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Abstract

This paper considers the computational playability of backward induction solu-
tions, $i.e$ . whether or not there is an algorithm to play them. We construct a
two-person two-stage game with perfect information, in which both players have
countably many feasible actions and their payoff functions are computable. We
prove that the backward induction solutions of the game, which are proved to
exist, are not computably playable because it is impossible to supply the players
with algorithms regarding how they should play the solutions. Moreover, we
show that if players’ payoff functions are polynomial with rational coefficients,
then the backward induction solutions are computably playable.

Keywords: Computational playability; Backward induction solution; Computabil-
ity; Kleene’s $T$-predicate; Search; Polynomial payoff functions

1 Introduction
A solution of a game is said to be computationally playable if the solution strategies are
computable in the sense that there is $\dot{\mathrm{a}}\mathrm{n}$ algorithm, $i.e$ . a Rring machine, to compute
them.1 In this paper we consider the computational playability of backward induction
solutions of some games.

The author is grateful to Mamoru Kaneko, Kotaro Suzumura and especially to Takashi Na-
gashima. Furthermore, he would like to acknowledge Midori Hirokawa, Kaori Hasegawa, Wiebe van
der Hoek, Ryo $\mathrm{K}\mathrm{a}s$hima, John Nash, Itzhak Zilcha, Kin Chung Lo, Luchuan A. Liu and Akihiko
Matsui for their comments and discussions. Of course, any possible errors are due to the author.

1 For the epistemological importance of the concept of computability, see G\"odel (1936),
G\"odel (1946), Kleene (1952, \S 62) and Odifreddi (1989, Section I.8). For other epistemological con-
cepts, $e.g$. definability, deducibility, etc., of a game solution, see Kaneko and Nagashima $(1996, 1997)$ .
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Figure 1: The Game $r_{\mathrm{b}\mathrm{e}\mathrm{e}}$

In the next section we begin by constructing a two-person two-stage game with
perfect information, in which both players have countably many feasible actions and
their payoffs are natural numbers. First we show that for any payoff functions, there
exists a backward induction solution of the game. Then it may be conjectured that if
both players’ payoff functions are computable, $i.e$ . there exists algorithms to compute
them, then the backward induction solutions of the game would be computationally
playable. However the conjecture is false. Indeed, we prove that while the game has
a backward induction solution, no backward induction strategy is computable and
further it is not computable whether or not a given action profile is the realization
of the backward induction solution. These results mean that the backward induction
solutions of the constructed game are not computably playable because it is impossible
to supply the players with effective instructions regarding how to play them. Finally,
we show that, for any polynomial payoff function of the second moving player and for
any backward induction solution, the backward induction strategy is computable. This
result implies that if the rules of the game are so simple that players’ payoff functions
are polynomials, then the backward induction solutions are computably playable.

2 Existence and Playability of Backward Induc-
tion Solutions

Both players, 1 and 2, have countably many feasible actions, $i.e$ . each player’s action
space is $\mathrm{N}=\{0,1,2, \ldots\}$ . Players 1 and $2’ \mathrm{s}$ actions are denoted with $x$ and $y$ ,
respectively. Furthermore, players 1 and $2’ \mathrm{s}$ payoff functions are denoted by $f(x, y)$

and $g(x, y)$ , respectively. We assume that both players are minimizers.
The rules of the game are, illustrated in Figure 1, as follows: in the first stage
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player 1 chooses his action $x$ ; and, in the second stage player 2 observes $x$ , and then
chooses his action $y$ . The pair $(x, y)$ determines players’ payoffs $f(x, y)$ and $g(x, y)$ .

A pair $(x^{*}, \psi)$ is said to be a backward induction solution of the game iff
$\forall x[f(x^{*}, \psi(X^{*}))\leq f(x, \psi(x))]$ and $\forall x\forall y[g(x, \psi(x))\leq g(x, y)]$ . $x^{*}$ is called the back-
ward induction action for player 1 and $\psi$ is called the backward induction stmtegy for
player 2.

Theorem 1 Assume that $f$ and $g$ are any functions from $\mathrm{N}\cross \mathrm{N}$ to N. There exists
$a$ backward induction solution of the game defined above.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ Let $x$ be an arbitrarily fixed action. Then the range $\{g(x, y)|y\in \mathrm{N}\}$ has a
unique minimum element, say, $g(x, y^{*})$ . Let $\psi(x)$ be the minimum of such $y^{*}.$ Thus
we have a backward induction strategy $\psi$ for player 2, which satisfies $\forall y[g(X, \psi(x))\leq$

$g(x, y)]$ . $\mathrm{N}\mathrm{o}\mathrm{W}\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$ the $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}f(x, \psi(x)).$ Again, the range of this function has
a minimum, say, $f(x^{*}, \psi(x^{*}))$ . This $x^{*}$ satisfies $\forall x[f(x^{*}, \psi(X^{*}))\leq f(x, \psi(x))].$ Thus,
$(X^{*}, \psi)$ is a $\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k}_{\mathrm{W}\mathrm{a}\mathrm{r}\mathrm{d}}$ induction $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of the game. $\square$

The existence of backward induction solutions $\mathrm{d}_{0}\mathrm{e}\mathrm{S}$ not imply their computational
playability. Indeed, we can construct player $2’ \mathrm{s}$ computable payoff $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}g$ such
that for any backward induction $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(X^{*}, \psi)$ of the game, the backward induction
strategy $\psi$ is not computable.

To define players $2’ \mathrm{s}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{i}\mathrm{f}\mathrm{i}_{\mathrm{C}}$ payoff function, we explain $\mathrm{K}\mathrm{l}\mathrm{e}\mathrm{e}\mathrm{n}\mathrm{e}’ \mathrm{S}T_{-}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{t}\mathrm{e}$

$\tau_{1}(z, X, y)$ . $\mathrm{K}\mathrm{l}\mathrm{e}\mathrm{e}\mathrm{n}\mathrm{e}’ \mathrm{S}\tau_{-\mathrm{p}\mathrm{r}\mathrm{e}}\mathrm{d}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{t}\mathrm{e}T_{1}(z, x, y)$ is a particular computable predicate, as
Kleene (1952, p.281) mentions. Intuitively, $\mathrm{K}\mathrm{l}\mathrm{e}\mathrm{e}\mathrm{n}\mathrm{e}’ \mathrm{S}\tau-\mathrm{P}^{\mathrm{r}}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}T1(Z, X, y)$ means that
$z$ is a code of an algorithm, and that $y$ is the code of a computation on the code $x$ of
an input, as Davis $(1958, \mathrm{p}\mathrm{p}.57^{-}58)$ mentions. In other words, $T_{1}(z, X, y)$ represents
the relation that, given codes $z$ and $x$ of an algorithm and an input, a $\mathrm{u}\mathrm{n}\mathrm{i}_{\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{s}}\mathrm{a}1$ Turing
machine, which is an ideal computer, operates the computation $\mathrm{w}\mathrm{h}_{0}\mathrm{s}\mathrm{e}$ code is $y$ . The
predicate $\exists yT_{1}(X, x, y)$ is not computable, $i.e.$ there exists no algorithm to decide for
given $x$ whether or not $\exists yT_{1}(X, x, y)\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s}^{2}$.

Theorem 2 Assume that player $\mathit{2}’ s$ payo.fffunction $g$ is as $f_{oll_{ow}}s$ :

(1) $g(x, y)$ $=$ $\{$

$0$ $ifT_{1}(x, x, y)_{\mathrm{Z}}$

1 otherwise.
Then for any $backwa7dinduCti_{onS}olution(x^{*}, \psi)$ of the game, the backward induction
strategy $\psi$ is not computable.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ Since $\tau_{1}(X, X, y)$ is a computable predicate, $g$ is a computable function from
$\mathrm{N}\cross \mathrm{N}$ to N. Let $(x^{*}, \psi)$ be any $\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k}\mathrm{w}\mathrm{a}\Gamma \mathrm{d}$ induction solution of the game. Then we
have
(2) $g(x, \psi(x))=\min_{y}g(x, y)=\{$

$0$ $\mathrm{i}\mathrm{f}\exists yT_{1}(X, x, y)$ ,
1 otherwise.

2 This fact is one of the most fundamental theorems in computability theory. See Kleene (1952,
p.301).

114



Now we prove the following:

(3) $\forall x[\exists y\tau_{1}(x, x, y)\Leftrightarrow T_{1}(x, x, \psi(X))]$.

Consider any $x$ such that $\exists yT_{1}(x, x, y)$ holds. Then by (2) we have $g(x, \psi(x))=0$ .
Therefore by (1) we have $T_{1}(x, x, \psi(X))$ . Conversely $T_{1}(x, x, \psi(X))$ implies $\exists yT_{1}(X, x, y)$ .
Consequently (3) holds.

Since $\exists yT_{1}(x, x, y)$ is not computable, by (3) the predicate $T_{1}(x, x, \psi(X))$ is not
computable. This implies that $\psi$ is not computable. $\square$

Theorem 2 means that there are games in which the backward induction solutions
of the game, which are proved to exist, are not computably playable because it is
impossible to supply the players with algorithms regarding how they $\mathrm{s}\mathrm{h}$.ould play the
solutions.

An action profile $(x^{*}, \psi(x^{*}))$ is said to be the realization of a backward induction
solution $(x^{*}, \psi)$ of the game. Despite of Theorem 2, it may be conjectured that players
can play the realization without computing $\psi$ , because players’ payoff functions are
computable and the ranges $\{f(x, y)|x\in \mathrm{N}\}$ and $\{g(x, y)|y\in \mathrm{N}\}$ have unique
minimum elements. However, the conjecture is false.

Theorem 3 $As\mathit{8}ume$ that player $\mathit{2}’ s$ payofffunction $g$ is (1). Then for any backward
induction solution $(x^{*}, \psi)$ of the game, it is not computable whether or not a given
action profile $(x, y)$ is the realization of $(x^{*}, \psi)$ .

Proof Let $(x^{*}, \psi)$ be any backward induction solution of the game. Assume that
a given action profile $(x, y)$ is the realization of $(x^{*}, \psi)$ . Then we have $\forall w[\mathit{9}(x, y)\leq$

$g(x, w)]$ . Moreover, suppose that it is computable whether or not $(x, y)$ is the realization
of $(x^{*}, \psi)$ . We have only to prove the noncomputability of $\forall w[g(x, y)\leq g(x, w)]$ .

Now we show the. following:

(4) $\forall w[g(x, y)\leq g(x, w)]\Leftrightarrow[\exists wT_{1}(x,x,w)\Rightarrow T_{1}(x, X, y)]$ .

$\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{e}g$ takes only the values $0$ and 1, $g(x, y)\leq g(x, w)$ is equivalent to $g(x, y)=0$ or
$g(x, w)=1$ . Thus $\forall w[g(x, y)\leq g(x, w)]\mathrm{i}\llcorner\backslash \neg$ equivalent to $\exists w[g(x, w)=0]\Rightarrow g(x, y)=$

$0.$ By (1), $g(x, y)=0$ if and only if $\tau_{1}(x, X, y).$ Thus $\forall w[\mathit{9}(X, y)\leq g(x, w)]$ is equivalent
to $\exists wT_{1}(X, X, w)\Rightarrow T_{1}(x, x, y)$ .

We have only to show the noncomputability of the $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{i}_{\mathrm{C}\mathrm{a}}\mathrm{t}\mathrm{e}\exists wT_{1}(X, x, w)\Rightarrow$

$T_{1}(x, X, y),$ $\mathrm{W}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}$ we abbreviate to $R(x, y).$ Suppose that $R(x, y)$ is computable. Then,
by (4) and by the existence of the minimum element of the range $\{g(x, y)|y\in \mathrm{N}\}$ ,
given $x,$ players can search the propositions $R(x, 0),$ $R(x, 1),$ $R(x, 2),$ $\ldots$ in succession
to look for one that is true. $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$ the first $y$ for which $R(x, y)$ is true. Then,
since $T_{1}(x, X, y)$ implies $\exists wT1(X, X, w)$ , we have $\exists wT_{1}(X, X, w)\Leftrightarrow T_{1}(x, X, y)$ . Hence,
since $T_{1}(x, X, y)$ is computable, $\exists wT_{1}(X, X, w)$ is also computable. This contradicts its
noncomputability. $\square$
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Despite of Theorems 2 and 3, if payoff functions belong to a certain class, then
the backward induction solutions are computably playable.

Theorem 4 Assume that player $\mathit{2}’ s$ payofffunction $g$ is any polynomial with integral
coefficients in $x$ and $y$ . Then for any backward induction solution $(x^{*}, \psi)$ of the game,
the backward induction stmtegy $\psi$ is computable.

Proof By assumption, player $2’ \mathrm{s}$ payoff function $g$ is represented as follows:

$g(x, y)$ $=$ $\sum_{i=0j}^{n}\sum_{=0}^{n}a_{ij}x^{i}\dot{\nu}$

$=$ $(_{i=} \sum_{0}^{n}ain^{X^{i)}}y^{n}+(_{i=}\sum_{0}^{n}ai,n-1X^{i}\mathrm{I}y^{n}+-1\ldots+(_{i=}\sum_{0}^{n}ai1X^{i}\mathrm{I}^{y}+\sum_{i=0}ai0x^{i}n$,

where $n$ is a natural number and $a_{ij}$ is an integ.er for $i,j=0,$ $\ldots,$
$n^{3}$. We can choose a

constant $M$ such that

$\forall x\forall y[y>M\sum_{0j=}^{n}|i=\sum_{0}aij^{X^{i}}n|\Rightarrow g(x, y)>\min_{y}g(x, y).]$

Then for given $x$ , in the finite interval $0 \leq y<M\sum_{j=0}^{n1ni}\sum i=0aij^{X}|$ , we can find a $y^{*}$

such that $g(x, y^{*})= \min g(x, y)y$ . Therefore, $\psi$ is computable. $\square$

As a corollary of Theorem 4, we can prove that if player $2’ \mathrm{s}$ payoff function $g$ is
any polynomial with rational coefficients in $x$ and $y$ , then for any backward induction
solution $(x^{*}, \psi)$ of the game the backward induction strategy $\psi$ is computable.

3 Concluding remarks
Assume that players 1 and 2 play repeatedly the game defined in $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2,$ and that
player 1 knows that player 2 uses the same computable strategy but player 1 may
not know which $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ strategy $\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\Gamma 2$ is using all the time. By $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2$ ,
since player 2 uses a computable strategy this strategy is not the backward induction
$\mathrm{s}\dot{\mathrm{t}}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{y}$. Then it is unexplained whether or not player 1 can effectively discover after a
finite number of plays a way of proceeding the $\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k}_{\mathrm{W}\mathrm{a}}\mathrm{r}\mathrm{d}$ induction to optimize against
player $2’ \mathrm{s}$ computable strategy. Rabin (1957) $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{C}\mathrm{u}\mathrm{S}\mathrm{S}\mathrm{e}\mathrm{d}$ the similiar problem in the
game descr.ibed in the $\mathrm{f}\mathrm{o}\mathrm{l}1_{\mathrm{o}\mathrm{w}}\mathrm{i}\mathrm{n}\mathrm{g}$ paragraph. Although he $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{d}$ a positive result, his
discussion cannot be applied to the game defin.ed in $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2$ because his $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{C}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$

was dependent on the $\mathrm{w}\mathrm{i}\mathrm{n}-1_{\mathrm{o}\mathrm{S}\mathrm{e}}$ property.
. The motive of this paper is to $\mathrm{S}\mathrm{i}\mathrm{m}_{\mathrm{P}^{\mathrm{l}\mathrm{i}\mathrm{w}}}$ Rbin $(1957)’ \mathrm{s}$ work on the computational

playabili.ty of winning strategies. He considered a game such that two players, 1 and 2,
3

$g$ is a function $\xi_{\mathrm{r}}\mathrm{o}\mathrm{m}\mathrm{N}\cross \mathrm{N}$ to Z.
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choose their actions alternately in three-stages. The rules of the game are such that in
the first stage, player 1 chooses his action $x\in \mathrm{N}$ ; in the second stage, player 2 observes
$x$ , and then chooses his action $y\in \mathrm{N}$ ; and, in the third stage, player 1 observes $x$

and $y$ , and then chooses his action $z\in$ N. Then players’ payoffs $f(x, y, z)\in \mathrm{N}$ and
$g(x, y, z)\in \mathrm{N}$ are determined. Players 1 and $2’ \mathrm{s}$ payoff functions $f$ and $g$ are defined
as follows:

$f(_{X,y}, z)=\{$
$0$ if $h(z)=x+y$, and $g(X, y, z)=1-f(x, y, z)$ ,1 otherwise,

where $h$ is a computable function, and therefore so are both $f$ and $g$ . Since both $f$

and $g$ take only the values $0$ and 1 and since $f(x, y, z)+g(x, y, z)=1$ for all $x,$ $y$ and
$z$ , the game is a win-lose one. Rabin assumed that the range $h(\mathrm{N})$ is ‘simple’ in the
sense that it is a recursively enumerable set, $i.e$ . the range of a computable function,
and its complement is infinite and contains no infinite recursively enumerable $\backslash ^{\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{s}}\mathrm{e}\mathrm{t}\mathrm{S}$ .
(For simple sets, see Davis (1958, p.76).) A winning strategy for player 2 of the above
described game is any function $\tau(x)$ such that $\forall x\forall z[x+\tau(x)\neq h(z)]$ . Rabin proved
the noncomputability of winning strategies of the game. His result means that there are
games in which the winning strategies exist but none of them is computably playable.
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