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Geometric superrigidity of (411—}-3)-
manifolds with quaternionic hyperbolic
fundamental groups

WET5E (Yoshinonobu Kamishima)
flRACAS: Jordkag, 860 fIRAITHNEE 2-39-1

Abstract. Kevin Corlette has shown that Marugulis’ superrigidityis true for the cases of
quaternionic hyperbolic spaces at least two and hyperbolic Cayley plane. We apply this
result to prove a geometric rigidity for compact (4n+ 3)-dimensional pseudo-quaternionic
- flat manifolds (n > 1). A pseudo-quaternionic flat structure is a geometric structure
on a (4n + 3)-manifold locally modelled on the geometry (PSp(n + 1,1), S‘"+3) Here
PSp(n+1,1) is the isometry group of the quaternionic hyperbolic space IHI"'H The space
lHI"'H has a (projective) compactification whose boundary is the sphere S"‘H on which
the group PSp(n+1,1) acts as projective transformations. The pair (PSp(n+1, 1), gint3)

is said to be pseudo-quaternionic flat geomeiry.

Introduction

Margulis has shown that: Let G be a connected semisimple Lie group with trivial
center and has no compact factor. Given an irreducible lattice I' of G and a ho-
momorphism p : =G’ where G' is a semisimple Lie group with trivial center
and without compact factor, p eztends to a homomorphism from G to G' provided
that the real rank of G is least two and p(I') is Zariski dense. Note that a con-
nected semisimple Lie group with trivial center supports a real algebraic structure.
(Compare [18].) This result is called the Margulis’ superrigidity and the question
is left to the rank one semisiinple Lie groups, namely the real (resp. complex,
quaternionic, Cayley) hyperbolic groups. It is known that the Margulis’ super-
rigidity is false for the real hyperbolic case, for instance, because of the existence
of bending (= a nontrivial deformation of Fuchsian groups in higher dimensions).
On the other hand, Kevin Corlette [3] has proved affirmatively for the cases of
quaternionic hyperbolic group PSp(n,1) (n > 2) and the isometry group F, 2

—
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of the hyperbolic Cayley plane. For our later use, we quote a part of his result.
(Compare [12].)

Theorem 1. LetT be a lattice.in PSp(n, 1) and G any semisimple Lie group with
trivial center and without compact factor. If p : T——G is a homomorphism with

Zariski dense image, then p extends to a homomorphism p : PSp(n,1)—G.

Recall that Sp(n + 1,1) = {4 € M(n + 2,F) | A*I; n41A = Ij a1} where
F stands for the noncommutative field of quaternions. The center of this group
is Z/2 and the quaternionic hyperbolic group PSp(n + 1,1) is the quotient of
Sp(n + 1,1) by the center. Then the hyperbolic action of PSp(n + 1,1) on the
quaternionic hyperbolic space ]HI;+1 extends to a smooth action on the boundary
sphere S4"*3 of H;H acting as projective transformations because the compacti-
fication H*! U 47+ sits in the quaternionic projective space FP**!. Since the
action of PSp(n + 1,1) is transitive on $***® whose stabilizer at infinity oo is
isomorphic to the group Sim(M) of similarity transformations of the (4n + 3)-
dimensional Heisenberg nilpotent Lie group M. Thus we obtain a geometry
(PSp(n +1,1), $*"*3) called the pseudo-quaternionic flat geometry. Similarly no-
tice that according as the real, complex cases, there correspond the conformally
flat geometry (PO(n,1), S™), spherical CR-geometry (PU(n +1,1), §?»*1).

Denote by GL(n + 1,F) the group of invertible n X n-matrices with quaternion
entries of the quaternion number space F™ acting on the left and F* = GL(1,F)
acting as the scalar multiplications of the vector space F" from the right. The
vector space F"*! is endowed with the Hermitian pairing over F:

b(z,w) = —Zowg + Z1wy + -+ + ZpWn.

By the definition, Sp(n, 1) is the subgroup of GL(n+1,F) whose elements preserve
the Hermitian pairing b. Consider the quadric

Vf’lﬂ-3 = {z € Ft - {0}| b(z7z) = —1}’

which is left invariant under Sp(n + 1,1). We have the following equivariant
principal bundles over the quaternionic projective space FIP™.

(R*,F*) —— (GL(n+1,F)-F*,F**! — {0}) —— (P GL(n + 1,F),FP")
(Z/2,8p(1)) ——  (Sp(n,1)-Sp(1),Vrts) L, (PSp(n,1),H§).
Let I be a torsionfree discrete uniform subgroup of Sp(n,1)-Sp(1). From the above

sequence, P maps isomorphically onto a torsionfree discrete uniform subgroup I
of PSp(n,1). Since Sp(1) is compact, I' acts properly discontinuously and freely



145

on‘Vf;‘+3. Moreover, there is a principal bundle over the compact quaternionic
hyperbolic manifold

Sp(1)—- V433 )T —HE /T

Put My = V23 /T. Then it is known that M, is a compact (geodesically) com-
plete semi-Riemannian manifold of type (3,4n) with constant curvature —1 (cf.
[15]). Then it is shown that M, admits a canonical pseudo-quaternionic flat struc-
ture whose developing image is the sphere complement $*"**3 — §4"=1 (Compare
§1.) We prove the following rigidity.

Theorem 2. Let M be a compact pseudo-quaternionic flat (4n + 3)-manifold.
Suppose that the fundamental group my (M) is isomorphic to that of a compact
quaternionic hyperbolic 4n-manifold. Then M is pseudo-quaternionically isomor-

phic to My = VA+3T,

Let 7(M,) be the deformation space of (PSp(n + 1,1), §4"*+3)-structures (i.e.,
pseudo-quaternionic flat structures) on marked manifolds homeomorphic to Mj.
There is the natural map hol : 7(M,) — Hom(T, PSp(n + 1,1))/PSp(n + 1,1)
which assigns to a marked structure its holonomy representation.

Theorem 3. The map hol maps T (M) homeomorphicdlly onto a connected com-
ponent in Hom(I',PSp(n +1,1))/ PSp(n + 1,1). Moreover, the connected compo-
nent is diffeomorphic to Hom(I',Sp(1))/Sp(1).

1. Examples

We give examples of compact pseudo-quaternionic flat manifolds. Let §4*t3 be
the sphere with the pseudo-quaternionic flat structure with the automorphism
group PSp(n + 1,1) The sphere with one point removed $***® — {co0} is identi-
fied pseudo-quaternionically with the Heisenberg nilpotent Lie group M with the
automorphism group Sim(M) = M x (Sp(n) - Sp(1) x R*). M lies in the central
extension 1—+R®*—M—F"—1 where R® = {z € F|Re(z) = 0}. (See §4.) Choosing
a torsionfree discrete cocompact subgroup I' from M x (Sp(n) - Sp(1)), we have
a principal fibration of an infranilmanifold as a compact pseudo-quaternionic flat
manifold; '

(i) T3 M /T —F" /T*

where T3 is the 3-torus and F™/T'* is the quaternionic euclidean flat orbifold.
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Let M -_.{oo}(= §4n+3 _ {0, 00}) = Rt x §***2, Choosing a torsion free
discrete cocompact subgroup A of Sp(n) - Sp(1) x RT we obtain an infra-Hopf
manifold

(n) ) ‘R+ X Szn/A ~ Sl X S4n+2/G

where G is a finite group. In particular, the Hopf manifold §47+2 « §1 is a pseudo-
quaternionic flat manifold. _

Let §4"+3 — §4m—1 be the sphere complement. Then Autps, (S*"+2 — §4™~1)
is isomorphic to P(Sp(m,1) x Sp(n—m+1)) = Sp(m,1)-Sp(n —m +1) by chasing
the equivariant principal bundle:

Sp(1)
Vfrl‘n+3 % §4(n—m)+3
| P N\

P(vfrln+3 x S4(n—m)+3) N | g4nt+3 _ gim-1 ~ ]FPn-i-l,

- ~where the automorphism group has the following group extension corresponding
to the vertical sequence:

Sp(l) —— T —— P(Sp(m,1) x Sp(n —m + 1))
] I
zZ/2 » § ——  Sp(m,1)-Sp(n—m +1),

where T = (Sp(m,1) x Sp(n — m + 1)) - Sp(1), and S = Sp(m,1) x Sp(n —m +

'1). Then S¥r—m)+3_(V4Am+3  g4(n—m)+3) /Sp(1)— VA7*+° /Sp(1) = HF* is the
fiber bundle over the quaternionic hyperbolic space Hy*. Since this bundle is
topologically product, letting Sp(1) = P(Z/2 x Sp(1)) C Sp(m,1)-Sp(n —m +1),
the quotient Sp(1)\S$*"*3 — §#™~! is homeomorphic to the product Hf* x FP"~™
which is thus the base space of the following equivariant principal bundle:

Sp(1)—(Sp(m, 1) - Sp(1), §***3 — §*™~1)—(PSp(m, 1), HF x FP"™™)

where Sp(m, 1) - Sp(1) is a subgroup of Autps, (5***3 — §4™~1),
Let I be a torsionfree discrete uniform subgroup of Sp(m, 1)-Sp(1) which commutes

with Sp(1) = P(Z/2 x Sp(1)). Then we have a principal bundle of a compact
pseudo-quaternionic flat manifold;

(i) Sp(1)—S§*"+ — 541 [T —HF x FP*~™ /T
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where I' ¢ PSp(m, 1). In particular when m = n, ‘
(Sp(n,1)-8p(1), V1) = (P(Sp(n,1) x Sp(1)), V** x §%/Sp(1))
= (Sp(n,1)-Sp(1), 5% — §*n71).

Proposition 4. My = V73T is a pseudo-quaternionic flat manifold which is
a fibration over the quaternionic hyperbolic space form: Sp(1)—M,—Hg/T.

Similar to the conformally flat, spherical CR case (cf. [1],[14]), we can show that

Proposition 5. Let M;, M, be a (compact) pseudo-quaternionic flat manifold.
Then, the connected sum My # M, also admits a pseudo-quaternionic flat structure.

2. Deformation space

Recall that a geometric structure on a smooth n-manifold is a maximal collection
of charts modeled on a simply connected n-dimensional homogeneous space X of a
Lie group G whose coordinate changes are restrictions of transformations from G.
We call such a structure a (G, X)-structure. In particular, a (PSp(n+1,1), $47*3)-
structure is said to be the pseudo-quaternionic flat structure as before. A manifold
equipped with a (G, X )-structure is called a (¢, X')-manifold.

Suppose that a smooth connected n-manifold M admits a (G, X)-structure. Then
there exists a developing pair (p,dev), where dev : M—X is a (G, X)-structure
preserving immersion and p : w; (M) — § is a homomorphism (both unique up to
conjugacy by an element of G). The group I' = p(m;(M)) is called the holonomy
group for M.

Let M; be a (compact) (G, X )-manifold and put 7;(Mp) = I'. The deformation
space T (Mp) is the space of (G, X) -structures on marked manifolds homeomorphic
to My. T (M) consists of equivalence classes of diffeomorphisms f : My — M from
M, to (G, X)-manifolds M. Two such diffeomorphisms f; : My — M; (i = 1,2) are |
equivalent if and only if there is an isomorphism (i.e., (G, X)-structure preserving
diffeomorphism) h : M;— M, such that h o f; is isotopic to f;,.

M, L oM
fa N lh
M,

Let ﬁ(Mg) be the space consisting of all possible developing pairs (p,dev). Let
Diff(M)) be the group of all diffeomorphisms of M onto itself. Denote Diff® (My)
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the subgroup of Diff (Mj) each element of which is isotopic to the identity map.
Consider the following exact sequences of the diffeomorphism groups.

1 » T » Npigangy(T) —— Diff(Mo) —— 1

Chi(ary) (L) — Diff’ (M),

where Np;g 57,y (T) (resp. Chigsz,)(T)) is the normalizer (resp. centralizer) of T
in Diff(Mo). Put Diff(My) = Npgz,)(T). The natural right action of Diff(Mp)
and the natural left action of G on (M,) are defined respectively:

(pydev)of = (pou(f),dev of)
go(p,dev) = (gopog !l ,godev)

where p(f) : T—T is an isomorphism defined by the conjugate u(f) (v) = foxo

f

It is noted that two developing pairs (p;,dev;) (i = 1,2) represent the same struc-

ture on M) if and only if there exists an element g € G such that g o dev; = dev,.

Put |

Q(Mo) = B(M,) /DI (Mp).

Since both actions of ﬁi?f(Mo) and and G on Q(Mp) commute, the action of §
induces an action of (Mp). Then it follows that (cf. [9])

Lemma 6. The elements of T(My) are in one-to-one correspondence with the
orbits of G \ Q(M,).

If f: My — M is a representative element of 7 (M), there is a developing pair
(p,dev) : (m (M), M) — (G, X ) as above. We have the holonomy representation
pofy: ' = G up to conjugacy. There is a map hol : 7(My) — Hom(T',G)/G
which assigns to a marked structure its holonomy representation. By the definition
hol lifts to a map hol : Q(M,) — Hom(T', G) for which the following diagram is
commutative

(M) 2L, Hom(T,0)

! !

T(My) —2°L, Hom(T,0)/g.

The following is proved by Thurston [17].

Theorem 7 (Holonomy Theorem). kol is a local homeomorphism.
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3. Geometric superrigidity on M,

Let My = VA!**/T be a compact pseudo-quaternionic flat (4n + 3)-manifold as
before. When we take (G,X) = (PSp(n + 1,1),5%"*3), the deformation space
T (M) is the space of all possible pseudo-quaternionic flat structures on M,. In
this section we prove the following rigidity.

Theorem 8. Let M be a éompact pseudo-quaternionic flat (4n + 3)-manifold.
Suppose that the fundamental group m (M) is isomorphic to that of a compact
quaternionic hyperbolic 4n-manifold. Then, M is pseudo-quaternionically isomor-
phic to My = V713 T, |

Let hol : 7(M,) — Hom(T',PSp(n + 1,1))/ PSp(n + 1,1) be the map as before.

Theorem 9. The map hol maps T(My) homeomorphically onto a connected com-
ponent diffeomorphic to Hom(T',Sp(1))/Sp(1). ' |

A representation p : I'= PSp(n + 1,1) in Hom(T,PSp(n + 1,1)) is said to be
amenable if its closure of the image p(T') lies in the maximal amenable Lie subgroup
of PSp(n + 1,1). A maximal amenable Lie group in PSp(n + 1,1) is conjugate to
the compact subgroup Sp(n) - Sp(1) or to the group of similarity transformations
Sim(M). A Fuchsian representation p : I'= PSp(n+1,1) in Hom(T, PSp(n +1, 1))
is a discrete faithful representation whose image p(T') leaves a totally geodesic 4n-
subspace in Hg. (Compare [6], [2].)

Let 5(0,00) be the set of amenable representations in Hom(I', PSp(n + 1,1)) and
S(~1) the set of non-amenable representations in Hom(T,PSp(n + 1,1)). Then
the disjoint union §(0,00) U S(—1) constitutes Hom(T',PSp(n + 1,1)). Applying

Theorem 1 to the set S(—1), we can prove that

Lemma 10.

(i) The set S(—1) coincides with the set of discrete faithful representations of T

(ii) The set of discrete faithful representations coincides with the set of Fuchsian
representations of I,

Recall that I' is a uniform lattice in PSp(n,1). If we put
R(T') = {p € Hom(I',PSp(n, 1)) | p is a discrete faithful representation},

then by the well known Mostow rigidity, the orbit space R(I")/ PSp (n,1) is a single
point. Let R(T,Sp(n,1) - Sp(1)) be the set of discrete faithful representations in
Sp(n,1) - Sp(1). Then it is easy to see that



150

{The set of discrete faithful representations of I in PSp(n +1,1)}/ PSp(n +1,1)
is in one-to-one correspondence with R(T',Sp(n,1) - Sp(1))/Sp(n,1) - Sp(1). As
there is the fibration: ‘

Hom(T,Sp(1))/Sp(1) — Hom(T,Sp(n, 1) Sp(1))/Sp(n,1)- Sp(1)
— Hom(T',PSp(n, 1))/ PSp(n,1),

it follows that
R(T,Sp(n,1) - Sp(1))/Sp(n, 1) - Sp(1) =~ Hom(T', Sp(1))/Sp(1)-

Since the set of discrete faithful representations of I' is a closed subset in Hom(T, PSp(n+
1,1)) by Lemma 1.2 [7], we have

Corollary 11. The set of Fuchsian representations is a component of
Hom(T', PSp(n + 1,1)). Moreover, the set of Fuchsian representations is diffeo-
morphic to the space PSp(n + 1,1) x Hom(T', Sp(1))/Sp(1).

4. Amenable hblonomy groups

Reéall that an amenable representation p : I'— PSp(n + 1,1) is a representation
whose closure of the image p(T') in PSp(n+1,1) lies in the maximal amenable Lie
subgroup of PSp(n + 1,1). As the first step to prove Theorem 2, we must show
that : '

Theorem 12. Let M be a compact pseudo-quaternionic flat (4n+ 3)-manifold. If
the holonomy group is amenable, then M is finitely covered by the sphere §4™13,
a Hopf manifold S* x $***2 or a nilmanifold M/T.

We examine quaternionic Heisenberg geometry. Asusual, we write Autpsp(5'4"+3) =
PSp(n + 1,1). Recall $4"*3 — {oo} = M and let Autps,(M) be the subgroup of
Autps,(S*™*3) which stabilizes the point at infinity {oo}.
Then the geometry (Autpsp(M), M) is called quaternionic Heisenberg geometry.
A maximal amenable group G of Sp(n + 1,1) is isomorphic to the semidirect
product M x (Sp(n) x F*) where M is the quaternionic Heisenberg group. It
lies in the following exact sequence: 1—R3—M—F"—1. For the point {oo}
of §4"*3  as we identify S*"+3 — {oo} with M, Autpgy(M) is the stabilizer in
PSp(n+1,1) of the point {co}. Then Autpsp (M) is a maximal amenable subgroup
of PSp(n +1,1).
Let Z/2—Sp(n + 1,1) £, PSp(n + 1,1) be the projection. Since G is as above,
PG is isomorphic to Autpsp(M) = M x (Sp(n) - Sp(1) x RT).
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The Heisenberg Lie group M is the product R® x F* with group law »_
(a,9) - (b’yl) =(a+b+Im< v,y >, y+9).

The group M is nilpotent because [M, M] = R3 which is the center consisting of
the form (a,0). As above, M x (Sp(n) x F*) is the semidirect product for which
the action of Sp(n) x F* on M is given by

(*)  (4,¥)o(a,y) = (JvfPrvavt, Ayr7?).
Since Autpsy(M) = PG, PG is isomorphic to M » (Sp(n)-Sp(1) x R*), for which
the action of Sp(n) - Sp(1) x RT on M is given as follows: if v = (g,t), then
(A, (ga t)) ° (a’7 y) = (t2 : gag_lat : Ayg—l)-
Thus the Heisenberg dilation D* with scale factor t € R* is

D'(a,y) = (t?a, ty).

A gauge on M is defined by

|(a,9)lm = (4laf* + |y[*)%.

A left invariant metric da is given by

d((a, ), (b,y))m = I(b?y)_l -(a,z)|m,

where (b,y)"! = (=b, -y). ,
Given a (geodesically) incomplete similarity manifold M, we can find a I'-invariant
vector subspace I in M, which is called the invisible set according to the result

of Fried [4] (also, [16]). Using this invariant set, we can prove the above theorem.
We refer to [11] for the detail of this proof.
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