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UNIVERSE OF QUANTUM SET THEORY

SATOKO TITANI (FAEF)

ABSTRACT. Quantum logic is a logic whose model is the com-
plete orthomodular lattice of closed subspaces of a Hilbert space.
G. Takeuti developed in [1] a quantum set theory based on the
quantum logic.

In the present paper, we introduce a strong implication into the
Takeuti’s quantum set theory, and consider it as a lattice valued
set theory in [4].

INTRODUCTION

Let Q be a complete lattice consisting of all closed linear subspaces
of a Hilbert space H. Q is an orthomodular lattice, and a model of
quantum logic. We can construct the Q-valued universe V< in our
universe V of ZFC. The set theory on V€ is based on quantum logic,
and is called the quantum set theory.

On Q we have the unary operation + of orthogonal complemen-

tation, besides the lattice operations A and \/. The operation —g
defined by

a—ob <% at v (aAb)

is an implication, in the sense that the following I 1, I 2 are satisfied.
I1:(a—gb)=1iff a<b
[2:aA(a—gh)<b

We call —¢ the quantum implication.
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G.Takeuti developed a quantum set theory with the quantum im-

plication —¢ in [1]. Then the corresponding equality and the mem-



bership relation on V< are defined by:

b=cv] = A @) —olzegul) A A (@(z)—olzecoul)

x€Du €Dy

[ueov] = V [u=gz]Av(z).

x€Dv

Each implication defines equality and membership relation. We call
the above equality =¢ and the membership relation €4 the quantum
equality and the quantum membership relation, respectively.

Unfortunately, the equality axioms are not valid for the quantum -
equality on V<. This means that quantum implication is not strong
enough to define the equality of the set theory. We need a stronger
equality to develop a set theory with equality axioms on V<.

On the other hand, any complete lattice has an implication — de-

fined by

1 ifa<b
(a—b)= { 0 otherwise.

The above defined — is the strongest implication which represents the
order relation of the lattice, and we call it the basic tmplication. For
a complete lattice £, we can construct the lattice valued universe V~.
We showed in [4] that the lattice valued set theory LZFZ on V¥ can
be formulated by introducing the basic implication —. That is, if we
interprete the equality and membership relation by using the basic
implication, i.e.

=1 = A@e)—lke)r A @e) —[zecu)

z€Du zeDv

[uev] = V [u=z]Av()

z€Dv .
then the equality axioms are valid on V<.

In this paper, we introduce the basic implication —, and the cor-
responding basic equality and membership relation to the Takeuti’s
quantum set theory, as primitive symbols. The quantum equality and
quantum membership relation are defined in the set theory.
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Now, we have two equalities =, =g, and two membership relations
€, €g on V< such that

u=v e Vr(r€u—z€v) and u€cv«— Jz(u=1zAZEV),
u=gu & Vr(r€gqu—gr€gu) and wu€gu«— Jz(u=gz ATEQV)
We denote (1 — a) by Ua, that is,
Ha = { 0 lé:i;e L
An element a of @ is said to be [J-closed if Oa = a.
For each set u in our external universe V, We define %€ V< by
{ Di = {%| z€u}
4(F) = 1.
Then for sets u,veV, [4 = 9] and [ €] are O-closed and
u=v<=i=9]=1; uwev<e=fieci] =1

A set in V< which is equal to a set of the form % is called a check
set. As far as check sets concern, the quantum equality =g and the
quantum membership relation €g are identical with the basic ones =
and €, respectively, i.e.
=gl <> U=70; UEQT = UED.
If we take the implication — in the definition of numbers, then the
set of real numbers is a check set (cf. [4]). On the other hand, it is

“known that the set R? of real numbers in (V<,A,V, —g) is repre-
sented by the set of self-adjoint operators on the Hilbert space H.



1.. QUANTUM LoGIC
Let H be a Hilbert space. We consider the complete lattice

Q = (Q’ <’/\Val,0’ 1)

consisting of closed linear subspaces of H, as a model of quantum
logic, where the least upper bound of {p,}4 of @ is denoted by V, pa,
and the greatest lower bound of {p,}, is denoted by A,pa. The
smallest element and the largest element of Q are denoted by 0 and
1, respectively.

1.1. Properties of Q.

The complete lattice @ = (Q, <, A, V,+,0,1) of all closed linear
subspaces of H is an orthomodular lattice. That is, for p,q€ Q,

(1) prt=p

(2) pAPt =05 pvp- =1

3) At =p Vg ; Vet=pAg
4 pA(@ V(PAQ)=pAg

1.2. Implications.

In general, an operator —, on a complete lattice which satisfies the
following properties is called an implication.

I1:(a—.b)=1iff a<?

I12:aAN(a—,b)<b

The operator — on a lattice defined by

{1 ifa<b

_ ot
(a—b) = 0 otherwise

represents the order relation of the lattice, and is the strongest impli-
cation on the lattice in the sense that

(p — q) < (p —, q) for every implication —, .

We call — the basic implication. The corresponding complement -a

of a is defined by

= (a —0)
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Here we denote the formula (1 — a) by Oa, that is,

|1 ifa=1
Da_{O ifa#1

Proposition 1.1. For all elements a, b, ak,bk,ck (ke K) of Q,

Gl:0Oa<a

G2:-UOa=0-0a

G3 : N Uar <UOAax

G4: If Ja<b, then Ua <0b

G5:0OaAVibe =Ve(OaAby); aAVeOb =Vi(aAOb) ;
OaV Arbr = Ae(@aVby); aV AOb = AgaVOb)

G6:0av-0Oa=1

G7: IfanUOc<b, then -bAUc < —a

G8: (a—b)=V{ceL]|c=0c, aAc<b}

Definition 1.1. On the orthomoduler lattice @, the binary operator
—q defined by

def
P—qq) =p V(A
is also an implication on Q. We call —¢ the quantum implication.

1.3. Commutability.

Definition 1.2. p is said to be commutable with ¢, in symbols p| g,
ifp<(pAQV(PAGY).

chq def

p<(PAqQV(pAgH

Note that p | ¢, ¢} p, p* | ¢, pl ¢* are all equivalent, and (Op) | g for
all p,q € Q

Definition 1.3. A C @ is commautable, in symbols J,(A ), if elements
of A are mutually commutable.

AZ A @la).

PgEA
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Proposition 1.2. Ifp | g, for each a, then
P/\\/qa = \/(p/\ Ga)-

Theorem 1.1. Let M be a linearly ordered subset of Q. Then M 1is
commutable, and there exists a complete Boolean subalgebra B of Q
including M.

Proof. 1t is obvious that M is commutable. Let B be a maximal
commutable subset of Q containing M. B is a complete Boolean
subalgebra. O

2. O-VALUED UNIVERSE V<

O-valued universe V< is constructed by induction, in the same way
as Boolean valued universe V2.

Ve = {u | E!,B<aElDuCVﬁQ(u : Du — Q)}

Qa

Ve = Uv;Q

a€On

The primitive relations u = v, u € v are interpreted on V< as:

=1] = A (@) —[ze)A A (@) - [weul)

x€Du z€Dv

[uev] = \/ [u=z] Av().

€Dy

We say an element p of Q is U-closed if p = Up. As an immediate
consequence of the definition of [u = v], we have:

Lemma 2.1. For every u,v€ V<, [u=0v] is O-closed.

Lemma 2.2. For u,veV< and {bi}x C Q,
[[u:'v]] A \/bk = \/I[’U,:’U]] A bk
k k

Proof. By Proposition 1.1, G5. O
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2.1. Nonlogical axioms.

The following nonlogical axioms, GA1-GA11, of lattice valued set
theory LZFZ are valid on Q-valued universes V< (cf. [4]) :

GALl. Equality: VuVv (u=v A p(u) — ¢(v)) .

GA2. Extensionality: Yu,v (Vz(z€u « z€v) = u=0).

GA3. Pairing: Vu,v3z (Vz(z€z « (x=uV z=1))).
The set z satisfying Vz(z €z < (z=uV z=v)) is denoted -
by {u,v}.

GA4. Union: Yu3z (Vz(z€z — Jycu(zey))).
The set z satisfying Vz(z€z — Jycu(zr€y)) is denoted by

Uu.
GA5. Power set: Vudz (Vz(z €z « = C u)), where

rcu <L Wwyez — yeu).

The set z satisfying Vz(z €z <> zCu) is denoted by P(u).
GA6. Infinity: Ju (3z(z€u) AVz(zeu — Jycu(z€y))).
GAY7. Separation: Yudv (Vz(z€v « z€u A ¢(z))).

The set v satisfying Vz(z€v < z€u A p(z)) is denoted by

{zeu] p(z)}.
GAS8. Collection:

Yudv (‘v’:r(a: eu — yp(z,y)) — V(z€u — Jy 2 vp(z, y))).

GA9. e-induction: Vz (Vy(y € z — () — ¢(z)) — Vzp(z).
GA10. Zorn: Gl(u)AVv (Chain(v,u) — Uv € u) — Iz Max(z,u),
where

' O
Gl(u) &L Vr(zeu—z €w),
Chain(v, u) &y wcuAVz,y(z,yev — zCy VyCr),
u

Max(z, u) & zeuAVz(zeuAzCr — z = 1)

GA1ll. Axiom of {: Yu3zVi(tez « O(tew)).
The set z satisfying Vi(t€ z « O(t€wu)) is denoted by Qu.
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2.2. Subuniverse VB of V<.

Let B = (B,A,V,—s,0,1) be a Boolean subalgebra of Q, and let

def
(p—Bq) =ptVye

—p is an implication on B, and

p—8q) =((p—qq) (:plv(p/\q)) for p,q € B.

The corresponding equality and membership relation to —¢g and —p,
=9, €9, =B, €, are defined by:

[u=gv] = A (@)—glzegv) A A (v(z)—glzequ])

z€Du €DV

[uegv] = \é[u:gx]]/\p(:r).‘

[u=sv] = A (u@)—slzesv)A A (v(z)—slzepu])

z€Du €DV

[uesv] = \ [u=sz]Av(z)
z€Dv .
It is obvious from the fact that (p —5 q) = (p —¢ ¢) for p,q € B
that

[u=sv] =[u=gv], [uepv]=[ucgv] foru,veVE

Hence (B, A,V,—8,0,1) is a subalgebra of (Q, A,V, —g,0,1), and
VB is a subuniverse of V<.

3. NUMBERS IN V<

The set w of all natural numbers is constructed from 0 by the suc-
cessor function z — x4 1, where 0 is the empty set and z+1 = zU{z}.
The integers are constructed as equivalence classes of pairs of natural
numbers, the rational numbers are constructed as equivalence classes
of pairs of integers, and finally, the real numbers are constructed by
Dedekind’s cuts of rational numbers. We denote the set of all integers
by Z, the set of all rational numbers by Q, the set of all real numbers
by R and the set of all complex numbers by C.



If we use the basic implication — in the definitions of these numbers
in V<, then they are all check sets (cf. [4]), that is, the sets of nat-
ural numbers, integers, rational numbers, real numbers and complex
numbers are equal to @, Z, Q, R and C, respectively, where 4 is the
copy in V€ of u, which is deﬁned by

Di = {i | z€u}, u(@)=1forzeu.

We call a set v of V< a check set , if [v = 4] = 1 for some set u.

If we use the quantum implication —¢ instead of the basic implica-
tion —, then the sets of natural numbers, integers, rational numbers
are still @, Z, and Q, respectively. A real number that is an upper
segment of a Dedekind cut defined by using the quantum implication
—q, we call a Q-real. It is known that each Q-real is in some Boolean
subuniverse VB of V2, and represented by a self-adjoint operator on
the Hilbert space H.

1. Q-reals.
Definition 3.1. We call u € P(Q) a Q-real, if
(1): IreQregu) A IseQ(s€gu)t
(2):VreQ ((TEQu) ——g IscQ(s <TA(s EQ'U/))

Proposition 3.1. If [u is a Q-real ] = p, then there ezists v € Ve
such that

Dv=DQ, [visa @rea]=1, and [u=gv] > p.
Proof. Such an element v of V< is defined by
Do =DQ |

ofF) = ([Feu]Ap)vpt, ifr>0
([f € u] A p), if r <0.
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Let R2 be the set of Q-reals in V<.
Re={uecV<||uis a Qreal | =1}
Definition 3.2. Q-reals u,v € R? are said to be commutable if
Vr, s€Q([F € u] | [3 € v]).
Proposition 3.2. (1) If{u,v,w} is a set of mutually commutable
(Q)-reals, then
[(u=gv) A (v=qw)] < [u=gquw]
(2) Ifu is a Q-real in V' which is a check set, then u is commutable
with every Q-real in V<.
Proof. (1)

{[Feu] | reQiu{lser] | seQtu{liew] | teQ}U{[u=g ], [v=o w]}
is commutable. Hence (1) follows from
[Feu] A J(u=gv) A (v=gqw)] < [few], and

[Few] A [(u=gv) A (v=gw)] < [Feu].
(2) follows from the fact that 0,1 € Q are commutable with every
element of Q. |

O
Definition 3.3. If u, v are commutable Q-reals in R, then

u<LQU A Vr(rev—greu)

u<qu &5 (u<gu)A(w<gut

utv {reQ|3Ir,reQ(r=r1+r2)A(ri€u) A (r2€v)}

—y {reQ|IseQ(s<r) A(—s€ u)h)}
If A is a commutable set of Q-reals in R<, and u,v€ A, then u+wv,
—u are Q-reals, and A U {u + v, —u} is commutable. Hence we have
the following propositions.

Proposition 3.3. Ifuy,us,v1,v2 are mutually commutable Q-reals in
R2, then the following sentenses are valid in V<.

(1) ’ul:Q’u,z/\’Ul ZQ’UQ/\’Uq QQ V1 — U2 QQ V2



(2) uy=gua Av1=gU2 —> U1 +V1=QU2 + 2

(3) ur=qus — —u1 =g —Up
Proposition 3.4. If u,v,w are mutually commutable ()-reals in Ve,
then the following sentenses are valid in V<.

Dut+tv=v+u.

@ ut+@w+w)=(ut+v)+w

B u+tl=uv

(4) w+ (—u)=0 5

(6) u<Q 0 —u>q0

3.2. Projections. For each element p of Q, let p be the element of
V€ defined by

Dp = DQ

0, ifr<o0
p(¥) ={pt, if0<r<1

1, ifl<r

Then p is a Q-real in R, and :
p=oil=p, [B=00]=p"
where 1 and 0 are identified with Q-reals defined by

Di=D0 =DQ
. 0, ifr<l1 « 0, ifr<o
i(r) =4 = 0F) =1 ="
(7) {1, ifl<r’ ) {1, ifo<r

Proposition 3.5. If a Q-real u satisfies
[u=01] = [(u=0)"] =»p,
then [u = p] = 1.
Proof. From the definition of p. O _
Definition 3.4. We say a Q-real u is a projection on p€ Q if

| [u=¢ 1] =[(u=c0)"]=»p.



Proposition 3.6. Let p,q € Q.

(1) p<g+=[p<eidl=1
(2) Ifp,q are commutable and pAq = 0, then [p+q =0 (pVvVq)] =1

Proof (1) is obvious.
2)Ifp|gand pAg=0,thenp<g

p = pAg =[P=0I]A[a=00] <[P+ d=¢1]

g = gApt =[i=0I]APp=00] <[P+ d=¢o1]

It follows that pV ¢ < [p+ d=¢ 1] |
PVt =p At <[p=o0] A [§=00] < [p+ G =20l

1+ and ¢ < pt. Hence,

O

3.3. Product on RS.

Definition 3.5. the product u - p of a Q-real u and a projection P
which is commutable with u is defined by

PE{reQlreunp=el)V(r>0Ap=00)}
We abbrevite the symbol - of product, if there is no possible confu-
sion.

Proposition 3.7. [0-5=0]=[1-p=p] =1
Proof. Since # € 0-p — €
have

0 — 7 €0 -5 are valid, we

[1-9p=p] =1 is shown similarly. O

Proposition 3.8. Letu,v be a @-real in R, p,q € Q, and letu,v,p,
be mutually commutable. Then

(1) p<[up=gul, p* <[up=o0]
2) p<u<qv] = [up <qup] =1
(3) [u(B1 + p2) =g ubr +upa] = 1

(4) [Pi=c1] =pAgq
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Proof. (1) follows from the fact that {p,u, 0,1} is a commutable
set of Q-reals, and

pA[Feup] = [p=glAT e up] <[Feul,
pA[Ffeu] = [p=glAFeu] <[Feup]
(2) By (1) and Proposition 3.3, we have
p<[up<quil, and p*<[up=gup=o0].
It follows that p < [u <g v] = [up <q vp] = 1.
(3) S
[ € u(Br + p2)] = [Br1,72 € Q((F = 11 +72) A (11 € up1) A (12 € ups)]
=V [((mew)ABri=el) Az >0)A@F=e0)V

71,72€Q
r=r1+72

((fzve w) A (Ba=g 1) A (1 > 0) A (p‘l_:’g 6)) Vv
((f1 > 0) A (fz > 0) AN (251 =9 I) A (Ifzr-g 0))]]
=[r € u(pr + 52)l

(4) follows from (1)
D .

Definition 3.6. For commutable Q-reals u,v in R2, let
[(w>q 0) A (v2q 0)] = p.
(uv)p is defined as |
{reQ|3r,r ((r =rr)A(r1 €u)A(r2 €v) A (P=¢g i))v((r > 0) A @zg@))}.
Proposition 3.9. For commutable Q-reals u,v in R such that
[u>20 0Av 24 0] =p,

we have

[uvp=g vup] = 1.
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Definition 3.7. Let u, v be commutable Q-reals in R, and

n=[0<qul, pp=[<g0], ps=[0<gv]l, ps=1[v<g0]

Then p1, pa, p3, ps are mutually orthogonal, and p; Vps Vp3 Vpy = 1.
Thus, the product uv is defined as follows. |

def ~n ~ PPN . n - aA A
wv = wvp1Ps + u(—v)p1Ps + (—u)vpaps + (—u)(—v)paps

Proposition 3.10. Let uy,up, v1, vy be mutually commutable ()-reals
in RC. Then

[(u1 =g u2) A (v1 =g 1)] < [u1v1 =g ust2]

Proof. Immediate from the definition. O

3.4. Representation of Q-reals.

Let u be a Q-real in V<. Then
r,s€Q, r<s=[feu]<[5equ]

Hence the set M = {[f € u] | r € Q} is a linearly ordered subset
of Q, and commutable. Let B be a maximal commutable subset of
Q including M. Then B is a complete Boolean subalgebra of Q, and
ueVEcve.

Proposition 3.11. IfB = (B, A, V, —g, 1, 1,0) is a complete Boolean
subalgebra of Q, then

[visa@real]p =[visa Qreal] foreachveV?,
where | ]p means the truth value in VE.

Each Q-real u is represented as a self-adjoint operator [ AdE(\) on
H, where E(A) = A7 € u] € B (cf. [2]).

Proposition 3.12. Every Q-real u in R is in some Boolean valued
subuniverse V2 of V<, and the set of ()-reals in VB ReNVE, form
a commutative ring, and also R-linear space.
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