Crispness and Representation Theorem in Dedekind Categories

Yasuo KAWAHARA* and Hitoshi FURUSAWA*

(河原 康雄, 古澤 仁)

1 Introduction

Since Zadeh's invention the concept of fuzzy sets has been extensively investigated in mathematics, science and engineering. The notion of fuzzy relations is also a basic one in processing fuzzy information in relational structures, see e.g. Pedrycz [15]. Goguen [5] generalized the concepts of fuzzy sets and relations taking values from partially ordered sets. Fuzzy relational equations were initiated and applied to medical models of diagnosis by Sanchez [17].

On the other hand, the theory of relations, namely relational calculus, has a long history, see [13, 18, 19] for more details. Almost all modern formalizations of relation algebras are affected by the work of Tarski [20]. Mac Lane [12] and Puppe [16] exposed a categorical basis for the calculus of additive relations. Freyd and Scedrov [2] developed and summarized categorical relational calculus, which they called allegories. Concerning applications to the relational theory of graphs and programs, Schmidt and Ströhlein [18] gave a simple proof of a representation theorem for Boolean relation algebras satisfying the Tarski rule and the point axiom. They also wrote an excellent text book [19] on relations and graphs with many useful examples from computer science. In relational calculus one calculates with relations in an element-free style, which makes relational calculus a very useful framework for the study of mathematics [8] and theoretical computer science [1, 7, 11] and also a useful tool for applications. Some element-free formalizations of fuzzy relations and proofs of representation theorems were provided in [3, 9, 10].

In this paper we consider Dedekind categories named by Olivier and Serrato [14]. One of the aim of this paper is to study notions of crispness and scalar relations in Dedekind categories. A notion of crispness was introduced in [10] under the assumption that Dedekind categories have unit objects which are an abstraction of singleton (or one-point) sets. To capture the notion of crispness without such assumption, we use a notion of scalar relations. The notion of scalar relations in homogeneous relation algebras was introduced in [4]. The other aim of this paper is to prove a representation theorem for Dedekind categories. Such a theorem for Dedekind categories with a unit object satisfying strict point axiom was also proved in [10]. This paper is organized as follows:

In section 2 we first state the definition of complete Dedekind categories [14] as a categorical structure formed by L-relations [5] with sup-inf composition. Also we define a preoder among objects of Dedekind categories which compares the lattice structures on objects in a sense. Section 3 studies notions of scalars and crispness for Dedekind categories. The scalars on an object form a distributive lattice, which would be seen as the underlying lattice structure. In section 4 we recall the definition of L-relations, due to Goguen [5], and illustrate a few

^{*}Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan.

relationships between crispness and lattice structures of scalars. In section 5 we show a representation theorem for connected Dedekind categories satisfying the strict point axiom without the assumption of existence of unit objects, and it is proved that the representation function is a bijection preserving all operations of Dedekind categories.

2 Dedekind Categories

In this section we recall the fundamentals on relation categories, which we will call Dedekind categories following Olivier and Serrato [14].

Throughout this paper, a morphism α from an object X into an object Y in a Dedekind category (which will be defined below) will be denoted by a half arrow $\alpha: X \to Y$, and the composite of a morphism $\alpha: X \to Y$ followed by a morphism $\beta: Y \to Z$ will be written as $\alpha\beta: X \to Z$.

Definition 2.1 A Dedekind category \mathcal{D} is a category satisfying the following:

- D1. [Complete Distributive Lattice] For all pairs of objects X and Y the hom-set $\mathcal{D}(X,Y)$ consisting of all morphisms of X into Y is a complete distributive lattice with the least morphism 0_{XY} and the greatest morphism ∇_{XY} .
- D2. [Involution] An involution $^{\sharp}: \mathcal{D} \to \mathcal{D}$ is a monotone contravariant functor. That is, for all morphisms $\alpha, \alpha': X \to Y, \beta: Y \to Z$,
- (a) $(\alpha\beta)^{\sharp} = \beta^{\sharp} \alpha^{\sharp}$, (b) $(\alpha^{\sharp})^{\sharp} = \alpha$, (c) If $\alpha \sqsubseteq \alpha'$, then $\alpha^{\sharp} \sqsubseteq \alpha'^{\sharp}$.
- D3. [Dedekind Formula] For all morphisms $\alpha: X \to Y$, $\beta: Y \to Z$ and $\gamma: X \to Z$ the Dedekind formula $\alpha\beta \sqcap \gamma \sqsubseteq \alpha(\beta \sqcap \alpha^{\sharp}\gamma)$ holds.
- D4. [Residues] For all morphsms $\beta: Y \to Z$ and $\gamma: X \to Z$ the residue (or division, weakest precondition) $\gamma \div \beta: X \to Y$ is a morphism such that $\alpha\beta \sqsubseteq \gamma$ if and only if $\alpha \sqsubseteq \gamma \div \beta$ for all morphisms $\alpha: X \to Y$. \square

Note that complete distributive lattices are equivalent to complete Brouwerian lattices or complete Heyting algebras.

Throughout this section, all discussions will assume a fixed complete Dedekind category \mathcal{D} . We denote the identity morphism on an object X of \mathcal{D} by id_X . The greatest morphism ∇_{XY} is called the universal morphism and the least morphism 0_{XY} the zero morphism. A morphism is nonzero if it is not equal to the zero morphism. An object X is called empty if $\nabla_{XX} = 0_{XX}$, and nonempty if $\nabla_{XX} \neq 0_{XX}$.

Proposition 2.2 Let $\alpha, \alpha' : X \to Y$ and $\beta, \beta' : Y \to Z$ be morphisms in \mathcal{D} .

- (a) $\nabla_{XX}\nabla_{XY} = \nabla_{XY}\nabla_{YY} = \nabla_{XY}$.
- (b) If $\alpha \sqcup \alpha' = \nabla_{XY}$, $\alpha \sqcap \alpha' = 0_{XY}$ and $\nabla_{XX}\alpha = \alpha$, then $\nabla_{XX}\alpha' = \alpha'$.
- (c) If $u \sqsubseteq id_X$ and $v \sqsubseteq id_X$, then $u^{\sharp} = uu = u$ and $uv = u \sqcap v$.
- (d) If $u \sqsubseteq id_X$ and $v \sqsubseteq id_Y$, then $u\alpha = \alpha \sqcap u\nabla_{XY}$ and $\alpha v = \alpha \sqcap \nabla_{XY}v$.

The statement (a) in the last proposition indicates that if $\nabla_{XY} \neq 0_{XY}$, then both of X and Y are nonempty.

Proposition 2.3 Let $\alpha: X \to Y$ be a morphism such that $\nabla_{XX}\alpha = \alpha$. Then the following three conditions are equivalent: (a) $\mathrm{id}_X \sqsubseteq \alpha \alpha^{\sharp}$, (b) $\nabla_{XX} = \alpha \alpha^{\sharp}$, (c) $\nabla_{XX} = \alpha \nabla_{YX}$.

A binary relation \prec among objects of \mathcal{D} is defined as follows: For two objects X and Y a relation $X \prec Y$ holds if and only if $\nabla_{XX} = \nabla_{XY}\nabla_{YX}$. Then \prec is a preorder, that is, reflexive and transitive. For $\nabla_{XX} = \nabla_{XX}\nabla_{XX}$, and if $\nabla_{XX} = \nabla_{XY}\nabla_{YX}$ and $\nabla_{YY} = \nabla_{YZ}\nabla_{ZY}$, then $\nabla_{XX} = \nabla_{XY}\nabla_{YY}\nabla_{YX} = \nabla_{XY}\nabla_{YZ}\nabla_{ZY}\nabla_{YX} \sqsubseteq \nabla_{XZ}\nabla_{ZX}$. Hence its symmetric closure $X \sim Y$, which means $X \prec Y$ and $Y \prec X$, is an equivalence relation.

Proposition 2.4 Assume that $X \prec Y$. If $u\nabla_{XY} \sqsubseteq v\nabla_{XY}$ for $u, v : X \to X$ such that $u \sqsubseteq id_X$ and $u \sqsubseteq id_X$, then $u \sqsubseteq v$.

Definition 2.5 A Dedekind category \mathcal{D} is connected if all pairs of objects of \mathcal{D} are equivalent, that is, if $X \sim Y$ for all objects X and Y of \mathcal{D} .

3 Scalars and Crispness

We now introduce the two notions of scalars and s-crisp relations to define a concept of points with a separation property that two different points does not meet.

Definition 3.1 A scalar k on X is a morphism $k: X \to X$ of \mathcal{D} such that $k \sqsubseteq \mathrm{id}_X$ and $k \nabla_{XX} = \nabla_{XX} k$.

A scalar k on X commutes with all morphisms $\alpha: X \to X$, that is, $k\alpha = \alpha k$, because

$$k\alpha = \alpha \sqcap k \nabla_{XX} = \alpha \sqcap \nabla_{XX} k = \alpha k.$$

It is trivial that the zero morphism $0_{XX}: X \to X$ and the identity morphism $\mathrm{id}_X: X \to X$ are scalars on X. The set of all scalars on X is denoted by $\mathcal{F}(X)$. It is clear that $\mathcal{F}(X)$ is a complete distributive lattice for all objects X.

Lemma 3.2 For a morphism $\xi: X \to Y$ and an object W define a morphism

$$\phi_{XYW}(\xi) = \nabla_{WX} \xi \nabla_{YW} \cap \mathrm{id}_W : W \to W.$$

Then

- (a) $\phi_{XYW}(\xi)\nabla_{WZ} = \nabla_{WX}\xi\nabla_{YZ}$ and $\nabla_{ZW}\phi_{XYW}(\xi) = \nabla_{ZX}\xi\nabla_{YW}$ for each object Z,
- (b) $\phi_{XYW}(\xi)$ is a scalar on W,
- (c) $\phi_{XXW}\phi_{XYX}(\xi) = \phi_{YYW}\phi_{XYY}(\xi) = \phi_{XYW}(\xi)$,
- (d) If $\nabla_{XY} = \nabla_{XW} \nabla_{WY}$, then $\xi \sqsubseteq \nabla_{XW} \phi_{XYW}(\xi) \nabla_{WY}$,
- (e) If $\nabla_{XY} = \nabla_{XW} \nabla_{WY}$, an identity $\phi_{XYW}(\xi) = 0_{WW}$ is equivalent to $\xi = 0_{XY}$.

From the above Lemma 3.2(b) one have a function $\phi_{XYW}: \mathcal{D}(X,Y) \to \mathcal{F}(W)$. Note that if W = X or W = Y, then $\nabla_{XY} = \nabla_{XW}\nabla_{WY}$.

Proposition 3.3 (a) If $X \prec Y$, then $\phi_{YYX}(\phi_{XXY}(k)) = k$ for all scalars $k \in \mathcal{F}(X)$,

- (b) If $X \sim Y$, then $\mathcal{F}(X)$ is isomorphic to $\mathcal{F}(Y)$ as lattices.
- (c) $\phi_{ZZX}(k)\alpha = \alpha \phi_{ZZY}(k)$ for all scalars k on Z and all morphisms $\alpha: X \to Y$.

(d) For every nonzero morphism $\xi: X \to Y$ in \mathcal{D} there is a nonzero scalar $k \in \mathcal{F}(X)$ such that $\nabla_{XX} \xi \nabla_{YY} = k \nabla_{XY}$.

Definition 3.4 A morphism $\alpha: X \to Y$ is s-crisp if $k\tau \sqsubseteq \alpha$ implies $\tau \sqsubseteq \alpha$ for all nonzero scalars $k: X \to X$ and all morphisms $\tau: X \to Y$.

It is trivial from the above definition that all universal morphism ∇_{XY} is s-crisp.

Proposition 3.5 If the identity morphism id_Y is s-crisp, then so are all total functions $f: X \to Y$.

Proof. Let $f: X \to Y$ be a total function. Assume that $k\tau \sqsubseteq f$ for a nonzero scalar k on X and a morphism $\tau: X \to Y$. First note that $k\tau = \tau \phi_{XXY}(k)$ by 3.3(c). Then we have

$$\phi_{XXY}(k)\tau^{\parallel}f = (\tau\phi_{XXY}(k))^{\parallel}f = (k\tau)^{\parallel}f \sqsubseteq f^{\parallel}f \sqsubseteq \mathrm{id}_{Y}$$

and so $\tau^{\sharp} f \sqsubseteq \mathrm{id}_{Y}$ from the assumtion. Therefore $\tau^{\sharp} \sqsubseteq \tau^{\sharp} f f^{\sharp} \sqsubseteq f^{\sharp}$, which completes the proof.

Lemma 3.6 A morphism $\alpha: X \to Y$ is s-crisp if and only if a relatively pseudo-complemet $\alpha' \Rightarrow \alpha$ is s-crisp for all morphisms $\alpha': X \to Y$.

Proof. First assume that $\alpha: X \to Y$ is s-crisp and $k\tau \sqsubseteq \alpha' \Rightarrow \alpha$ for a nonzero scalar k and morphisms $\tau, \alpha': X \to Y$. Then we have

$$k(\tau \sqcap \alpha') = k\tau \sqcap \alpha' \sqsubseteq \alpha$$

and so $\tau \sqcap \alpha' \sqsubseteq \alpha$, since $\alpha : X \to Y$ is s-crisp. Therefore $\tau \sqsubseteq \alpha' \Rightarrow \alpha$. Conversely if $\alpha' \Rightarrow \alpha$ is s-scrisp for all morphisms $\alpha' : X \to Y$, then $\alpha = \nabla_{XY} \Rightarrow \alpha$ is s-crisp. This completes the proof.

Theorem 3.7 The following three statements are equivalent:

- (a) If $k \neq 0_{XX}$ and $k \sqcap k' = 0_{XX}$ for scalars $k, k' \in \mathcal{F}(X)$, then $k' = 0_{XX}$,
- (b) The zero morphism 0_{XY} is s-crisp for all objects Y, (that is, if $k\tau = 0_{XY}$ for a nonzero scalar k on X and a morphism $\tau: X \longrightarrow Y$, then $\tau = 0_{XY}$),
- (c) For every morphism $\alpha: X \to Y$ its pseudo-complement $\neg \alpha: X \to Y$ is s-crisp for all objects Y,
- (d) Every complemented morphism $\alpha: X \to Y$ is s-crisp for all objects Y.

4 L-Relations

Let L be a complete distributive lattice (or, a complete Heyting algebra) with the least element 0 and the greatest element 1. The supremum (the least upper bound) and the infimum (the greatest lower bound) of a family $\{k_{\lambda}\}$ of elements in L will be denoted by $\bigvee_{\lambda} k_{\lambda}$ and $\bigwedge_{\lambda} k_{\lambda}$, respectively. For two elements $a, b \in L$ the relative pseudo-complement of a relative to b will be written as $a \Rightarrow b$. Now recall some fundamentals on L-relations [5].

Let X and Y be sets. An L-relation R from X into Y, written $R: X \to Y$, is a function $R: X \times Y \to L$. The set of all L-relations from X into Y will be denoted by L - Rel(X). An L-relation R is contained in an L-relation S, written $R \subseteq S$, if $R(x,y) \leq S(x,y)$ for all $(x,y) \in X \times Y$. The zero relation O_{XY} and the universal relation ∇_{XY} are L-relations with $O_{XY}(x,y) = 0$ and $\nabla_{XY}(x,y) = 1$ for all $(x,y) \in X \times Y$, respectively. It is trivial that \subseteq is a partial order, and $O_{XY} \subseteq R \subseteq \nabla_{XY}$ for all fuzzy relations R. For a family $\{R_{\lambda}\}_{\lambda}$ of fuzzy relations we define fuzzy relations $\cup_{\lambda} R_{\lambda}$ and $\cap_{\lambda} R_{\lambda}$ as follows:

$$(\cup_{\lambda} R_{\lambda})(x,y) = \vee_{\lambda} R_{\lambda}(x,y)$$

and

$$(\cap_{\lambda} R_{\lambda})(x,y) = \wedge_{\lambda} R_{\lambda}(x,y)$$

for all $x, y \in X$. It is obvious that $\bigcup_{\lambda} R_{\lambda}$ and $\bigcap_{\lambda} R_{\lambda}$ are the least upper bound and the greatest lower bound of a family $\{R_{\lambda}\}_{\lambda}$, respectively, with respect to the order \subseteq . The composite $RS(=R;S): X \to Z$ of an L-relation $R: X \to Y$ followed by an L-relation $S: Y \to Z$ is defined by

$$(RS)(x,z) = \bigvee_{y \in Y} [R(x,y) \land S(y,z)]$$

for all $(x, z) \in X \times Z$. This composition of *L*-relations is called as sup-inf composition. The associativity (RS)T = R(ST) holds for all *L*-relations R, S and T. The identity relation id_X of a set X is an *L*-relation such that $\mathrm{id}_X(x,x') = 1$ if x = x' and $\mathrm{id}_X(x,x') = 0$ otherwise. The unitary law $\mathrm{id}_X R = R$ $\mathrm{id}_Y = R$ holds for all $R: X \to Y$. The inverse (or transpose) $R^{\sharp}: Y \to X$ of an *L*-relation $R: X \to Y$ is defined by

$$R^{\sharp}(y,x) = R(x,y)$$

for all $(y, x) \in Y \times X$. For L-relations $S: Y \to Z$ and $T: X \to Z$ the residue $T \div S: X \to Y$ is defined by

$$(T \div S)(x, y) = \wedge_{z \in Z} [S(y, z) \Rightarrow T(x, z)]$$

for all $(x, y) \in X \times Y$. The readers can easily see that L-relations and their operations defined above satisfy almost all axioms of Dedekind categories, except for D3(Dedekind formula) and D4(Residues), which will be proved in the following:

Proposition 4.1 Let $R: X \to Y, S: Y \to Z$ and $T: X \to Z$ be L-relations. Then

- (a) $RS \cap T \subseteq R(S \cap R^{\dagger}T)$ (Dedekind formula),
- (b) $RS \subseteq T$ if and only if $R \subseteq T \div S$.

In relational calculus ([2, 8, 19]) a function R on X is a relation satisfying the univalency $R^{\sharp}R\subseteq I$ and the totality $I\subseteq RR^{\sharp}$.

An L-relation $k: X \to X$ is a scalar on X if and only if

$$\forall x, x' \in X : k(x, x) = k(x', x') \text{ and } x \neq x' \Rightarrow k(x, x') = 0.$$

An L-relation $R: X \to Y$ is 0-1 crisp ([5]) if R(x,y) = 0 or R(x,y) = 1 for all $(x,y) \in X \times Y$. Of course O_{XY} , ∇_{XY} and id_X are 0-1 crisp. For a 0-1 crisp L-relation $R: X \to Y$ define an L-relation $\bar{R}: X \to Y$ by $\bar{R}(x,y) = 0$ if R(x,y) = 1 and $\bar{R}(x,y) = 1$ otherwise. Then $R \cup \bar{R} = \nabla_{XY}$ and $R \cap \bar{R} = O_{XY}$. This fact means that all 0-1 crisp L-relations are complemented.

Proposition 4.2 All s-crisp L-relations are 0-1 crisp.

Proposition 4.3 For L-relations the following statements are equivalent:

C0.
$$\forall a, b \in L : a \land b = 0 \Rightarrow a = 0 \text{ or } b = 0.$$

K0. All 0-1 crisp L-relations are s-crisp.

Proposition 4.4 For L-relations the following statements are equivalent:

C1.
$$\forall a, b \in L : a \land b = 0 \text{ and } a \lor b = 1 \Rightarrow a = 0 \text{ or } b = 0.$$

- K1. All complemented L-relations are 0-1 crisp.
- K2. All totally functional L-relations are 0-1 crisp.

5 Representation Theorem

Definition 5.1 Let \mathcal{D} be a complete Dedekind category. A point x of X is an s-crisp morphism $x: X \to X$ such that $\nabla_{XX} x = x$, $x^{\dagger} x \sqsubseteq \mathrm{id}_X$ and $\mathrm{id}_X \sqsubseteq x x^{\dagger}$.

Proposition 5.2 Let x and x' be points of X. Then

- (a) If $\nabla_{XX}\rho = \rho$ and $\rho \sqsubseteq x$ for a morphism $\rho : X \to X$, then $\rho = kx$ for a unique scalar k on X.
- (b) If $x \neq x'$, then $x \cap x' = 0_{XX}$ and $xx'^{\sharp} = 0_{XX}$.

Set $L = \mathcal{F}(W)$ for a fixed object W. Then L is a complete disributive lattice. A function $\chi(\alpha): \chi(X) \times \chi(Y) \to L$ assigning $\chi(\alpha)(x,y) = \phi_{XYW}(x\alpha y^{\sharp}) \in L$ to a pair (x,y) of points x of X and y of Y, gives an L-relation of $\chi(X)$ into $\chi(Y)$. Thus we have a function $\chi: \mathcal{D}(X,Y) \to L$ - $Rel(\chi(X),\chi(Y))$.

Proposition 5.3 If \mathcal{D} is a connected Dedekind category, then the function $\chi: \mathcal{D}(X,Y) \to L$ - $Rel(\chi(X), \chi(Y))$ satisfies the following properties:

(a)
$$\chi(O_{XY}) = O_{\chi(X)\chi(Y)}$$
, $\chi(\nabla_{XY}) = \nabla_{\chi(X)\chi(Y)}$ and $\chi(\mathrm{id}_X) = \mathrm{id}_{\chi(X)}$,

(b)
$$\chi(\alpha \sqcup \alpha') = \chi(\alpha) \cup \chi(\alpha')$$
 and $\chi(\alpha \sqcap \alpha') = \chi(\alpha) \cap \chi(\alpha')$,

- (c) $\chi(\alpha^{\sharp}) = \chi(\alpha)^{\sharp}$,
- (d) $\chi(\alpha)\chi(\beta) = \chi(\alpha(\sqcup_{y \in \chi(Y)} y^{\sharp}y)\beta).$
- (e) The function $\chi: \mathcal{D}(X,Y) \to L Rel(\chi(X),\chi(Y))$ is surjective.

Definition 5.4 A complete Dedekind category \mathcal{D} satisfies the strict point axiom if and only if

$$\sqcup_{x \in \chi(X)} x = \nabla_{XX}$$

for all objects X, where $\chi(X)$ denotes the set of all points of X.

Proposition 5.5 A complete Dedekind category \mathcal{D} satisfies the strict point axiom if and only if the function $\chi: \mathcal{D}(X,X) \to L\text{-Rel}(\chi(X),\chi(X))$ is injective for all objects X.

Proposition 5.6 If a complete Dedekind category \mathcal{D} satisfies the strict point axiom, then for all objects X the identity morphism id_X is complemented. Moreover, if the condition C1 is in addition valid in \mathcal{D} , then id_X is s-crisp for all objects X.

Theorem 5.7 (Representation Theorem) Assume that \mathcal{D} satisfies the strict point axiom. Then every morphism $\alpha: X \to Y$ has a unique representation

$$\alpha = \sqcup_{x \in \chi(X)} \sqcup_{y \in \chi(Y)} \chi_X(\alpha)(x,y) x^{\sharp} \nabla_{XY} y.$$

References

- [1] R. Bird and O. de Moor, Algebra of programming (Prentice Hall, London, 1997).
- [2] P. Freyd and A. Scedrov, Categories, allegories (North-Holland, Amsterdam, 1990).
- [3] H. Furusawa, An algebraic characterization of cartesian products of fuzzy relations, Bull. Infrom. Cybernet. 29(1997), 105-115.
- [4] H. Furusawa, A representation theorem for relation algebras: Concepts of scalar relations and point relations, DOI Technical Report DOI-TR-139, 1997.
- [5] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145-174.
- [6] B. Jónsson and A. Tarski, Boolean algebras with operators, I, II, Amer. J. Math. 73 (1951) 891-939; 74 (1952) 127-162.
- [7] Y. Kawahara, Pushout-complements and basic concepts of grammars in topoi, Theoretical Computer Science 77 (1990) 267-289.
- [8] Y. Kawahara, Relational set theory, Lecture Notes in Computer Science, 953(1995) 44-58.
- [9] Y. Kawahara and H. Furusawa, An algebraic formalization of fuzzy relations, To appear in Fuzzy Sets and Systems, 1997.
- [10] Y. Kawahara, H. Furusawa and M. Mori, Categorical representation theorems of fuzzy relations, In Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery, Tokyo, 1996.
- [11] Y. Kawahara and Y. Mizoguchi, Relational structures and their partial morphisms in the view of single pushout rewriting, Lecture Notes in Computer Science 776 (1994) 218–233.
- [12] S. Mac Lane, An algebra of additive relations, Proc. Nat. Acad. Sci. U.S.A. 47(1961) 1043–1051.
- [13] R.D. Maddux, The origin of relation algebras in the development and axiomatization of the calculus of relations, Studia Logica, **50** (1991) 423-455.
- [14] J.P. Olivier and D. Serrato, Squares and rectangles in relation categories Three cases : semilattice, distributive lattice and boolean non-unitary, Fuzzy Sets and Systems 72 (1995) 167–178.
- [15] W. Pedrycz, Processing in relational structures: Fuzzy relational equations, Fuzzy Sets and Systems 40 (1991) 77-106.
- [16] D. Puppe, Korrespondenzen in Abelschen Kategorien, Math. Ann. 148 (1962) 1-30.
- [17] E. Sanchez, Resolution of composite fuzzy relation equations, Information and Control 30 (1976) 38-48.
- [18] G. Schmidt and T. Ströhlein, Relation algebras: Concept of points and representability, Discrete Mathematics 54 (1985) 83-92.
- [19] G. Schmidt and T. Ströhlein, Relations and graphs Discrete Mathematics for Computer Science (Springer-Verlag, Berlin, 1993).
- [20] A. Tarski, On the calculus of relations, J. Symbolic Logic 6 (1941) 73-89.