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Crispness and Representation Theorem in Dedekind
Categories
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1 Introduction

Since Zadeh’s invention the concept of fuzzy sets has been extensively investigated in mathe-
matics, science and engineering. The notion of fuzzy relations is also a basic one in processing
fuzzy information in relational structures, see e.g. Pedrycz [15]. Goguen [5] generalized the
concepts of fuzzy sets and relations taking values from partially ordered sets. Fuzzy relational
equations were initiated and applied to medical models of diagnosis by Sanchez [17].

On the other hand, the theory of relations, namely relational calculus, has a long history,
see [13, 18, 19] for more details. Almost all modern formalizations of relatlon algebras are af-
fected by the work of Tarski [20]. Mac Lane [12] and Puppe [16] exposed a categorical basis for
the calculus of additive relations. Freyd and Scedrov [2] developed and summarized categorical
relational calculus, which they called allegories. Concerning applications to the relational the-
ory of graphs and programs, Schmidt and Stréhlein [18] gave a simple proof of a representation
theorem for Boolean relation algebras satisfying the Tarski rule and the point axiom. They
also wrote an excellent text book [19] on relations and graphs with many useful examples from
computer science. In relational calculus one calculates with relations in an element-free style,
which makes relational calculus a very useful framework for the study of mathematics [8] and
theoretical computer science [1, 7, 11] and also a useful tool for applications. Some element-
free formalizations of fuzzy relations and proofs of representation theorems were provided in
[3, 9, 10]. :

In this paper we consider Dedekind categories named by Olivier and Serrato [14]. One of the
aim of this paper is to study notions of crispness and scalar relations in Dedekind categories.
A notion of crispness was introduced in [10] under the assumption that Dedekind categories
have unit objects which are an abstraction of singleton (or one-point) sets. To capture the
notion of crispness without such assumption, we use a notion of scalar relations. The notion
of scalar relations in homogeneous relation algebras was introduced in [4]. The other aim of
this paper is to prove a representation theorem for Dedekind categories. Such a theorem for
Dedekind categories with a unit object satisfying strict point axiom was also proved in [10].
This paper is organized as follows:

In section 2 we first state the definition of complete Dedekind categories [14] as a categorical

structure formed by L-relations [5] with sup-inf composition. Also we define a preoder among '
objects of Dedekind categories which compares the lattice structures on objects in a sense.
Section 3 studies notions of scalars and crispness for Dedekind categories. The scalars on an
object form a distributive lattice, which would be seen as the underlying lattice structure.
In section 4 we recall the definition of L-relations, due to Goguen [5], and illustrate a few

*Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan.



64

relationships between crispness and lattice structures of scalars. In section 5 we show a repre-
sentation theorem for connected Dedekind categories satisfying the strict point axiom without
the assumption of existence of unit objects, and it is proved that the representation function
is a bijection preserving all operations of Dedekind categories.

2 Dedekind Categories

In this section we recall the fundamentals on relation categories, which we will call Dedekind
categories following Olivier and Serrato [14].

Throughout this paper, a morphism « from an object X into an object Y in a Dedekind
category (which will be defined below) will be denoted by a half arrow oo : X — Y, and the
composite of a morphism a : X — Y followed by a morphism 8 : Y — Z will be written as
af: X — Z.

Definition 2.1 A Dedekind category D is a category satisfying the following:

D1. [Complete Distributive Lattice] For all pairs of objects X and Y the hom-set D(X,Y)
consisting of all morphisms of X into Y is a complete distributive lattice with the least mor-
phism Oxy and the greatest morphism Vxy. ‘

D2. [Involution] An involution ! : D — D is a monotone contravariant functor. That is, for all
morphisms o,/ : X =Y, 5:Y — Z,

(a) (af)t = o, (b) (') = o, (c) If @ C o, then of T o

D3. [Dedekind Formula] For all morphisms o : X — Y, 8:Y — Z and y: X — Z the
Dedekind formula a8 My C a8 M aty) holds.

D4. [Residues] For all morphsms f:Y — Z and v: X — Z the residue (or division, weakest
precondition) v+ §: X — Y is a morphism such that of C v if and only if o C v = § for all
morphisms o : X — Y. O

Note that complete distributive lattices are equivalent to complete Brouwerian lattices or
complete Heyting algebras.

Throughout this section, all discussions will assume a fixed complete Dedekind category D.
- We denote the identity morphism on an object X of D by idx. The greatest morphism V xy is
called the universal morphism and the least morphism Oxy the zero morphism. A morphism
is nonzero if it is not equal to the zero morphism. An object X is called empty if Vxx = 0xx,
and nonempty if Vxx # Oxx.

Proposition 2.2 Let o,o/ : X —Y and 5,6 : Y — Z be morphisms in D.
(2) VxxVxy = VxyVyy = Vxy. |
(b) Ifalo'=Vyxy, ala' =0xy and Vxxa = a, then Vxxo' =o'
(c) fuCidy and v Cidy, then u! = uu = u and uv = uNw.
(d) IfuCidx and v Cidy, then ua = aMuVxy and ov = oM Vxyv.

The statement (a) in the last proposition indicates that if Vxy # Oxy, then both of X
and Y are nonempty. :

Proposition 2.3 Let o : X — Y be a morphism such that Vxxa = o. Then the following
‘three conditions are equivalent: (a)idx C aat, (b)) Vxx = adt, (¢) Vxx = aVyx.
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A binary relation < among objects of D is defined as follows: For two objects X and Y a
relation X < Y holds if and only if Vxx = VxyVyx. Then < is a preorder, that is, reflexive
and transitive. For VXX = Vxxvxx, and if VXX = nyVyx and Vyy - Vszzy,
then Vxx = VxyVyyVyx = VxyVyzVzyVyx C VxzVzx. Hence its symmetric closure
X ~ Y, which means X <Y and Y < X, is an equivalence relation.

Proposition 2.4 Assume that X <Y. IfuVxy E vVxy foru,v: X — X such thatu C idx
and u Cidy, then u C v.

Definition 2.5 A Dedekind category D is connected if all pairs of objects of D are equivalent,
that is, if X ~ Y for all objects X and Y of D.

3 Scalars and Crispness

We now introduce the two notions of scalars and s-crisp relations to define a concept of points
with a separation property that two different points does not meet. '

Definition 3.1 A scalar k on X is a morphism k& : X — X of D such that k¥ C idx and
ICVXX — VX)(]C.

A scalar k on X commutes with all morphisms o« : X — X, that is, ko = ak, because
ka = Olr]k'VXX = OanXxk= ak.

It is trivial that the zero morphism Oxx : X — X and the identity morphism idy : X — X |
are scalars on X. The set of all scalars on X is denoted by F(X). It is clear that F(X) is a
complete distributive lattice for all objects X.

Lemma 3.2 For a morphism € : X — Y and an object W define a morphism

dxyw(é) = Vwx&Vyw Nidw : W — W.
Then
(a) dxyw(€)Vwz = VwxEVyz and Vzwexyw(§) = Vzx€Vyw for each object Z,
(b) ¢xyw(&) 1s a scalar on W,
(c) pxxwdxyx(€) = dyywdxyy(€) = dxyw(§),
(d) If Vxy = VxwVwy, then £ E Vxwoxyw(§)Vwy,
(e) If Vxy = VxwVwy, an identity dxyw(€) = Oww is equivalent to £ = Oxy.

From the above Lemma 3.2(b) one have a function ¢xyw : D(X,Y) — F(W). Note that
fW=X or W = Y, then va = VXvay.

Proposition 3.3 (a) If X < Y, then dyyx(dxxy(k)) =k for all scalars k € F(X),
(b) If X ~Y, then F(X) is isomorphic to F(Y) as lattices. |
(c) dzzx(k)a = adzzy (k) for‘ all scalars k on Z and all morphisms a: X — Y.
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(d) For every nonzero morphism £ : X — 'Y in D there is a nonzero scalar k € F(X) such
that Vxfoyy = ]CVXy.

Definition 3.4 A morphism & : X — Y is s-crisp if k7 C o implies 7 £ « for all nonzero
scalars k : X — X and all morphisms 7: X — Y. a

It is trivial from the above definition that all universal morphism V xy is s-crisp.

Proposition 3.5 If the identity morphism idy is s-crisp, then so are all total functions f :
X-Y.

Proof. Let f: X — Y be a total function. Assume that k7 C f for a nonzero scalar k on X
and a morphism 7 : X — Y. First note that k7 = 7¢xxy (k) by 3.3(c). Then we have

dxxy (k)T f = (réxxy(k))'f = (kr)'f C f1f Cidy

and so 7 f C idy from the assumtion. Therefore 7! C 7! ff! C f!, which completes the proof.
a

Lemma 3.6 A morphism o : X — Y is s-crisp if and only if a relatively pseudo-complemet
o = a is s-crisp for all morphisms o/ : X —Y.

Proof. First assume that o : X — Y is s-crisp and k7 C o' = o for a nonzero scalar k£ and
morphisms 7,0/ : X — Y. Then we have

k(rNd)=krNdo C o

and so Mo/ C a, since o : X — Y is s-crisp. Therefore 7 C o/ = . Conversely if o = o
is s-scrisp for all morphisms o/ : X — Y, then o = Vxy = « is s-crisp. This completes the
proof. O

Theorem 3.7 The following three statements are equivalent:
(a) Ifk # Oxx and kM k' = Oxx for scalars k, k' € F(X), then k' = Oxx,

(b)_ The zero morphism Oxy 1is s-crisp for all objects Y, (that is, if kT = Oxy for a nonzero
scalar k on X and a morphism 7: X — Y, then 7 = Oxy ), ‘

(c) For every morphism a : X — Y its pseudo-complement - : X — Y 1s s-crisp for all
objects Y,

(d) Every complemented morphism o : X — Y is s-crisp-for all objects Y.

4 [L[-Relations

Let L be a complete distributive lattice (or, a complete Heyting algebra) with the least element
0 and the greatest element 1. The supremum (the least upper bound) and the infimum (the
greatest lower bound) of a family {k,} of elements in L will be denoted by Vikx and Ay,
respectively. For two elements a,b € L the relative pseudo-complement of a relative to b will
be written as a = b. Now recall some fundamentals on L-relations [5].
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Let X and Y be sets. An L-relation R from X into Y, written R : X — Y, is a function
R:X xY — L. The set of all L-relations from X into Y will be denoted by L — Rel(X).
An L-relation R is contained in an L-relation S, written R C S, if R(z,y) < S(z,y) for all
(z,y) € X x Y. The zero relation Oxy and the universal relation Vxy are L-relations with
Oxy(z,y) = 0 and Vxy(z,y) = 1 for all (z,y) € X x Y, respectively. It is trivial that C is
a partial order, and Oxy C R C Vxy for all fuzzy relations R. For a family {R,}, of fuzzy
relations we define fuzzy relations Uy Ry and Ny R, as follows:

(UsR»)(z,9) = VaRa(z, y)

and
(MRx)(z,y) = AaRa(z,y)

for all z,y € X. It is obvious that Uy Ry and Ny R, are the least upper bound and the greatest
lower bound of a family {R)}\, respectively, with respect to the order C. The composite
RS(= R;S) : X — Z of an L-relation R : X — Y followed by an L-relation S : Y — Z is
defined by
(RS)(z,2) = Vyer[R(z,y) A S(y, 2)]

for all (z,2) € X x Z. This composition of L-relations is called as sup-inf composition. The
associativity (RS)T = R(ST) holds for all L-relations R, S and T. The identity relation idx
of a set X is an L-relation such that idx(z,z') = 1if z = 2’ and idx(z,2’) = 0 otherwise.
The unitary law idxR = R idy = R holds for all R : X — Y. The inverse (or transpose)
R':Y — X of an L-relation R: X — Y is defined by

Rl(y,z) = R(s,9)

for all (y,z) €Y x X. For L-relations S:Y — Zand T : X — Z the residue T+ S: X —Y
is defined by

(T = 8)(z,9) = Nsez[S(y, 2) = Tz, 2)]
for all (z,y) € X x Y. The readers can easily see that L-relations and their operations defined

above satisfy almost all axioms of Dedekind categories, except for D3(Dedekind formula) and
D4(Residues), which will be proved in the following:

Proposition 4.1 Let R: X —Y,S:Y — Z and T : X — Z be L-relations. Then
(a) RSNT C R(SN R'T) (Dedekind formula),
(b) RSCT ifand only f RCT = S.

In relational calculus ([2, 8, 19]) a function R on X is a relation satisfying the univalency
R!R C I and the totality I C RR!.
An L-relation k£ : X — X is a scalar on X if and only if

Vz,z' € X : k(z,z) = k(z',2") and z # 2’ = k(z,2") = 0.

An L-relation R : X — Y is 0-1 crisp ([5]) if R(z,y) = 0 or R(z,y) = 1 for all (z,y) €
X x Y. Of course Oxy, Vxy and idx are 0-1 crisp. For a 0-1 crisp L-relation R : X — Y
define an L-relation R : X — Y by R(z,y) = 0 if R(z,y) = 1 and R(z,y) = 1 otherwise.
Then RUR = Vxy and RN R = Oxy. This fact means that- all 0-1 crisp L-relations are
complemented. :

Proposition 4.2 All s-crisp L-relations are 0-1 crisp.
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Proposition 4.3 For L-relations the following statements are equivalent:
C0.Va,b€L:aANb=0=>a=0o0rb=0.

K0. All 0-1 crisp L-relations are s-crisp.
Proposition 4.4 For L-relations the following statements are equivalent:
Cl.Va,beL:aAb=0andaVb=1=a=00rb=0.

K1. All complemented L-relations are 0-1 crisp. v

K2. All totally functional L-relations are 0-1 crisp.

5 Representation Theorem

Definition 5.1 Let D be a complete Dedekind category. A point z of X is an s-crisp morphism
z: X — X such that Vxxz = z, 2!z Cidyx and idx C zz!. O

Proposition 5.2 Let z and z' be points of X. Then
(a) If Vxxp = p and p C z for a morphism p: X — X, then p = kz for a unique scalar k
on X. A
(b) Ifz #1', then z Mz’ = 0xx and zz'M = 0xx.
Set L = F(W) for a fixed object W. Then L is a complete disributive lattice. A func-
ton x(a) : x(X) x x(¥) — L assigning x(a)(z,5) = dxyw(say!) € L to a pair (z,y) of

points z of X and y of Y, gives an L-relation of x(X) into x(Y). Thus we have a function
x : D(X,Y) = L-Rel(x(X), x(Y)).

Proposition 5.3 If D is a connected Dedekind category, then the function x : D(X,Y) — L-
Rel(x(X), x(Y)) satisfies the following properties:

(a) x(Oxv) = Ox()xv)s X(Vxy) = Vexr) and x(idx) = idyx),
(b) x(aeUa) = x(a) Ux(e) and x(aNa) = x(a) N x(e),

(c) x(af) = x(a)*,

(d) x(2)x(8) = x(aUyexx)¥'y) B)-

(e) The function x : D(X,Y) — L — Rel(x(X), x(Y)) is surjective.

Definition 5.4 A complete Dedekind category D satisfies the strict point axiom if and only
if ' ' ,

Uzex(x)Z = Vxx
for all objects X, where x(X) denotes the set of all points of X. O

- Proposition 5.5 A complete Dedekind category D satisfies the strict point aziom if and only
if the function x : D(X,X) — L-Rel(x(X), x(X)) is injective for all objects X .

Proposition 5.6 If a complete Dedekind category D satisfies the strict point aziom, then for
all objects X the identity morphism idx is complemented. Moreover, if the condition C1 is in
addition valid in D, then idx 1s s-crisp for all objects X.

Theorem 5.7 (Representation Theorem) Assume that D satisfies the strict point aziom. Then
every morphism o : X — Y has a unique representation’

o= I-—L::Gx()() L—‘ylex(Y) XX(O‘)(:C7 y)x-uVny.
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