(\varphi \cdot \psi)^{\sharp}(x^{\perp})\right]^{\perp} = \left[(\varphi \cdot \psi)^{\sharp}(x^{\perp})$$

Consequently this * satisfies conditions for the operator * in Rickart * semigroups.

From the above consideration, we can define the notions of projection, closed projection and right annihilator for an element in G(A). In order to get a Rickart * semigroup from G(A), we must show that for any element $\varphi \in G(A)$, there exists some closed projection μ such that $\{\varphi\}^{(r)} := \{\psi \in G(A) \mid \varphi \cdot \psi = \theta\} = \mu \cdot G(A)$.

Lemma 3.5 Let $\mathcal{A} = \langle A, \leq, \sqcap, \sqcup, \stackrel{\perp}{,} \mathbf{1}, \mathbf{0} \rangle$ be an orthomodular lattice. For each $a \in A$, define a map γ_a by $\gamma_a(x) := (x \sqcup a^{\perp}) \sqcap a$ for every $x \in A$.

- (i) γ_a is a projection in G(A) for any $a \in A$.
- (ii) For any $\varphi \in G(A)$, if we put $a := \varphi^{\sharp}(0)$, then $\{\varphi\}^{(r)} = \gamma_a \cdot G(A)$ holds.

Proof: By our assumption, the following orthomodular law holds. For $a, b, c \in A$, (1) $a \le b$ implies $b = (b \sqcap a^{\perp}) \sqcup a$. (2) $c \le a$ implies $c = (c \sqcup a^{\perp}) \sqcap a$. It is easy to see that (2) follows from (1) and vice versa.

(i) First we will show that $\gamma_a \in G(A)$. It is obvious that γ_a is monotone. We put $\psi(x) := (x \sqcap a) \sqcup a^{\perp}$ for any x in A. Clearly ψ is also monotone. Moreover, as shown below, it is the residual map for γ_a .

$$\gamma_a \cdot \psi(x) = [((x \sqcap a) \sqcup a^{\perp}) \sqcup a^{\perp}] \sqcap a
= [(x \sqcap a) \sqcup a^{\perp}] \sqcap a
= x \sqcap a < x.$$

In the last equation in the above, we used (2) since $x \sqcap a \leq a$.

$$\psi \cdot \gamma_a(x) = [((x \sqcup a^{\perp}) \sqcap a) \sqcap a] \sqcup a^{\perp}$$

= $[(x \sqcup a^{\perp}) \sqcap a] \sqcup a^{\perp}$
= $x \sqcup a^{\perp} \geq x$

Also, we used (1) since $x \sqcup a^{\perp} \geq a^{\perp}$. Therefore $\gamma_a^{\sharp}(x) = \psi(x) = (x \sqcap a) \sqcup a^{\perp}$. So $\gamma_a \in G(A)$.

Next we will show that γ_a satisfies the conditions for projections.

$$\gamma_a^* = (\gamma_a^{\sharp}(x^{\perp}))^{\perp} = [(x^{\perp} \sqcap a) \sqcup a^{\perp}]^{\perp}$$
$$= (x^{\perp} \sqcap a)^{\perp} \sqcap a^{\perp \perp}$$
$$= (x \sqcup a^{\perp}) \sqcap a = \gamma_a(x)$$

$$\gamma_a \cdot \gamma_a(x) = [\{(x \sqcup a^{\perp}) \sqcap a\} \sqcup a^{\perp}] \sqcap a$$

= $(x \sqcup a^{\perp}) \sqcap a = \gamma_a(x)$

Since $(x \sqcup a^{\perp}) \sqcap a \leq a$, we used (2) in the above calculation. Thus γ_a is a projection.

(ii) First we will prove that $\gamma_a \cdot G(A) \subseteq \{\varphi\}^{(r)}$. Take any $\psi \in \gamma_a \cdot G(A)$. Then there exists some element $\lambda \in G(A)$ such that $\psi = \gamma_a \cdot \lambda$. For any $x \in A$, $\gamma_a(x) = (x \sqcup a^{\perp}) \sqcap a \le a = \varphi^{\sharp}(0)$. So by the monotonicity of φ , we have that $\varphi \cdot \gamma_a(x) \le \varphi \cdot \varphi^{\sharp}(0) \le 0$. This means that $\varphi \cdot \gamma_a = \theta$. Then $\varphi \cdot \psi = \varphi \cdot \gamma_a \cdot \lambda = \theta$, that is $\psi \in \{\varphi\}^{(r)}$.

Thus we conclude that $\gamma_a \cdot G(A) \subseteq \{\varphi\}^{(r)}$. Next we will show that $\{\varphi\}^{(r)} \subseteq \gamma_a \cdot G(A)$. Take any $\psi \in \{\varphi\}^{(r)}$.

Then ψ satisfies that $\varphi \cdot \psi = \theta$, which means that for any $x \in A$, we have that $\varphi \cdot \psi(x) = 0$. Taking 1 for x, we have $\varphi \cdot \psi(1) = 0$, and hence $a = \varphi^{\sharp}(0) = \varphi^{\sharp} \cdot \varphi \cdot \psi(1) \geq \psi(1)$. Therefore we have that for any $x \in A$, $\psi(x) \leq \psi(1) \leq a$. By combining this result with the orthomodular law (2), we have that $\gamma_a \cdot \psi(x) = (\psi(x) \sqcup a^{\perp}) \sqcap a = \psi(x)$. Consequently $\psi = \gamma_a \cdot \psi \in \gamma_a \cdot G(A)$.

Thus we have proved $\{\varphi\}^{(r)} = \gamma_a \cdot G(A)$.

Moreover, we can show the following lemma on the set of maps γ_a .

For any orthomodular lattice $A = \langle A, \leq, \sqcap, \sqcup, \perp, 1, 0 \rangle$, the relation $P_c(G(A)) = \{ \gamma_a \mid a \in A \} \text{ holds.}$

Proof: Take any $\lambda \in P_c(G(A))$. Then there exists some $\mu \in G(A)$ such that $\{\mu\}^{(r)} = \{\mu\}^{(r)}$ $\lambda \cdot G(A)$. Now putting $b := \mu^{\sharp}(0)$, we have $\{\mu\}^{(r)} = \gamma_b \cdot G(A)$ by Lemma 3.5 (ii). So the uniqueness of the right annihilating projection gives us that $\lambda = \gamma_b \in \{\gamma_a \mid a \in A\}$. Conversely, consider γ_a for $a \in A$. Since γ_a is a projection, $\gamma_a = \gamma_a \cdot \gamma_a = \gamma_a^*$ holds. We have that $\gamma_a \cdot \gamma_a^{\mathbf{r}} = \theta$. So by operating * to this equation, we get $\gamma_a^{\mathbf{r}} \cdot \gamma_a = \theta$. Then of course, $\gamma_a^{\mathbf{r}} \cdot \gamma_a \cdot \lambda = \theta$ for any $\lambda \in G(A)$ holds. Therefore we get $\{\gamma_a^{\mathbf{r}}\}^{(\mathbf{r})} = \gamma_a \cdot G(A)$. Thus $\gamma_a \in P_c(G(A))$.

Consequently we have proved that $P_c(G(A)) = \{\gamma_a \mid a \in A\}.$

By all the lemmas 3.2, 3.3, 3.4 and 3.5, we can prove the following theorem.

Theorem 3.7 Let $\mathcal{A} = \langle A, \leq, \sqcap, \sqcup, \perp, 1, 0 \rangle$ be an orthomodular lattice. Then $\mathcal{G}(\mathcal{A}) =$ $\langle G(A), \cdot, * \rangle$ is a Rickart * semigroup, where \cdot is a composition operator of maps and * is a unary operator defined in Lemma 3.3.

Corresponding model and Completeness Theorem 4

Now we have prepared all the notions for constructing the corresponding model for orthomodular logic.

Definition 4.1 (Corresponding model) Let $A = \langle A, \leq, \sqcap, \sqcup, \perp, 1, 0 \rangle$ be an orthomodular lattice, and $v:\Phi\to A$ an orthomodular valuation. The corresponding model to \mathcal{A} and v is the structure $\mathcal{M}_{\mathcal{A}} = \langle G(A), \cdot, *, u_{\mathcal{A}} \rangle$, where

- (i) G(A) is the set of all residuated monotone maps on A,
- (ii) · is the composition operator of maps on A,
- * is the unary operator on G(A) defined in Lemma 3.4, that is, for any $\varphi \in G(A)$, $\varphi^*(x) := (\varphi^{\sharp}(x^{\perp}))^{\perp}$ for all $x \in A$,
- $u_{\mathcal{A}}$ is a function assigning to each propositional variable p_i an element of the set $\{\gamma_a \mid a \in A\}$, such that, $u_{\mathcal{A}}(p_i) := \gamma_{v(p_i)}$.

Let \mathcal{A} be an orthomodular lattice and v an orthomodular valuation. Then the corresponding model $\mathcal{M}_{\mathcal{A}} = \langle G(A), \cdot, *, u_{\mathcal{A}} \rangle$ is an orthomodular model.

Proof: This is obvious from Lemma 3.6 and Lemma 3.7.

Since $\mathcal{M}_{\mathcal{A}}$ is an orthomodular model, the notion of truth in $\mathcal{M}_{\mathcal{A}}$ can be defined similarly in Definition 2.1 as follows Let α , β be formulas, φ , ψ elements in G(A). Then:

- (i) $(\mathcal{M}_{\mathcal{A}}, \varphi) \models p_i$ iff $p_i \in u(p_i) \cdot G(A)$.
- (ii) $(\mathcal{M}_{\mathcal{A}}, \varphi) \models \alpha \wedge \beta$ iff $(\mathcal{M}_{\mathcal{A}}, \varphi) \models \alpha$ and $(\mathcal{M}_{\mathcal{A}}, \varphi) \models \beta$.

(iii)
$$(\mathcal{M}_{\mathcal{A}}, \varphi) \models \neg \alpha$$
 iff $\forall \psi \in G(A), [(\mathcal{M}_{\mathcal{A}}, \varphi) \models \alpha \text{ only if } \psi^* \cdot \varphi = 0].$

By denoting $\|\alpha\|^{\mathcal{M}_{\mathcal{A}}} := \{ \varphi \in G(A) \mid (\mathcal{M}_{\mathcal{A}}, \varphi) \models \alpha \}$, we can restate the above conditions in the following way.

- (i) $||p_i||^{\mathcal{M}_A} = \mathbf{u}(p_i) \cdot \mathbf{G}(\mathbf{A}).$
- (ii) $\|\alpha \wedge \beta\|^{\mathcal{M}_{\mathcal{A}}} = \|\alpha\|^{\mathcal{M}_{\mathcal{A}}} \cap \|\beta\|^{\mathcal{M}_{\mathcal{A}}}$.
- (iii) $\|\neg \alpha\|^{\mathcal{M}_{\mathcal{A}}} = \{\varphi \in G(A) \mid \forall \psi \in \|\alpha\|^{\mathcal{M}_{\mathcal{A}}} (\psi^* \cdot \varphi = 0) \}.$

Here we will make a comment about the order on $P_c(G(A))$, where A is an orthomodular lattice. Because $\gamma_a \in P_c(G)$ is a projection, the order on the set $\{\gamma_a \mid a \in A\}$ is defined as in Definition 1.4, that is,

For
$$a, b \in A$$
, $\gamma_a \leq \gamma_b$ iff $\gamma_a \cdot \gamma_b = \gamma_a$

By Lemma 1.3, we have that $\gamma_a \leq \gamma_b$ is equivalent to $\gamma_a \cdot G(A) \subseteq \gamma_b \cdot G(A)$. We can show the following lemma on this order relation.

Lemma 4.3 Let $\mathcal{A} = \langle A, \leq, \sqcap, \sqcup, \stackrel{\perp}{}, 1, 0 \rangle$ be an orthomodular lattice. Then the following two conditions are equivalent.

- (i) $a \leq b$ on A.
- (ii) $\gamma_a \leq \gamma_b$ on $P_c(G(A))$.

Proof: ((i) \Rightarrow (ii)): Suppose that $a \leq b$. Then, for all $x \in A$ the following holds:

$$\gamma_b \cdot \gamma_a(x) = [\{(x \sqcup a^{\perp}) \sqcap a\} \sqcup b^{\perp}] \sqcap b$$

= $(x \sqcup a^{\perp}) \sqcap a = \gamma_a(x)$

Since we have $(x \sqcup a^{\perp}) \sqcap a \leq a \leq b$, we used the orthomodular law (2) in the proof of Lemma 3.5. Thus we conclude that $\gamma_a \leq \gamma_b$.

((i) \Leftarrow (ii)): Suppose that $\gamma_a \leq \gamma_b$. This means that $\gamma_a \cdot \gamma_b = \gamma_b \cdot \gamma_a = \gamma_a$. Since $\gamma_a(1) \leq 1$, $\gamma_a(1) = \gamma_b \cdot \gamma_a(1) = \gamma_b(\gamma_a(1)) \leq \gamma_b(1)$. Recall here that $\gamma_a(x) := (x \sqcup a^{\perp}) \sqcap a$ for any $x \in A$, then we have that $a = \gamma_a(1) \leq \gamma_b(1) = b$.

As in Lemma 3.3, we can also extend the domain of valuation function $u_{\mathcal{A}}$ from the set of propositional variables to the set of all formulas Φ .

Lemma 4.4 Let $\mathcal{A} = \langle A, \leq, \sqcap, \sqcup, \stackrel{\perp}{}, \mathbf{1}, \mathbf{0} \rangle$ be an orthomodular lattice and v an orthomodular valuation. Let $\mathcal{M}_{\mathcal{A}}$ be the canonical orthomodular model corresponding to \mathcal{A} . Then for any formula α , $\|\alpha\|^{\mathcal{M}_{\mathcal{A}}} = \gamma_{v(\alpha)} \cdot G(A)$.

Proof: Induction on the construction of the formula α .

We have now reached the following Completeness Theorem.

Theorem 4.5 (Completeness theorem) For given formulas α and β , let (S) and (T) be the same statements in Theorem 2.4. That is,

- (S): for any orthomodular lattice \mathcal{A} and any orthomodular valuation $v:\Phi\to A$, $v(\alpha)\leq v(\beta)$.
- (T): for any orthomodular model \mathcal{M} , $\mathcal{M} : \alpha \models \beta$. Then (T) implies (S).

5 Relation between two types of models

Theorem 5.1 Let $\mathcal{M} = \langle \mathcal{G}, \mathbf{u} \rangle = \langle \mathbf{G}, \cdot, *, \mathbf{u} \rangle$ be an orthomodular model. Then $\mathcal{Q} = \langle \mathbf{G}', \mathbf{R}, \zeta, \mathbf{V} \rangle$ is a quantum model, where,

- $G' := G \setminus \{0\},$
- $\zeta := \{e \cdot G' \mid e \in P_c(G')\},\$
- R is a binary relation on G' defined as the following: for $x, y \in G'$, $xRy \Leftrightarrow x^* \cdot y = 0$,
- V is a function assigning to each p_i an element $V(p_i)$ of ζ .

Proof: Check the conditions for quantum model in Definition 0.4.

References

- [1] R.I.Goldblatt, Semantic analysis of orthologic Journal of Philosophical Logic 3, 19–35 (1974).
- [2] D.J.Foulis, Baer *-semigroups, Proceedings of American Mathematical Society 11, 648-654 (1960).
- [3] S.Maeda, Lattice Theory and Quantum Logic (in Japanese), Makishoten, Tokyo (1980).