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1 Introduction
Let $\Sigma_{g}$ be a Riemann surface of genus $g$ . Let $\pi_{1}=\pi_{1}(\Sigma_{g}, *)$ be the funda-
mental group of $\Sigma_{g}$ with a base point. Suppose that $g\geq 2$ . We fix standard
generators $\ell_{i},$ $m$: $(i=1,2, \cdots , g)$ of $\pi_{1}$ satisfying

$\pi_{1}=\langle\ell_{1}, \cdots, \ell_{g1,g}, m\cdots, m|\Pi_{i=1}^{g}\ell im_{ii}p^{-1-}mi=e\rangle 1$ .
Here we have a simplicity problem on elements of $\pi_{1}$ . That is, for an element
$\gamma\in\pi_{1}$ , given by a word of $\ell_{i^{\mathrm{S}}}$

’ and $m_{i}’ \mathrm{s}$ , can we determine whether the
free homotopy class $[\gamma]$ of $\gamma$ is represented by a simple closed curve on $\Sigma_{g}$ ?
Lustig [L] and Takarajima [T] give answers of this problem. Lustig uses a
hyperbolic metric on $\Sigma_{g}$ and geodesics. Takarajima uses $t$rain $t$racks.

In this paper we fix a picture of $\Sigma_{g}$ as in Figure 1 and we consider an
algorithm to draw a ’simple’ picture for a given word $\gamma\in\pi_{1}$ , and we show
that this algorithm gives an answer of the simplicity problem.

The author would like to thank Prof. Okumura and Prof. Hattori for
their communications and encouragement.

2 Fundamental group $\pi_{1}$

The fundamental group $\pi_{1}=\pi_{1}(\Sigma_{g}, *)$ of Riemann surface $\Sigma_{g}$ are generated
by $(2g)$ elements $\ell_{i},$ $m_{i}(i=1,2, \cdots ,g)$ . Suppose that they are given by
Figure 2.

It is easy to check that $p_{i^{\mathrm{S}\mathrm{a}\mathrm{n}\mathrm{d}}i}’ m’ \mathrm{s}$ have only one relation

$R=\Pi_{i=}^{g}1pimi\ell^{-}i1.-m.1$ .
That is, we have

$\pi_{1}=\langle p_{i,i}m|R\rangle$ .
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For two $\mathrm{e}\mathrm{I}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{S}\gamma_{1},$
$\gamma_{2}$ in $\pi_{1}$ , we call

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{y}\mathrm{a}\mathrm{r}\mathrm{e}-\mathrm{l}$

.
free homotopic if there

exists an element $\sigma$ in $\pi_{1}$ satisfying $\gamma_{1}=\sigma\gamma_{2}\sigma$

3 Partition of Riemann surface
We devide $\Sigma_{g}$ to some areas as in Figure 3. $\mathrm{W}\mathrm{e}$ call dotted points vertices, we
call dotted lines from a vertex to a vertex internal segments, and we call solid
lines from a vertex to a vertex external segments. We consider an orientation
on each internal segments.

Remark: In this picture there are foreside and backside areas, so there
also exist foreside interior segments and backside interior segments.

We consider a set $C$ consisted of oriented closed curves drawn in the
figure of $\Sigma_{g}$ . Let $\{A_{1}, A_{2}, \cdots, A_{p}\}$ be a set of foreside internal segments,
and let $\{B_{1}, B_{2}, \cdots , B_{p}\}$ be a set of backside internal segments. Here $B_{i}$

corresponds to $A_{i}$ . Let $\{C_{1},\mathit{0}_{2}, \cdots, C_{q}\}$ be a set of external segments. Let
$\{D_{1}, D_{2}, \cdots, D_{r}\}$ be a set of foreside areas, and let $\{E_{1}, E_{2}, \cdots , E_{f}\}$ be a set
of corresponding backside areas. Here, $p=3g-1,$ $q=6g-2$ , and $r=2g$ .

We consider a cyclic word $X_{1}X_{2n}\ldots X$ of $\{A_{i}, B_{i}, Cj, Dk, Ek\}.\cdot$ satisfying
the following conditions.

(a) A length $n$ of the word is even.
(b) Each $X_{1},$ $X_{3},$ $x_{5},$ $\cdots$ is one of $\{A:, B_{i}, Cj\}$ .
(c) Each $X_{2},X_{4,6}X,$ $\cdots$ is one of $\{D_{k}, E_{k}\}$

(d) For each $\ell=1,2,$ $\cdots,n/2$ , segments $X_{2l-1}$ and $X_{2\ell+1}$ are $\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e},\mathrm{s}$ of
the area $X_{2\ell}$ . (If $\ell=n/2,$ $X_{2\ell+1}=X_{1}.$ )

Let $C$ be a set of such cyclic words. For a word $w$ in $C$ , we can consider
a corresponding picture of a loop on the figure of $\Sigma_{g}$ .

Example:
Let labels be given as in Figure 4. $\mathrm{F}\mathrm{o}\mathrm{r}$ a given loop $\gamma$ in Figure 5, the

corresponding word $w$ is given by

$w=A1D2c8E2B2E4B5E\mathrm{s}C3D3A4D1$ .

For a word $w$ in $C$ , if $w$ is correspondent to a simple closed cu$r\mathrm{v}\mathrm{e}$, then we
call $w$ simple. The above example is simple.

4 Reducing elem.ents of $C$

We consider the following 7 operations on $C$ . We call these operations re-
ducing.

(1) In the case that there exists an internal (or external) segment $a$

such that the curve intersects transversally $a$ twice in succession, $\mathrm{w}\mathrm{e}_{r}\backslash$cancel
the two intersections. (See Figure 6.)
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Remark: When we have a part as in Figure 7, we call that the curve
pass $a$ transversally.

(2) In the case that there exists an internal (or external) segment $a$ such
that the curve intersects $a$ once non-tranceversally, we cancel the intersection.
(See Figure 8.)

(3) In the case that there exists a connected component of external
segments such that a part of the curve is as the left one of Figure 9, we
cancel the two intersections of the curves and external segments. (See Figure
9.)

(4) In the case’ that there exists an internal segment $a$ and an external
segment $b$ such that $a$ and $b$ have a intersection, and that the curve pass
transversally $a,$ $b,$ $a$ in succession, we slide the intersection of the curve and
$b$ . (See Figure 10.)

(5) In the case that there exist an internal segment $a$ and two external
segment $b,$ $c$ , as in the left below figure and that the curve pass tranversally
$a,$ $b,$ $c,$ $a$ , in succession, we slide two intersections of the

$\mathrm{c}.\mathrm{u}$rve and external
segments. (See Figure 11.)

(6) In the case that there exist an internal segment $a$ and an external
segment $b$ with one common vertex and the curve pass transversally $a,$

$b$ in
succession and the curve pass $a$ in the backside, we slide the intersection of
the curve and $b$ . (See Figure 12.)

(7) In the case that the curve and segments are as in the left figures of
Figure 13, we slide the intersections of the curve and external seg.ments.

5 Main result
First, we also denote $p_{i}$ and $m_{i}$ their representations in $C$ .

Theorem
Let $\gamma\in\pi_{1}$ be given by a word of $p_{i}’ s$ and $m_{i}’ s$ . $S\mathrm{u}$ppose that the free

homotopy class $[\gamma]$ of $\gamma$ be represented by a simple closed curve. If we regar$d$

$\gamma$ as an element in $C$ , then after operating (1),(2)$,$ $\cdots,$ (7) in the previous
section we can red$\mathrm{u}$ ce $\gamma$ to a simpl$\mathrm{e}$ word in $C$ .

Remark: If we have a simple word in $C$ , it is easy to make a computer
programm to draw a simple closed curve on the figure of $\Sigma_{g}$ . So by this
algorithm we can know whether a given element of $\pi_{1}$ is represented by a
simple closed curve. And we mention that a reduced simple word is not
uniquely determined.

Proof : For a given $w$ in $C$ , suppose that the corresponding loop $\gamma$

is not simple. Then there exist a locally embedded disk $D$ on $\Sigma_{g}$ which is
bounded by one or two sub-curves of $\gamma$ as in Figure 14.
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$\downarrow \mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e}$ a disk $D$ is locally embedded in $\Sigma_{g}$ if a certain finite partition $D=$

$\bigcup_{i}D_{i}$ satisfies that the restriction on $D_{i}$ is an embedding. We will show that
the operations (1) $-(7)$ allows us to vanish this disk..

Case $0$ .
In the case that the disk $D$ is a subset of an area, we perturb $\gamma$ and vanish

the disk.

Case 1.
In the case that $D$ does not contain any vertices, we use (1), and (2). See

an example in Figure 15.

Remark: On the Riemann surface, a neiborhood of each..vertices is as
in Figure 16.

And remark that if we consider succesive three vertices $A,$ $B$ , and $C$ as
in Figure 17, then $A=C$ on $\Sigma_{g}$ .

Case 2.
In the case that the disk $D$ contains only one vertex, we use (1), (3), (4),

and (6).
The operation (3) is rewritten as in Figure 18.

Here areas
with slant lines means backside areas.

Case 3.
In the case that the disk $D$ contains two vertices along integral segments,

we use (5), (6), and (7). If we have a part as in Figure 18, we can reduce the
curve in the case 2. Otherwise we have the following reducing and vanish the
disk. See Figure 21.

Case 4.
In the case that the disk $D$ contains more than two successive vertices

along internal segments, we use (3), (6) and (7). Here we show that we can
decrease the number of vertices in the disk. See Figure 18 and Figure 22.

Case 5.
In the case that $D$ contains some successive vertices along external seg-

ments, we use the operation (3), (4) and (6). Here we show that we can
decrease the number of vertices in the disk. See Figure 14 and Figure 23.

Case 6.
In the case that $D$ contains some vertices which are not in succession by

segments, We divide the disk as in Figure 24.

Case 7.
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In the case that $D$ contains some successive vertices but $D$ does not
contain any areas, we use (3), $u(6)$ . We divide the disk $D$ into some small
disks. See Figure 25. And then we can see that each small pieces contains
successive vertices along internal segments. .

Case 8.
In the case that $D$ contains some areas, we see a neiborhood of one of

these areas. It looks like as in Figure 26.
We use (3) or (5) as in Figure 27, we can reduce the disk in the case the

disk does not contain any areas. It follows that $\dot{\mathrm{w}}\mathrm{e}$ can vanish the disk in
any case.

6 Finiteness
When we realize these algorithm in c\’Omputers, we need to show whether it
finishes in finite steps. If $\gamma$ is represented by a finite word, then the number
of disks are finite. In the category $C$ , the number of vertices which are
contained in one disk is always finite. For each disks, we can always decrease
the number of vertices, so the algorithm finishes finitely.
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$\iota$ .

$A_{arrow}^{\backslash }$

$\mathrm{F}_{1\mathrm{J}^{\bullet\sim}}|$

$\perp$ .

$\mathrm{F}_{1f^{\mathrm{W}}}^{\backslash }$ a.
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$\mathrm{F}_{\mathrm{t}}^{\backslash }3^{\mathrm{R}}$ $*$ .

$\ulcorner^{1}|2\mathrm{m}$
$\sigma$ ,

$d$

$\epsilon,\prime JMd$

$F_{f^{\psi e}}’/$
$7$ .
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A
$(\mathrm{Z})$

$arrow$

$\propto\bullet$

$\bullet\bullet\bullet\bullet\bullet\bullet\bullet$

$\bullet$ .

$F_{[J^{m}}’s$ .

$\mathrm{a}^{J}\#$

$\beta_{J}\dagger J^{\mathcal{U}}oe$ $/O$ .

$\Rightarrow(\zeta)$

$\mathrm{F}_{15^{ur\mathrm{e}}}^{\backslash }$,
$||$ ,

$\bullet \mathrm{a}$ $\mathrm{O}$

$F_{f^{\mathrm{M}fl}}^{1}/$
[2.

14



$(\nabla)\Rightarrow$

$(\uparrow)\yen$

$\mathrm{F}_{1}^{\backslash }f^{\mathfrak{U}r}\mathrm{e}(\ni$
,

$l\not\in$ .

$\underline{\underline{(\mathrm{Z})}}\rangle$

$\mathrm{t}_{\mathfrak{U}}\mathrm{C}$

—-

$\mathrm{F}_{7}^{\mathrm{t}}1\mathfrak{U}.\gamma \mathfrak{e}$ $|7$ ,

$\mathrm{F}_{[\mathrm{J}^{\kappa Ve}}^{\backslash }$

$|b$
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$\mathrm{F}_{19^{\mathrm{L}\mathcal{R}}}^{\iota}$

$\downarrow\gamma$ .

$(3)\Rightarrow$

$.|$

$\mathrm{R}_{7^{\alpha}}^{\mathrm{t}}\mathrm{r}e$
$lS$

$\Rightarrow(+)$

$\mathrm{F}_{1}^{\backslash }\alpha 5\mathrm{r}C$

$|\mathrm{q}$

$arrow\underline{(3)}$

$\bullet]\int\{\bullet\bullet\cdot$ .
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$\ulcorner-|15\alpha \mathrm{r}\mathrm{e}$ $2O-^{\chi}$ .

$\Rightarrow(\Gamma)$

$\Rightarrow(\delta.)$

$(\nabla)\Rightarrow$

$\mathrm{F}_{J^{[]}}^{\backslash }\mathrm{t}\lambda V\mathrm{e}$

$\mathrm{Z}_{-}|$

$\Rightarrow(\mathcal{E})$

$\mathrm{F}^{\mathrm{t}}|f^{(\mathrm{A}\mathrm{r}\mathrm{e}}$ 22.
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$\Rightarrow^{(3J}$

$\mathrm{F}_{1J^{\alpha \mathrm{r}\mathrm{e}}}^{1}2$
;

$(\mathrm{t}\mathfrak{b}e$

, $;aneo\acute{\mathrm{n}}\mathrm{e}$
$\grave{\iota}n\mathrm{C})$

$\ulcorner_{-}-|15^{\infty}2*$.
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$\mathrm{F}_{13}^{1}$ (Are 26.

$\Leftrightarrow(\zeta)$

$\Rightarrow(\})$

$\mathrm{F}_{13^{\kappa\mathrm{e}}}^{\backslash }\cdot 2_{-\gamma}$ .
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