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Abstract. The Brouwer-Heyting-Kolmogorov interpretation explains the
meaning of logical operations as operators that construct proofs from
proofs of the operands. The BHK interpretation is usually understood
as giving intuitionistic interpretation for the logical operators, but, as
pointed out by Troelstra and van Dalen [12], it is possible to understand
the BHK interpretation classically. We elaborate this idea and develop
a classical theory of proofs as abstract mathematical entities where the
truth of a proposition becomes equivalent to the existence of proofs of
the proposition.
We develop a first order theory of arithmetic, equivalent to PA, and give
a classical BHK interpretation for the theory. We show the soundness of
the interpretation by showing that if a derivation P of a formula A is
given, then the interpretation of P is a proof of the interpretation of A.
We also show that the interpreted value of derivations is preserved under
reductions of derivations.
We also present a system of catch/throw calculus and develop a classical
- BHK interpretation for it. Since the calculus in non-deterministic, we
interpret a derivation by a set of proofs. We show the soundness of the
interpretation, and show that if a derivation reduces to another deriva-
tion, then the associated set of proofs for the latter derivation is smaller
than that for the former derivation.

1 Introduction

The Tarskian interpretation of formulas interprets a mathematical formula either
as true or false. The Brouwer-Heyting-Kolmogorov (BHK) interpretation, on the
other hand, interprets a mathematical formula by assigning the set of proofs of
the given formula. In the BHK interpretation, a formula is true if and only if it
has a proof. Here, the notion of a proof is not understood as a formal derivation
but as an informal mathematical object just like a natural number or a real
number.

In the Tarskian interpretation, for example, A O B is true if and only if either
A is false or B is true. In the BHK interpretation, A D B is true if and only if it
has a proof f, i.e., if there is a function f such that for any proof p of A, f(p) is
a proof of B. A disjunction AV B is true in the Tarskian interpreration if either
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A or B is true, and it is true in the BHK interpretation if A or B has a proof
p, and in the first case (0, p) is a proof of AV B and in the second case (1,p) is
a proof of AV B. So the BHK interpretation gives finer interpretation than the
Tarskian interpretation. In addition to this, these two interpretations have the
following essential differences.

A proposition is classically true if it is true under the Tarskian interpretation,
and it is intustionistically true if it is true under the BHK interpretation. Since
the law of the excluded middle is always true classically but not always true
intuitionistically, we know that these two interpretations are not equivalent.

However, as pointed out in Troelstra and van Dalen [12], by modifying the
BHK interpretation appropriately it is possible to interpret propositions in terms
of proofs in such a way that any proposition is classically true if and only if it has
a proof. In this paper, we elaborate this idea, and show that this classical BHK
interpretation is consistent with the intuitionistic BHK interpretation in the
sense that any proof of a proposition under the intuitionistic BHK interpretation
is also a proof of the proposition in the classical BHK interpreration.

We also present a formal system of arithmetic in a modified natural deduction
style and show that it is possible to give a sound interpretation of the system in
terms of the classical BHK interpretation.

We then consider an extension of the system by the catch/throw inference
rules. The resulting system is inherently non-deterministic, and we will show that
it is possible to extend the BHK interpretation and give a sound interpretation
for this system. '

By the well-known Curry-Howard isomorphism, it is possible to regard for-
mal derivations in the intuitionistic fragment of our formal system as programs
in a typed language. Then our BHK interpretation gives a natural denotational
semantics to this programming language. It is therefore possible to use this
framework as a basis for constructive programming where programming Is re-
placed by proving.

2 The classical interpretation

To make our argument concrete, we will work on a first order language whose
intended domain of interpretation is the set of natural numbers.

So our language contains the constant 0, a unary function symbol succ (for
successor), binary function symbols plus and times. (We also have symbols for
all the primitive recursive functions and associated defining axioms, however, we
will not mention them explicitly for the sake of simplicity.) We use z, y, z etc.
as meta variables for individual variables. We define terms as usual using these
symbols. We use a, b, c etc. as meta variables for terms. We will write 0, 1, 2, ...
for 0,succ(0),succ(succ(0)),... and call these terms numerals. We will identify
each numeral with the natural number which corresponds to the numeral in an
obvious way. We use k, [, m, n etc. as meta variables for numerals (and natural
numbers). We will write N for the set of natural numbers.
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The only primitive predicate symbol we use is =. We will use A, v, D, V
and 3 as primitive logical symbols. Atomic formulas are expressions of the form
a = b, and formulas are constructed from atomic formulas by using the above
logical symbols. We use A, B, C etc. as meta variables for formulas. We define
1 and —A as abbreviations of succ(0) = 0 and A DL, respectively.

We will call an atomic formula of the form = k a binding. A binding z = &
binds the variable z to the natural number k. We define an environment as a
finite set of bindings such that for any variable z if z = k£ and « = &’ are both in
the set then k = k' (that is, k and &’ are the same natural number). We use ¢, ¢
etc. as meta variables for environments. For an environment ¢ and a variable z,
we define €.z to be k if £ = k € € and undefined if no such k exists. Let € be an
environment and z = k be a binding. Then we define an environment €[z = k]
as follows.

[-—k]-A- (e—{z=k})U{z=k}if 2 = k' € € for some &’
W=F=Veu{z =k otherwise.

Let a be a term and € be an environment. We say that € covers ¢ if FV(a) C
dom(¢), where FV(a) stands for the set of free variables in a and dom(e) is
the set of variables z such that ¢.z is defined. We define the concept that an
environment € covers a formula A similarly.

Given an environment ¢ and a term a such that € covers a, we can associate
a natural number ¢[a] by induction on a as follows. We will say that a denotes
€[a] in the environment .

efo] 20.
e[z] 2 ez
€[suce(a)] 2 succ(efa]).

e[plus(a, b)] 2 €[a] + €[b]-
e[times(a, b)] £ €[a] - €[b]-

We have just seen that a term, which is a syntactic entity, denotes a natural
number, which is an abstract mathematical object, under any environment that
covers the term.

Similarly, we wish to define the denotation of a formula under an environment
that covers the formula. We first define propositions as certain sets and then we
define the classical BHK interpretation in such a way that each formula will
denote a proposition. .

In the classical BHK interpretation, we will use the term ‘function’ in the
same way as we use it in classical mathematics based on set theory. Namely,
by a function we understand a set f of pairs such that for any objects a,b, c, if
(a,b) and (a,c) are in f then b = ¢. For a pair p, we write mo(p) (71(p)) for the
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left (right) component of p, respectively. If f is a function, we put dom(f) 2
{mo(p) | p € f}, and if a € dom(f), then we write f(a) for the unique b such that
(a,b) € f. If S is a set and e is a mathematical expression (possibly) containing
z such that e denotes a unique object for any z in S, then we write Az € S. e



31

for the function f such that dom(f) = S and f(z) = e for any  in S. Also, we
will write f : S — T if f is a function such that dom(f) = S and f(p) € T for
any p€S. ' ' _

We introduce the following notation. Suppose thatp€ Sand f: N - S — S.
Then we define a function rec(p, f) : N — S by the following equations.

rec(p, £)(0) = p
rec(p, f)(succ(n)) = f(n)(rec(p, )(n))

Propositions are inductively defined as follows.

1. For each natural number k, the singleton set {k} is a proposition.

. The empty set @ is a proposition.

3. If S and T are propositions, then S x T' = {(p,q) | p € Sand ¢ € T} is a
proposition. '

4. If S and T are propositions, then S+ T = {(0,p) | p € S} U{(1,9) | ¢ € T}
is a proposition.

5. If S and T are propositions, then S — T, the set of functions from S to T,
is a proposition.

6. If Sy is a proposition for each natural number k, then [], Sk, the set of
functions f from N such that f(k) € Si for each k € N, is a proposition.

7. If S is a proposition for each natural number k, then >, Si = {(k,p) | p €
Sk}, is a proposition.

8

We write Prop for the set of propositions. We are thus following the principle of
propositions-as-sets since we defined propositions as sets.

Given an environment ¢ and a formula A such that € covers A, we can asso-
ciate a proposition ¢[A] by induction on A as follows. We will call this interpre-
tation the classical BHK interpretation.

efa = t] = {e[a]} N {e[b]}-
e[A A B] £ ¢[A] x €[B].
e[AV B] £ [A] + €[ B].
¢[A D B] 2 ¢[A] — €[B].
e[Ve.A] 2 1, el = k)[A]
e[Fz.A] £ T, e[z = k][A]

S N

We have the following theorem which establishes a logical equivalence be-
tween the classical BHK interpretation and the Tarskian interpretation.

Theorem 1. If an environment ¢ covers a formula A, then A is true in € under
the Tarskian interpretation if and only if the proposition €[A] is a non-empty

sel.

Proof. The proof is straightforward if we note the following equivalences.
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—{kIn{}#0=k=1
 SxT#0 <= S#0and T # 0.
~ S+T#0<>S#0or T #0.

- S—>T#0<=S=0o0rT#0.
— 1 Sk # 0 <> Si # 0 for all k.
— > 1Sk #0 <= Si # 0 for some k.

See also exercise 1.3.4 of Troelstra and van Dalen [12]. O

We will call elements of propositions proofs. Then, the above theorem says
that a formula A is true under ¢ if and only if the proposition ¢[A] has a proof.

For any proposition S, we put m(S) to be T (true) if S is non-empty and to
be L (false) if S is empty. We write ¢[A] for the Tarskian truth value of A in €.
Then, the above theorem can be given as the equation:

e[A] = m(e[AD)

In this way, we can decompose the Tarskian interpretation as the composition
of 7 and the BHK interpretation.

3 Interpretation of derivations

In the previous section, we introduced propositions and proofs as abstract math-
ematical entities (or semantical objects). In this section we define derivations as
syntactic objects that are intended to denote propositions. So, after defining
derivations, we will define an interpretation of a derivation in an environment
by a proof. We also define reduction rules (or computation rules) for derivations
and show that if a derivation reduces to another derivation, then they both de-
note the same proof (in any environment). In summary, we have the following
table:

| syntactic objects | semantic objects |

term (a, b, c) natural number (k, m,n)
formula (A, B,C) | proposition (S,T,U)
derivation (P, @, R)| proof (p,q,r)

context (I, A) environment (¢)

We define derivations in a natural deduction style. We will give inductive rules
that are used to derive judgments. A judgment is either of the form I' - a : N,
I'A:Propor I't P: Awhere I' is a contexzt, a is a term, P is a derivation and
A i1s a formula. In this way, we will define judgments, contexts and derivations
simultaneously (as well as terms and formulas).

We will define a context as a ﬁmte set of declarations, where a declamizon 1S
either of the form z or of the form y4 (A, a formula). In the first case, we say
that z is declared as a natural number and in the second case, we say that y
is declared as a derivation of A. Each context will satisfy the condition that for
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any variable ¢ at most one declaration for z is in the context. Below, we display
a context by listing its declarations as a sequence. So the empty econtext is
displayed as an (invisible) empty sequence. If I and A are contexts, then I, A
will stand for the union of the two contexts, and I' — z (I" — y*) will stand for
the context obtained from I' by removing the declaration z (y#), respectively.
Moreover, when we use the notation I, A we tacitly assume that I" and A are
compatible, that is I' U A contains at most one declaration for each variable x.
If ' - P: Ais derivable, then we will say that P has type A under the context
I'. We say that a context I' is smaller than another context A if I' C A.
First, we give rules for terms.

If z is a variable, then z -z : N.

FO0:N.

If ' a:N, then I' F suce(a) : N.
IfI'ta:Nand AFb: N, then I AF plus(a,b) : N.
IfI'-a:Nand AFb:N, then I, AF times(a,b) : N.

A

We say that a is a term if a judgment of the form I F a : N is derivable by
using the above rules. We also define FV(a) as the set of variables z such that
z occurs in I,

Next, we have rules for formulas.

.M I'a:Nand AFb:N, then I;AF a =5 : Prop.

.IfI'HA:Propand A+ B :Prop, then I’ A+ AA B : Prop.
.IfI'+A:Propand A+ B :Prop, then I’ A+ AV B : Prop.
. I'tA:Propand AF B :Prop, then I’ A+ A D B : Prop.
. If ¢ is a variable and I' - A : Prop, then I' — 2z - Vz.A : Prop.
If  1s a variable and '+ A : Prop, then I' — z - 3z.A : Prop.

_ozm.-b-c.om»—-

We say that A is a formula if a judgment of the form I' - A : Prop is derivable
by using the above rules. We also define FV(A) as the set of variables x such
that z occurs in I'. We define substitution operation on formulas as usual, and
we write A[z = a] for the result of substituting a for all the free occurrences of
z in A (after appropriately renaming bound variables in A if necessary).

Finally we give rules for derivations. We give these rules as inference rules.
We first give general rules for equality.

I'a:N . ''FP:a=b AFQ:Alz=d] I
I'tid(a):a=a (id) I, At repl o=y (P, Q) : Alz = ] (repl)

The rules specific to natural numbers are as follows.

I'FP:a=25%
I' - suce(P) : suce(a) = suce(b)

(succ)

I'FP:succ(a) =0 AF A:Prop
I'yAF aborty(P): A

(L E)



I'tb:N
I' F plus(0,d) : plus(0,0) = b

(plusy)

I'Fa:N AFb:N

I, A+ plus(succ(a), b) : plus(suce(a), b) = succ(plus(a, b)) (plusy)

I'Fb:N
I' I times(0, b) : times(0,b) =0

(timesg)

I'Fa:N AFb:N

"
I, A+ times(succ(a), ) : times(succ(a), b) = plus(b, times(a, b)) (times:)
I'P:Alz=0] At Q:Vz.(AD Alz = succ(z)]) (ind)

At rec(P,Q) :Vz.A "
The rules for logical symbols are as follows.
HA: : :
I'+ A : Prop (assume) FI—P.-A AFQ:B (AD)
A I'kzd: A I''AtF pair(P,Q): AANB
I'HFP:AAB I'FP:AAB
AE
Traney .4 MY ey P
I'rP:A AF B:Prop I'FP:B ALl A:Prop
VI
I Atinlg(P):AVB (VL) I Atinra(P):AVB (VE)

I'+rP:AVB A+Q:C IHFR:C
[NA—gA IT—yBFcase(P,z2.Q,y5.R): C

(VE)

.I'tP:B AF A:Prop I'rP:ADB AFQ:A

34

D1 E
s Afaip AoB 0D T Araeh Q) B D)
I'-P:A I'FP:Ve A AkFa:N
. \4
I'—zhFAz.P:Vz.A (V1) I'y At apply(P,a) : Alz = d] (VE)
I'ta:N AF P: Az =d] @an 'rP:3z.A AFQ:C (3E)

I'AF pairg, 4(a,P) : 3z.A I'A—z—yA+split(P,(z,y4).Q) : C

We say that P is an intuitionistic deriwation if a judgment of the form I' F-
P : C is derivable by using the above rules. If z is in I', we say that the derivation

P depends on the assumption z4.
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We now add the following rule which formalizes the law of the ezcluded mid-
dle. A derivation which is obtained by possibly using this rule in addition to the
other rules is called a classical derivation.

I'+ A : Prop
I'klemy : AV-A

(lem)

We can verify that any formula A is derivable in HA (Heyting arithmetic)
iff - P : A is intuitionistically derivable, and A is derivable in PA (Peano
arithmetic) iff F P : A is classically derivable.

We have thus defined three kinds of judgments and defined how to derive
these judgments. It is easy to see that if a judgment of the first kind I' - a : N
or a judgment of the second kind I+ A : Prop is derivable, then I' is of the form
£1...,Zn. This means that a term a or a formula A depends on the variables
Z1,...,Zn. Therefore, it is in general necessary that e covers these variables in
order that €[a] and e[A] are definable.

We can easily verify the following lemma by induction on the construction
of derivations. '

Lemma?2. If ' - a : N (I' - A : Prop) is derivable and ¢ covers I', then
e[a] € N (e[A] € Prop), respectively. o

If a judgment of the third kind I' - P : C' is derivable, then each element of
the sequence I is either of the form z or of the form 24 where A is a formula and
we write dom(I") for the set of such «’s. In order to interpret such a context, we
need to extend the definition of binding and environment as follows. A binding
is an expression of the form z = k where k is a natural number or of the form
z = p where p is a proof. An environment is a finite set of bindings such that for
each variable z there exists at most one binding of the form z =k or z = p in
the set. For an environment € and a variable z, €.z is defined in the same way as
before and we write dom(e) for the set of variables & such that €.z is defined. Let
¢ be an environment and I' be a context. We write ¢ = I' if dom(I") C dom(e),
e.z € N for each z in I', and e.z € €[A] for each z# in I

Suppose that I'+ P : A is derivable and ¢ |= I, then we can define ¢[P] and
show that e[P] € e[A4] as follows. We first define pre-derivations by the following
grammar. '

P =z | id(a) |repl(P, Q) | succ(P) | abort(P) | rec(P, Q)
| plus(0,b) | plus(succ(a),d) | times(0,b) | times(succ(a), b)
| pair(P,Q) | pair(a, P) | car(P) | cdr(P) | split(P, (z,¥).Q)
| inl(P) | int(P) | case(P,z.Q,y.R)
| Az?.P | Az.P | apply(P, Q) | apply(P, a)
| lema '
For each pre-derivation P we can define the set FV(P) of free variables in P

as expected. For each pre-derivation P and environment € such that F V(P) C
dom(¢) we define a proof e[P] inductively as follows.
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€[z] 2 ez

efid(a)] 2 efa]-

e[repl(P, Q)] = €[Q].

e[suce(P)] 2 e[ P].

e[abort(P)] £ undefined.

elrec(P, Q) £ rec(c[P], e[Q)).
e[plus(0,5)] 2 e[[o].-
e[plus(succ(a),bd)] 2 efa] + 1 + €[[b].
e[times(0,d)] 2.

. e[[times(succ(a),b)]]r 2 (e[a] + 1)€[b]-
- e[pair(P, Q)] £ (¢[P], [Q1)-

. e[pair(a, P)] £ (e[a], e[ P])-

. €[car(P)] £ mo([P]).

. €[cdr(P)] 2 m1(e[P]).

. e[split(P, (z,9).Q)] £ e[z = K]y = pl[QL, if [P] = (k,p).
. €[inl(P)] = (0, e[ P])-

. e[inr(P)] £ (1, e[ P]). .
AL L 7
19. [Az4.P] £ \p € e[A].€[z = p][P]-

20. e[Az.P] £ Mk € N.e[z = k][P].

21. €[apply(P, Q)] = e[PI(e[Q])-

22. €e[apply(P,a)] 2 e[P](e[a]).

23. eflem4] = { Eg:g; g f[[i]f[glg)’

© P N e C s N e

et R ek peed el ped e
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We note that ¢[P] is sometimes undefined even if FV(P) C dom(e). For
example, €[[car(id(0))] is undefined since m,(0) is undefined. We also note that
e[lema] may not be unique if €[A] is non-empty. Even in such a case we can
make the definition unique by using a choice function that selects an element
from the set e[A].

Theorem 3. If '+ P : A is derivable and ¢ |= I, then €[P] € €[A].

Proof. We first remark that the derivation P may not be a legitimate pre-
derivation, but by forgetting its subscripts and/or superscripts appropriately,
we can uniquely translate P into a pre-derivation, say, Q. We therefore under-
stand that €[P] in the statement of the theorem stands for €[Q].

We prove the theorem by induction on the derivation of I' = P : A. Here
we check only the following case. Suppose that I', A I abort4(P) : A is derived
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from I' - P : succ(a) = 0 and A - A : Prop and that € = I', A. Then, since
¢ |= I, we have by induction hypothesis that [P] € e[succ(a) = 0]. Here we
have ¢[succ(a) = 0] = 0 since succ(e[a]) # 0. This is a contradiction, and we see
that there can be no € such that ¢ = I', A. So the theorem holds in this case. 0O

We now consider reduction rules for pre-derivations.

apply(rec(P, Q),0) — P.

apply(rec(P,Q),succ(a)) — apply(apply(Q, a), apply(rec(P, @), a)).
car(pair(P,Q)) — P

cdr(pair(P,Q)) — Q.

case(inl(P),z.Q,y.R) — Q[z = P].

case(inr(P),z.Q,y.R) — R[y = P].

apply(Az4.P,Q) — P[z = Q].

apply(Az.P, a) — Plz = a].

split(pair(P, @), (z,y).R) — R[z = P]ly = Q].

These reductions enjoy the following subject reduction property.

U i W N

© om0

Theorem 4. If P has type A under I' and P — Q, then Q has type A under
some A smaller than I'.

Moreover, we have the following theorem which shows that BHK interpreta-
tion is preserved by reductions. We may read this theorem as saying that if a
derivation is reducible to another derivation, then although they are syntactically
distinct, they both denote the same proof.

Theorem 5. Suppose that I' - P : A is derivable, ¢ = I and P — Q. Then we
have [ P] = €[Q]-

Proof. We check here only the following case.

elapply(Az?.P, Q)] = e[rz*.P](c[Q])
= (Mg € e[A] e[z = q][PD)(e[@])
= e[z = [Q]][P]
= €[Plz = Q]]
The last equality above comes from Lemma 8, which in turn is based on Lemma 6
and Lemma 7. O

We need the following lemmas to prove the above theorem.

Lemma6. If'Fa:Nand At b:N are derivable, then I'—z, A afz = b] : N
is also derivable, and for any € such that ¢ |2 I' — z, A, we have e[alz = b]] =

ez = e[bl)[a].

Lemma?7. If '+ P : A and AF a: N are derivable, then I' —z, A+ Plz =
a] : Alz = a] is also deriable, and for any € such that e |=I' — z, A, we have

e[Plz = d]] = e[z = €[[a]][F] and e[Alz = d]] = €[z = €e[a]][A].
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Lemma8. If ' P : A and AF Q : B are derivable, then I' —z : B,A I
Plz = Q] : A is also derivable, and for any € such that € = I —z, A, we have

e[Plz = Q] = €[z = [QII[P]-

4 »The catch-throw calculus

In this section we extend HA by adding inference rules which correspond to
the catch and throw mechanism used in programming language like Lisp. We
will write PA/; for the extended calculus. PA ./, is logically equivalent to PA.
Such logical calculi were first proposed by Nakano [5, 6] and later modified by
Sato [11] and Kameyama [3]. Here we use the inference rules introduced in [11],
and we refer the reader to [11, 5] for detailed explanations of the motivations
behind these inference rules.

We first extend the language by assuming that there are denumerably many
tag variables that are used as tags for derivations. We will use u, v, w etc. as meta
variables for tag variables. We define a tag contezt as a finite set of declarations
of the form uf where u is a tag variable and E is a formula. If I is a context
and A is a tag context, then the pair (I', 4), which we write I'; A is said to be
an e-context (extended context).

In PA,/;, we will derive judgments of the form I' - P : A; A where I' is a
context and A is a tag context. If ' - P : A; A is derivable, then we will say
that P has type A under I'; A. We say that an e-context I'; A is smaller than
another context I7; X if ' C I and A C X. If A is empty, then we will write
I'FP:Afor ' P: A A

As we will see later, the reduction rules of derivations are not confluent. To
cope with this situation, we will interpret a derivation in an environment not by
a proof but by a set of proofs.

Now, PA./; is obtained from HA by adding the following two rules.

F'FP:AA
F'F?2wE P.AVE,A—uf

I'P:E;A II'F A:Prop
I F4uB(P): A A uE

(catch)

(throw)

Since a judgment of PA,/, contains a tag context in general, we have to
modify inference rules of HA as well. Tag contexts in the premises are always
inherited in the conclusion of any inference rule. So, for example, the (AI) rule
becomes:

I'FP:AA IITFQ:B;) XY
I''AFpair(P,Q):AANB; A Y

(AD)

and we understand that other rules of HA are similarly modified to those of
PA./;, except the following rules which we write down explicitly. These rules are
also extensions of the corresponding rules in HA, but we restrict tag contexts
in some judgments to be empty.

'rP:a=b IIFQ:Alx=a); 2
F’H - replA[x:b](PaQ) : .A[il? = b])Z

(repl)
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FFP:Ae=0] AFQ:Vz.(AD Al = succ(z)])

, ind
T,AF rec(P,Q) : Vz.A (ind)
FTFP:ADB,A IIFQ:A
D B; Q (> E)
I, 11 +apply(P,Q) : B; A
F'tP:AVB II+Q:C;Z $FR:C¥ (VE)
[T —z4 &—yB | case(P,z4.Q,yB.R) : C; 2, ¥
'rP:3z.A II+FHQ:C; X (3E)

[T —z—y?Fsplit(P, (z,94).Q) : C; 2

We can show that PA; is logically equivalent to PA by using Theorem 4
in [11]. In particular, we can derive the law of the excluded middle in PA/; as
follows.

T+ A:Prop

A T'Fzd: A

A T'H1juf(z?):Lu
I'Fazd ) ut(z4): —A;ut
FF2ut Az b ut(z?) : ~AV A,

(assume)
- (throw)

(31
(catch)

It is possible to consider a more liberal system PA:'/t which is the same as
PA.; except that we have the following implication elimination rule instead of
the (D E) rule above. :

'FP:ADB;A IIFQ:AXY
I I Fapply(P,Q) : B; AV

(> B)*

The difference between these two implication elimination rules is that in (3 E)*
it is possible to apply a function to an argument that has free tag variables, while
in (D E) a function can be applied only to an argument that is tag variable free.
We can also show that PA;*'/t is logically equivalent to PA by the same argument.

PA;"/t is therefore consistent, but we could not find a sound BHK interpretation

for PAT),. |

We now wish to give an interpretation of judgments derivable in PA./;.
Suppose that I' F P : A; A is derivable in PA ;. We will call such P an e-
derivation (extended derivation) and A; A an e-formula. In order to interpret
these syntactic entities, we will extend the notions of proposition and proof to

those of e-proposition and e-proof. In Summary, we have the following table.
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| syntactic objects | semantic objects ]

term (a) natural number (k)

tag context (A) | proposition environment ()
e-formula (A4; A) | e-proposition (S;0)
e-derivation (P) | e-proof (p)

We begin with a preliminary discussion that is necessary to give our inter-
pretation. First, we prepare a notation. Let u be a tag variable, p be a proof
and U be a proposition, then we Wute up for the pair (u, p) and uU for the set

{up|pe U}
Let S be a proposition and X be an arbitrary set. We define a set S; X by

induction on the construction of S as follows.

IfS:(Z)o1S {k}, then S; X 2 SUX.
SxT) X = (SXxTX)UX.
S+T;X 2 (SX+TX)UX.
S—»T;X:(S*(T,X))UX.
TT, Se; X 2 ([T (Sk; X)) U X.
S X = (TS X)) UX.

We have the following lemma which we can verify by induction on the con-
struction of U.

I N

Lemma9. IfU s a proposition and X CY, then U; X CU;Y.

Let 6 be a function such that dom(#) is a finite set of tag variables and 6(u)
is a proposition for any u € dom(f). We call such 6 a proposition environment.
If § is a proposition environment and u is a tag variable, then § — u denotes the
restriction of § to dom(8) — {u}.

Suppose that § is a proposition environment such that dom(0) = {uy,...,un}
where u; are distinct and U; = 8(u;) (1 < i < n). Then for any set X we associate
another set o(X) by putting:

P(X) £ wr(U3; X)U -+ U (U X),
and we define |8| as the smallest fixed point of . Therefore, |8 satisfies the
following set equation. '
A _
0] = w1 (Us; [0]) U - - - U un(Un; |0]).

If S is a proposition and # is a proposition environment, then we simply
write S;8 for S;|6] and call such a set an e-proposition (extended proposition).
Elements of e-propositions will be called e-proofs. Let p € S;8 be an e—ploof P

is exceptional if p € |0] and proper otherwise. If V C S;0, we put Ve = {p €
V | p is exceptional} and Vp = {p € V | p is proper}.



41

Let r be an e-proof in S; 8. We define a set !(r) C |0| and a set TV(r) of tag
variables simultaneously as follows. If » € |0|, then r is of the form up where
u € dom(#) and p € 6(u);0, and in this case we put

\(r) A { {up}Ul(p) if u g TV(p),
' '(p) if u € TV(p).

If r ¢ |0], then we define !(7) inductively as follows.

If S=0or S ={k}, then r = k and we put (7’)—(0
IfresS;0xT;0, then r = (p,q) and we put !(r) :!(p)U!(q).
IfreS;0+T;6, then r = (0 p) or r = (1,p) and we put !(r) _é_!(p).
IfreS—(T;0), then (r) Upes!(r(p))-

If r € [1,(Sk;0), then !(r ) U, (r(k)).

If r € ,(Sk; 0), then r = (k,p) and we put !(r) é!(p).

S o e

(@]

We define TV(r) C dom(f) by putting:

TV(r) 2 {u € dom() | up €!(r) for some p}

If TV(r) = 0, then we say that 7 is tag variable free and if u € TV(r), then we
say that u occurs in TV(r). We have the following lemma.

Lemma10. Ifr € S;0 and u g TV(r), then r € S;0 — u.

Next let € S;0 and u € dom(#). We define a set r/u C 6(u);0 as follows.
r/u will be said to be the u component of .

r/u 2 {p | up €\(r)}

It is easy to check that u € TV(r) if and only if 7/u is non-empty. We also have
the following lemma which we can prove by using Lemma 10.

Lemma1ll. r/u C §(u);0 — u.

If an e-proof p is in the u component of an e-proof r, then it means that up
is a possible exceptional value of r. So, unlike ordinary proofs we discussed in
section 3, an e-proof denotes a set of its possible values.

We now define the catch and the throw operations on e-proofs. Let » € S;6
be an e-proof and u be a tag variable. Then, we put

u,r) _é_!(ur)

and
2u,r) a {{(O,T')} if ug TV(r),
T {(1,p) | p € r/u}if ue€ TV(r).
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By Lemma 11, we can see that ?(u,7) C S+ U;0 —u and if r € U9, then
I(u, ) C |8] where U = 6(u), For aset V of e-proofs, we put !(u, V') 2 Upev !(u, p)

and 2(x,V) = U,ey ?(4,0).

Let I' be a context, A be a tag context and ¢ be an environment. We define

a proposition environment § whose domain is dom(A) by putting 6(u) 2 e[E],
where uf € A. We will write e[A] for this 6.

Now, suppose that the judgment I' + P : A; A is derivable in PA /;. Then

for any environment € such that € = I, we will define a set €[P] of e-proofs and
will show that €[P] is non-empty and e[P] C e[A]; e[A].

10.
11.
12.
13.
14.
15.
16.
17,
18.
19.
20.

21.
22.

23.
24.

1
2
3
4
5.
6
7
8
9

. €[lu(P)] 2!(u, [ P]).

. €[?u. P] £7(u, [P]).

Ce[z] & {e).

. e[id(a)] £ {e[a]}.

e[repl(P, Q)] = €[Q]

. €[suce(P)] 2 {k+1|kee[Plp}Ue[Ple.

. €[labort(P)] é‘e[[P]]. .

. €rec(P, Q)] 2 {rec(p,q) | p € [P] and g € €[Q]}.

. €[[plus(0,b)] = {e[b]}-

e[plus(succ(a), )] = {e[a] + 1 + €[[b]}.

e[times(0,b)] = {0}.

e[times(succ(a),b)] 2 {(efa] + 1)e[o]}-

[pair(P, @)1 = {(p,9) | p € €[P] and q € [Q]} U e[Ple U [Q]e.
e[pair(a, P)] = {(clal,p) | p € [PI} U e[ Ple.

e[car(P)] £ {mo(p) | p € [Plp} U [Ple.

e[edr(P)] = {m(p) | p € e[Plp} U e[ Ple.

[split(P, (2,9).Q)1 = U gyeary €l = Pllv = q)[Q1

[inl(P)] £ {(0,p) | p € [PI} U [ Ple.

efinr(P)] £ {(1,p) | p € [PI} U [ Ple.

e[case(P,2.Q,y-R)] 2 U pyeery €= = PIIRT U Ugy pye gy €Ly = PIIEI-
e[Az4.P] 2 {f | dom(f) = €¢[A] and f(p) € e[z = p][P] for all p € e[A]} U
UpeeEA]f[fﬂ = p|[P]e.

e[)z.P] £ {f | dom(f) = N and f(k) € e[z = k][P]forallk € N} U
Us €[z = k][ Ple.

[apply(P, Q)] = {p(q) | p € e[Plp and ¢ € [Q]} U e[ Ple.
[apply(P,a)] = {p(k) | p € e[Plp and k € e[a]} U [ Pe.
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- We have the following soundness theorem for PA/;.

Theorem 12. If '+ P : A; A is derivable in PAy;, and e =T, then e[P]#0
and e[ P] C e[A]; e[4].

Proof. By induction on the construction of derivations. We check typical cases
only. Since the verification of the non-emptiness of €[P] is easy, we only verify
that e[P] C e[A]; [A].
Case (throw): The rule we consider is as follows.
I'tFP:E;A II+ A:Prop
[T F14uf(P): A;4,uF

(throw)

Suppose that ¢ |= I',II. Then ¢ |= I' and by induction hypothesis, we have
e[P] C €[E];€[A]. So, if p € €[P], then we have p € [E];€[A] C e[E]; €[4, v "],
so that !(u,p) C €[4, uF] C e[A]; €[4, ©F].
Case (catch): We consider the following rule:
I'FP:A A
I'?2uf. P:AVE;A—u

5 (catch)

Suppose that € |= I'. Then, by induction hypothesis, we havee[P] C e[A]; e[A4].
Suppose that r € €[[P]. We have two cases to consider.

— Case: u does not occur in r. In this case, we have r € €[A];e[A — u¥] by
Lemma 10. So, we have ?(u,r) = {(0,7)} where (0,r) € e[AV E];e[A — u].

— Case: u occurs in 7. By Lemma 11, we have r/u C e[E]; e[A — uF]. Hence,
we have (1,p) € e[AV E];e[A — uF] for any p € r/u.

So, the theorem holds in this case.
Case (VE): The (VE) rule in PA,/; takes the following form.

I''rP:AvB IIFQ:C;)Y &FR:C¥

VE
I — 24, —yP - case(P,24.Q,y2.R): C; Z,¥ (VE)

Suppose that € |= I, JT — 24, — yB. Then ¢ | I'. So, by induction hypothesis,
we have €[P]] C ¢[AV B]. Take any r € ¢[P]. Then we have either r = (0,p) and
p € e[A] or 7 = (1,p) and p € €[B]. In the first case, we have €[z = p] = II and
by induction hypothesis we have

ez =pl[Q] C e[z = p]ﬁcﬂ;e[w = pl[Z] = €[CT; e[ 2] € [CT; [Z, 7]

We can handle the second case similarly. Hence we have the theorem in this case.
Case (D I): The rule in question is:
I'P:B;A IIF A:Prop
I'—zA I+ 2. P:ADB;A

=y

Suppose that € = I'—z4, IT. Take any r € e[Az*.P]. There are two possibilities.
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— Case r is a function such that dom(r) = e[A] and r(p) € e[z = p][P] for all
p € e[A]. Let p € €[A]. Then, we have r(p) € e[z = p|[P] and e[z =p] = I
Hence, by induction hypothesis, we have

r(p) € e[z = pl[B]; e[z = pl[A] = €[B]; [4].
Therefore, we have
r € e[A] — (c[Bl;e[A]) = ([l — e[BI);el4] = <[4 > Bl;e[A]

— Case: 7 € U,e a3 €le = pl[PJe- In this case, we have r € ev[x = p|[P]e for
some p € €[A]. Hence, by induction hypothesis, we have '

- 1 € elz = p][B]; e[z = pl[A] = €[ B]; [4].
But, since 7 is exceptional, we have r € |e[A]] C €[4 D BJ; [A4]. |
Case (D E): The rule in question is:

I'FP:ADB;A IIFQ:A
I, IT +apply(P,Q) : B; A

(O E)

Suppose that € |= I', IT and take any r € e[apply(P, Q)]. Then we have two cases.

— Cuase: v = p(q) for some p,q such that p € [P]p and q € €[Q]. Then, by
“induction hypothesis, we have p € e[A] — (e[ B]; e[A]) and ¢ € €[ A], so that

r = p(q) € e[B];e[A].

— Case: v € €[P]e. In this case, we have r € |e[A]| C ¢[B]; ¢[A].
O

We give a simple example. Let € be the empty environment and suppose that
F A : Prop, that is, A is a closed formula. Then, as we saw before, the judgment

Frut detl ut(z?)  ~AV A
is derivable in PA./,. By the definition of our BHK interpretation, it follows

that:
{(0,0)} if e[A] =0,
E[[?u. )\:L‘A.!J_u(l’A)]] - {{(l,p) lp € fllA]]} if GIIA]] £ 0.

So, if the proposition (denoted by) A is false, then the derivation denotes the left
injection of the unique proof of (the denotation of) —A, that is the left injection
of the empty function, and if A is true, then the derivation denotes the right
injection of the set of all proofs of A.

Let us consider the reduction of PA./, derivations. We have the following
reduction rules for PA /; in addition to those for HA. Via the Curry-Howard
isomorphism, derivations in PA/; can be seen as functional programs and these
reduction rules can be thought of as giving operational semantics to these func-
tional programs. '
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If u g FV(P), then ?u. P — inl(P).
If u g FV(P), then ?u. lu(P) — inr(P).
lo(lu(P)) — lu(P).

abort(lu(P)) — 'u(P).

pair(lu( P), Q) — 'u(P).

pair( P, 'u(Q)) — u(Q).

pair(a, lu(P)) — 'u(Q).

car(lu(P)) — 'u(P).

cdr(lu(P)) + tu(P).

. inl(lu( P)) — 'u(P).

. inr(lu(P)) — lu(P).

. apply('u(P), Q) — 'u(P).

. apply(‘u(P), a) — 'u(P).

® N o W

I T
LN = O WO

Then these reduction rules enjoy the following subject reduction property.

Theorem 13. If P has type A under I'; A and P+ Q, then Q has type A under
some II; X smaller than I'; A.

Moreover, the BHK interpretation respects these reduction rules in the following
way.

Theorem 14. If P has type A under I'; A, € = I' and P — Q, then ¢[P] 2
e[QI.

5 Concluding remarks

In this paper, we defined propositions and proofs as abstract mathematical en-
tities and showed that formulas and derivations, which are introduced as formal
counterparts to propositions and proofs, can be interpreted by the classical ver-
sion of BHK interpretation. As a concrete example of classical BHK interpre-
tation, we gave an interpreration for classical first order arithmetic PA. This
interpretation is almost constructive, since the interpretation of a derivation 1s
the same as the interpretation for constructive arithmetic HA if the deriva-
tion is obtained without using the law of the excluded middle. We showed that
the interpretation is sound and the denotation of derivation is preserved under
reductions of derivations. ’

We also gave an interpretation for the system PA./, of the catch/throw
calculus which is obtained from HA by adding the rules for the catch and throw
operations. In PA./;, the law of the excluded middle is derivable by using the
cath/throw rules. If we look at such a derivation as a program, then we cannot
compute (reduce) it in a constructive way. However, Murthy [4] formulated PA
(as a programming language), roughly, as HA + the control operator C which
serves as a witness of the law of the double negation elimination, and showed
that for any IIJ sentence A, if P : A, then P can be computed constructively.
We take this as a hint that we might be able to extract constructive contents
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from classical derivations derived in PA;;, since the law of the double negation
elimination is certainly derivable in PA ;.

In order to pursue the possibility of extracting constructive contents from
the catch/throw calculus, we do a case study using an example given in [4]. We
will work in PAY ot informally. We consider the sentence

AZ3n. prime(n) An < 100

Let P, be a derivation of prime(2)A2 < 100 and Ps be a derivation of prime(3)A
3 < 100, so that we have F pair,(2,P;) : A and F pairy(3,Ps) : A. We write
F Py : A and + P3 : A for these derivations. Then, we can derive the follow-
ing judgment!, where the first abort is aborty,ime(102) and the second abort 18

abortg2<100-
F Az™4. z(pair 4, (102, pair(abort(z(P3)), abort(z(P3))))) : ——A4

We can also derive the following judgment.
Fay™ ™4 20t y(Ae?. 1pu(z)) : ——AD L VA

We Writé FY: —HA and F C : ==A4 D L VA for the above two judgments® so
that we have - C(Y) : L VA. We can compute C(Y') as follows, where we put

X £ azA. ) u(z).

C(Y) — . Y( Az I u(z))
— ?u?. X(pair 4 (102, pair(abort(X(P5)), abort(X (P3)))))
— ?2u?. X(pair 4 (102, pair(abort(lu(Py)), abort(!u(P3)))))
— 2ul. X (pair 4 (102, pair(!u(P2), abort('u(Ps)))))
— 2u?. X(pair 4 (102, 'u(P2)))
— 2ut. X(1u(P2))
— ?’U.A. 'U(Pz)

— inr(P2)

We could thus read off the constructive content of the classical derivation C(Y')
of L VA. We can also get C(Y) — inr(P3) similarly.

By the above observation, we saw that it is possible to extract constluctlve
content from some classical derivations in PA ot However, at present, we do not
know whether we can extract constructive content from any derivation of IT9
sentence in PAT ¢/t Also, we do not know if we can give a sound BHK interpreta-

tion for PAY ¢/t Note that in PA./;, the argument of any functional applicatiqn

! We write a(b) for apply(a,b) for simplicity.
2 We note that C is not a valid derivation in PA./;, since in PA /;, we cannot apply
a function to an argument having a free tag variable.
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must be tag variable free, and the soundness of the BHK interpretation for PA
comes from this restriction. .

A number of classical logical systems have been introduced recently and
most of them are explicitly designed to extract constructive contents of classical
derivations ([1, 2, 4, 7, 8, 9, 10]). We hope that the classical BHK interpretation
is useful for the analysis of these systems.
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