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The realization of the hybrid multi-modal logic

theorem prover in the term rewriting system CafeOBJ

JAIST Yasuhito Suzuki(#5AHEAN)

- 1. Introduction
A multi-modal logic can treat different modalities. In the recent research
of computer science, these logics are tried to use to write actions of agents
in a computer network. There are many researches about -multi—modal
logics, and here, we will put the M.Finger and D.Gabbay’s result [FG94]
basis. Compared with another reserach (for instance, [KW83]), we can
say that the proof systems of [FG94] is hybrid. That means, the proof
system of [KW83] can treat any combinations of different modal oper-
ators, but the proof system of [FG94] has some restrictions on order of
modal operators; if modal logics L; and Ly are given, and if we con-
struct the multi-modal logic L;(Ls) by [FG94], then there are nb modal
operators of Ly out of modal operators of L, at any formulas of L;(Ls).
That is, the multi-modal logic L;(L;) indicates that we see formulas of
Lg propositional variables of L;. According to [FG94], this indicates a

direct combination of global system L; and local system L.
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CafeOBJ is a term rewriting system which is based on equational logic.
Using CafeOBJ, this report aims to study a possibilty of realization of
the method of [FG94], and gives concreate automated theorem prover for
some modal logics (S4 and S5). We will adopt Beth tableau proof as
the basis of the automated theorem prover. So, we suppose the reader
already have the knowledge about Beth tableau proof system. Here, we
just mention about theoretical results. The concreate program codes and
expamples are represented in [S97].

First of all, we will introduce the S4- (and S5-) tableau proof system
as a term rewriting system. We will mention that some useful properties
to prove completeness Atheorem and deeidablity of these system. Next,
we will combine them to get hybrid multi-modal logic S4(S5) and S5(S4).
We will refer the result of [FG94] related the combine method.

Here, we will not treat the correspondence between formal theories and
programs of CafeOBJ. But this seems trivial by [CAFE]..

2. S4
Here, we will introduce tableau proof system as term rewriting system.
Signed formula is the formula which has a its truth value (either T or F) as
prefix. Beth tableau consists Of, a set of signed formulas. S4 Beth tableau
construction rules are as follows (see [F69]); suppose F' is a sequence of

signed modal formulas, Fg is the sequence of signed modal formulas with
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“T O” as prefix in F' and commas are the punctuation;

F,TOp F,TeAY FT-p
FFTo , FFTp, Ty, FF ¢,

- F,F Oy F,F oA\ F,F -y
Fo,F o, FFF o | FFy, F,Tp.

Here, we think $g, ¢ V.9 and ¢ — 1 are the abbreviations of —O-,
=(—¢ A 7)) and —p V 9, respectively. If we have a closed tableau of
¢, then ¢ has a tableau proof. We denote this Fgs . For instance,

g4 Op — O0Op as follows;

F —(Op A -0O0p)
T Op A -O0p
T Op, T -0O0p
T Op, F O0Op

T Op,F Op
T Op,Fp
TpFp

But, in the above system, whether we can construct a closed tableau or

not depends on an order of applying construction rules. For instance,

F —(0Op A ~0O0p)
T Op A -O0p
T Op, T —0O0p
T Op, F O0Op

T p,F O0p
F Op
Fp

is not closed. That is, we have to give construction rules where the order
of rules is uniquely determined if the same formula is given, and always

make a closed tableau if it exists.

Definition 1 For any 1 € {1,2,3,4,5}, let Q; be a duplication free fi-
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nite sequents of signed formulas. We denote the empty sequence and the
punctuation in Q; as € and |, respectively. Both node(Q1, Q2, @3, Q4, @s5)
and leaf(Q3) are called node. We call the tree structure T, that enjoys the

following conditions, tableau tree;

1. any nodes of T are nodes,

2. any node(Q1,...,Qs) has at most two children,
3. any leaf(Q2) has no children,

4. the root of T is in the form node(e, €, €, €,Qs).

Definition 2 Let a node of a tableau tree N(= node(Qi,...,Qs5)) be
given. The followings are tableau construction rule. Applying rule to
N, we consider thdt a new node N') are added to given tabuleau tree.
In each rule, we will express modified sequence of new node(s) N'0) (=
node(.Q;('),..}.,Qg('))), thus if there are no references of sequences in a
rule, they are same to the parents’ sequences. We apply a rule by the
depth-first search. Suppose cls(Q) means sequence Q has a pair of signed
»proposz'tz'onal 'vaﬁable T p and F p, and loop(IN) means there exists the
ancestor of N, which is same to N. And, let Q is duplication free finite
(or empty) sequence of signed formulas,c is a prOpésitiona.l variable and

tf € {T,F}.

Q=Q
1L.Qs=tfcQ=1{
QR = tfc|Q2



2.Qs=T (pAV)IQ= Q=T ¢|T $/Q

8. Q=T lQ=Q=F ¢|Q
Q1 =T Op|Qs

4. Qs =T Op|Q =
Q5 = Toy|Q

3=F(eA9)|Q
5-Q5=F(¢A¢)IQ=>{Q3 (pAvlIas

Qs =Q
6. Qs = F-|Q = Q5 = Ty|Q
I — F
7. Qs = FOp|Q = Q4 ©|Qa
Q=Q
not cls(Qs) ‘ ' Q5= Q5%
5 Q=FeAp)IQ | = Q=Fyle
Qs =e ] | Qs =Fyle
not cls(Q3) |
not loop(NV) Q=Q=Qy=Q,=¢
9. =N
Qs =Fople Qs = Fol|Q:
RQs=Qs=¢ J
not cls(Qsq)
not loop(V)
1 Q=@
10. Q4=FolQ =
1 =Fole

Q #e
Q3=Q5=€‘

100
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.
g7, "ot <B(@2) = leaf(Qy)

Q:=Q1=Qs=c¢

o
19, (@) = leaf(Qy)

Qs =€

not cls(Qs)

1 N
13. 2op() b = leaf(Q2)

QuFe
Q3=Q5=c¢

7/

Definition 3 N(= node(Q1, @2, @3, Qs, Qs)) is closed if
e cls(Q»), or
. N has at least one closed child N' by applyiﬂg rule 10,

o all children of N are closed.sh:

For any given formula ¢, if we can construct the tableau which the root
in the form node(e, €, €, €, Fp|e) is closed, we denote this as Fcg4 . About

the above rules, we can say that the following facts hold.

Lemma 4 In any tableau construction, there exists the common order of

applying rules, as follows;

1st step: Apply the one of rules from rule 1 to rule 7, until Qs = €.
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2nd step: If Q3 # € and not cls(Q2), then go to 1st step
after the applying rulé 8. |

3rd step: If we can apply rule 10, then apply .

4th step: If we can apply rule 9, then go to 1st step after
the applying rule 9.

end step: If we can apply the one of rule 11, rule 12 and rule 183,
then apply it and close the making of a branch.

Lemma 5 Our tableau construction cannot make an infinite depth branch.

Lemma 6 Any formulas in any node N are applied extension rule at least

one time in the descendant of N.

Proposition 7 For any given formula ¢, our tableau construction always

terminates.

Defining a peculiar notion of realizability, we can prove the soundness
and completeness of our tableau proof system. Here, we just mention
this realizable notion and the soundness and completeness. About Kripke

model, for instance, see [CZ97].

Definition 8 Suppose M is a Kripke model of S4, and « and y are pos-
sible worlds of M. A finite set of signed formulas U = ({Te1,..., Ten,

Fiy,...,Fin}) is realizable if there exists M and x such that

(M,ZB) |=()01,""(M’w) #‘pna
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(M, ) EY1,...,(M,z) FE Ym.

Denote this as tI(M, U, z). node(Q1,Q2, @3, Qs, Qs) is realizable if there

exists M, = and y such that xRy, rl(M,U,z) and rl(M,U',y) where

U

I

QUQsUQsU {T(pV -p)},

U = QquUU{T(pV-p)}.

Using tableau extension rule, wa can say that realizable node has at least

one realizable child. And,
Lemma 9 A node is relaizable iff it is not closed.
Theorem 10 Fese @ iff E .

3. S5

For instance, S5 Beth tableau is introduced in [F77], but the method
in [F77] is not appropriate to constructing term rewriting system. By
corresponding each node to the tableau in [F77], we can construct S5
tableau system as term rewriting system.

From now on, we denote a duplication free finite sequence of signed
formulas, the empty sequence of signed formula and punctuation symbol
in sequence of signed formulas ae Q;, € and |, respectively. And, we denote
a duplication free finite sequence of pairs of sequences of signed formulas,

the empty sequence of sequences of pa,iis and punctuation as P;, F and

1. Then,
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Definition 11 node(Py, P, P;3) is called (S5-) node. We call T tableau

tree if the following conditions are satisfied;

1. T 1is tree of S5-node,

2. Each S5-node has at most two chilrdren,

3. a root of T is in the form node((¢,€) i E, E, P;)

Definition 12 Suppose a node N(= node(Py, Py, P3)) is given. Via the

following extension rules, if we can get a child of N, we express this

as N’(')(_—'_ node(Pl'('),Pz'('),Pé('))). As similar to the case of S4, we just

mention about modified factors in the children of N in the following rules;

1. node((Q,¢€) 1t E, P, E) has no children.

2. Py =

3. Py =

4. P3

5 P =

6. P; =

7. Py =

(e,e)IP=>P, =P

(Q@utf cl@)IP=Py=(tf c|Q1,Q2) 1 P

(QlaF—'QOIQ2) i P = Pé(Ql’T(PIQ2) 1 P

(Qu, Te AY|Q2) 1 P = P3 = (Q1, To|T¥|Q2) P

P;=(Q1,Fo|Q2) i P
= (Q1,Fy|Q2) t P

(QuFoAY|Q2) 1 P =

= (Q3, TOp|Qu) t Ps N Py =(Q3,Q4) 1 Ps

P =(Q,Q2) 1P P = (Q1, Te|Q:) 1 Py
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9. P, =(Q1,FO¢|Q;) { P = P; = (¢, Fple) 1 (Q1,Q2) t P

10.
11.
12.
13.

P =(Q1,F-p|Q2) 1 P J

14.

15.

16.

17.

18.

P,=P

P;=F
P = (Qutf @) 1P
Ps=F ‘

P =(Q1,T-¢|Q2) 1 P J

\

Ps=F

Py=(QuetP| | P=P
Py=(Qu, €)1 P'

P=E
=

P =(tf c|Q1,Q2) { P
(pi—F

\ P1, = (Q1>F¢|Q2) IP

f

y = <

Pl=E

| Pl = (QuTe|Q) t P

P,=F W rﬂ:E
=
P =(Qi,ToAd|@) 1P | | Pl=(QuTe|TY|Q2)t P
w <Q=M=E
P;=F
| ¢ =>4 Pl =(Q1,Fp|Q2) 1 P
P =(Q1,FoA9|Q2) I P J
| Pl = (QuFy|Q:) 1 P

)
P=FE

Py =(Q1, TOp|@Q:) 1 P |

P,=F

P,=E

| PI=(@1, Tp|Q2) P

¢ = 3

P=E
b = <

Py = (Q1,FOp|Q) P |

Ps=F

Pl = (Ql’e) I (Q23Q3)ip

| P = (QuQ2) % (e, Fole) 1 P

P;=(Q2,Q3) 1P
=
Pl =(Que)i E
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You can easily ndtice that the number of logical connectives (A, - and
0) of a child node k is same to the number.of the parent node via the
‘rule 1, 2, 3, 10, 11 and 18, and k + 1.is same to the number of the pa,rént
node via the another rules. As similar for the case S4, we can find there

exists some peculiar order of applying rules. That is,

Lemma 13 In any tableau construction, there exists the following com-
mon order of applying rules;
1st step: Apply one rule between rule 3 and rule 9
until P; = (Q1,€) I P holds.
2nd step: Apply either rule 2 or rule 10.
3rd step: Go to 1st step if P3 # E.

4th step: Apply one rule between rule 11 and rule 17

until P, = (Q1,€) 1 P holds.
5th step: Apply rule 18 and go to 1st step if P, # (Q1,€) 1 E.
6th step: Apply rule 1.

Proposition 14 Our tableau construction always terminate.

The beginning of this section, we said that each node in our tableau
corresponds to the S5 tableau in [F77]. The correct meaning of this

sentence is introduced via the following definition about realizable notion.

Deyﬁnition 15 Suppose_node(Pl,Pg,Pg) is given, where the number of

sequences except (€, €) of P; is a;, and s(P;) = {tfy : tfy appears in P;}.
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And we think that P; has (Q%,Qb)1, ..., (@4, Q%)a, elements where each
(Qzl, QZ2)J # (E’ 6)) and 3((Q21, z2)_’1) = S((Q?la Q%)]IE) = {T(pilj, <o aT‘pi,-jj,
Fz,b’ij, e >F¢i,-jj}- node(Py, Py, P3) is realizable if there exists the S5-model
M(= (W,R,V)) such that W = {af,...,2L,2%,... 22 ,a},... 20} and

for any @ and 3,

(M,.’I:;) = ‘P%la ey (M, w;) = ‘Pllwnl
(M’x;) bé ")b%l’ e (M’ :1:;) V" wiul
(M, z}) @l (M, ) E ¢

(M, 5) B By (M, 28 B o

This definition asserts that the T-signed formulas in the top of P; hold on
any points in M, and F-signed formulas in the top of P; does not hold on

any points in M. Because, the next proposition holds on any S5-model.

Proposition 16 (proposition 3.7 in [CZ97]) Suppose x is a point in a
model M built on a transitive frame and ¢ an arbitrary formula. Then

for every y € C(z),
(M,z) |EOp iff (M,y) = De,
(M,z) EOp iff (M,y) [ O
C(z) (= {y : Ry and yRz}) is a cluster of z, and .W of every S5-model

can be represented into one cluster. Hence, we will define closed notion,

as follows;
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Definition 17 A node N is closed if

o there exists a pair bf signed propositional variables Tp and Fp in Q}

" and Q? for some i, if N = node((Q}, €)1 E, (Q?,e)t...1(Q2%, €)1 E, E),

or
e all chilrdern are closed.

As similar to the case S4, for any formula ¢, if we can construct the
tableau tree which root node((€,€) 1 E, E, (¢, Fple) 1 E) is closed, then we

write kg5 ¢. And,

Lemma 18 A node s relaizable iff it is not closed.
Theorem 19 F g5 ¢ iff = .

4. Hybrid multi-modal logic theorem prover

Here, we will define a multi-modal logic theorem prover. In [FG94],
M.Finger and D.Gabbay adopt until I/ and since S operators as temporal
(inodal) operator. Because they treat temporal logic, and these two oper-
ators are base rather than 0. And O is introduced as the abbreviation
of using U and S. But, some minor changes produces that same results
in [FG94] are holds on the our system. M.Finger and D.Gabbay call their
~ logic temporalized logic, but we call our logic Hybrid multi-modal logic

to destinguish the former.

Definition 20 Suppose propositional modal languages L1 and Ly are given,
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and A, = and O are logical connectives of Ly. Then, we define the hybrid
language of Li(Ls) as follows;

1. Ly C Ly(Ls),

2. ¢ € Li(Lg) implies Op, ~p € L1(Ls),

3. o, Y€ L1(L2) implies (cp N ’lp) € L1(L2).
For the satisfiability of L;(Ls), as follows; |

Deﬁnitibh 21 Suppose My and x5 are model of L2 and the root -of M.
We dernote (Mg, z2) = ¢ and p as My =2 ¢ and Ly-formula, respect'évely.
Let a frame F = (W, R) of L, be given, and v is a function W — CM,
- where C My is the class of models of Ly. Then, for any x € W,
(Fy0),2) = p iff My l=ap if v(z) = My,
(F,v),2) = —p iff ((Fyv),2) o,
(Fyv),x) = oAy off ((Fv),2) ¢ and ((Fv),2) 4,
((F,v),z) = O¢ iff for all y xRy implies({F,v),y) = ¢,
(Fyv) B iff ((Fyv),z) E¢ forallz e W,
FEo iff (F,v)Eyp foradlv,
CkEy iff FEpforall FeC.
If we know what a class of f'f'ames C c’orrésponds to given logic, ’s‘oméiimes
we write ="¢ instead of C = ¢.

As for the derivability I is able to consider many different definition.

Here, we consider about F.g4 and F.g5.
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Definition 22 Suppose ¢ is a S4(S5)- (S5(54)-) fomrula. We extend the
defintion of a closed node, as follows; suppose X, X1, - - -, Xm are S5- (S4-)

subformulas of ¢ then, node N is also closed if
o X is assigned the sign T in N in spite of Fcg5(cse) 71X holds
o x is assigned the sign F in N in spite of b g5(cs4) X holds.

® X15 -+ Xn hape the sign T, and Xny1,-- -, Xm have the sign F in spite
of

|"cSS(cS4) "'(Xl A e A Xn A ,(_'Xﬂ+1 Ao A=Xm))

For any given $4(55)- (55(54)-) formula ¢, if we can construct the root

of the tableau of ¢ is closed, then we write gy (ss) @ ( Fess(sa) P)-
Then, clearly, we can say the followixig theorem,

- Theorem 23 Fcgys5) ¢ iff = -

Theorem 24 F.g5s4) ¢ iff = .

Theorem 25 Both b gy(s5) and Fcg5(s4) are decidable.
S
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