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INTRODUCTION

A handlebody of genus $g,$ $H_{g}$ , is an orientable 3-manifold, which is constructed ffom a
3-ball with attaching $g1$-handles. Let $D_{\dot{i}}ff^{+}(H)g$ be the group of orientation preserving

diffeomorphisms on $H_{g},$ $\mathcal{H}_{g}$ be a group which consists of isotopy classes of $D_{\dot{i}}ff^{+}(H)g$ .
The groups $\mathcal{H}_{g}$ are interesting objects because of their relationships with Heegaard

splittings of 3-manifolds and outer automorphism group of free groups. In this paper,

we give a presentation of $\mathcal{H}_{2}$ . Before we state this presentation, we set notations used

there. We indicate an element of $Diff^{+}(H_{g})$ by figure like left hand side of Figure 1,

in this figure, the left hand side figure denotes an element given in the right hand side

figure.

The $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{b}_{\mathrm{o}1}\Leftrightarrow \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ commute with. If $L,$ $M,$ $N$ are any elements of $\mathcal{H}_{g}$ , a relation
$L\Leftrightarrow M,$ $N$ means that $LM=ML,$ $LN=NL$. In this paper, we consider that the

group $\mathcal{H}_{g}$ acting on $H_{g}$ from the right.

Theorem 1. Let a, $b,$ $c,$ $d,$ $t,$ $e,$ $f$ be the elements of $\pi_{0}(Diff^{+}(H_{2}))$ by the elements

of $D_{\dot{i}}ff^{+}(H2)$ indicated in Figure 2. The group $\pi_{0}(Diff^{+}(H_{2}))$ admits a presentation

with generators a, $b,$ $c,$ $d,$ $t,$ $e,$ $f$ and defining relations,
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$e^{2}=f^{2}=1$ ,

$fbfb^{-1}fb=ca^{-1}de,$ $aba^{-}1b^{-}1=d^{22}c$ ,

$dad^{-1}=d^{2_{C}2}a^{-},$$d1b-1d-1=d^{2}cb2$,

$t-1bt=ba,$ $ftf=C-1,$ $e=fd-1fd$,

$c\Leftrightarrow a,$ $b,$ $d$ ,

$e\Leftrightarrow a,$ $b,$ $c,$ $d,t,$ $f$,

$t\Leftrightarrow a,$ $c,$ $d$ ,

$f\Leftrightarrow a^{-1}t,$ $d^{2}$ .

Contents are as follows: in section 1, we set notations, and review method, by Brown,

to get a presentation of a group which act simplicially on a simply connected CW-

complex, and introduce a simply connected $\mathrm{C}\mathrm{W}$-complex where $\mathcal{H}_{2}$ acts. In section 2,

we obtain a presentation of subgroups of $H_{2}$ which is used to prove Theorem 1. In

section 3, we prove Theorem 1. In section 4, we check this presentation by showing

that there is a surjection from $\mathcal{H}_{2}$ to $SL(2, \mathbb{Z})$ and injection which is the inverse of this

surjection.

1. PRELIMINARIES

In this section, we set notations and review tools used in this paper.

1. Notations. Let $X$ be any oriented manifold, and $K_{1},$
$\ldots$ , $K_{n},$ $K_{n+1}$ be subsets of

X. We introduce a notation as follows,

$Diff^{+}(X, K_{1}, \ldots, K_{n},rel(K_{n+1}))=$ .

For abbreviation, we denote $Diff^{+}(X, K_{1}, \ldots , K_{n}, rel(\emptyset))$ by $Diff^{+}(x, K_{1}, \ldots, K_{n})$ ,

denote $Diff^{+}(x, \emptyset, rel(K_{1}))$ by $Diff^{+}(X, rel(K1))$ , and denote $Diff^{+}(X, \phi, rel(\emptyset))$
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by $Diff^{+}(X)$ . The set $D_{\dot{i}}ff^{+}(X, K_{1}, \ldots, K_{n}, rel(K_{n+}1))$ has a natural group struc-

ture. In this paper, we consider that the group $D_{\dot{i}}ff^{+}(X, K_{1}, \ldots, K_{n}, rel(K_{n+}1))$ acts

on $X$ from the right, that is, for elements $\varphi_{1}$ and $\varphi_{2}$ of $Diff^{+}(X, K_{1}, \ldots, K_{n}, rel(K_{n+}1))$ ,

$\varphi_{1}\varphi_{2}$ means that apply $\varphi_{1}$ first, and apply $\varphi_{2}$ . The group $\pi_{0}(D_{\dot{i}}ff^{+}(X,$ $K_{1},$
$\ldots,$

$K_{n}$ ,

$rel(K_{n+1})))$ consists of the isotopy classes of $D_{\dot{i}}ff^{+}(X, K_{1}, \ldots, K_{n}, rel(Kn+1))$ and its

group law is induced from that of $Diff^{+}(X, K_{1}, \ldots, K_{n}, rel(K_{n}+1))$ . Especially, we

denote $\pi_{0}(Diff^{+}(H_{g}))$ by $\mathcal{H}_{g}$ . In this paper, we give a presentation of $\mathcal{H}_{2}$ . We denote

by $<a_{1},$ $\ldots.’ a_{n}|>\mathrm{a}.\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}$ group generated by $a_{1},$ $\ldots,$ $a_{n}$ .

2. Brown’s method [Br]. Let $G$ be a group, and $X$ be a simply connected CW-

complex on which $G$ acts as cellular homeomorphisms. We call this $X$ as simply con-

nected G-CW-complex. In this paper, we regard the action of $G$ as a right action.

There is a method introduced by Brown [Br] to get a presentation of $G$ from a simply

connected $G- \mathrm{C}\mathrm{w}_{-}\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}}1\mathrm{e}\mathrm{X}$. In this subsection, we review this method.

At first, we need to introduce some notations and terminologies. For any CW-

complex $C$ , a $0$-cell of $C$ is called a vertex. A 1-cell of $C$ with an orientation is called

an edge. Any edge $e$ has an initial vertex $o(e)$ and a final vertex $t(e)$ . The notation $\overline{e}$

denote the edge corresponding to the same 1-cell as $e$ and whose orientation is opposite

to $e$ . $V(C)$ denote the set of vertices of $C,$ $\Sigma(C)$ denote the set of 1-cells of $C$ , and

$E(C)$ denote the set of edges of $C$ .

Rom here to the end of this subsection, $X$ denote a $G- \mathrm{C}\mathrm{w}_{-}\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}}1\mathrm{e}\mathrm{X}$. A 1-cell $\sigma$

of $X$ is called inverted if there is an element $g$ of $G$ such that $\sigma g=\sigma$ and reverse the

orientation of $\sigma$ . The notation $\tilde{\Sigma}^{-}$ denote the set of inverted 1-cells of $X$ , and $\tilde{\Sigma}^{+}$ denote

the set of non-inverted 1-cells of $X$ . A simply conected $\mathrm{C}\mathrm{W}$-complex which consists of

$0$-cells and 1-cells is called a tree. A subtree $T$ of $X$ is $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l},\mathrm{e}\mathrm{d}$ a tree of reprsentatives if

$V(T)$ is the set of representatives of $V(X)/G$, and each element of $\Sigma(T)$ is an element

of $\tilde{\Sigma}^{+}$ . A tree of representatives of $X$ is a ‘fundamental domain’ of the action of $G$ on

X. We can give an orientation for each element of $\tilde{\Sigma}^{+}$ such that these are preserved by
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the action of $G$ . A subset $P$ of $E(X)$ given in the above manner, is called $\mathit{0}\dot{n}entat\dot{i}on$

of $X$ . Let $E^{+}$ be the set of representations of $P/G$ such that for each $e\in E^{+}o(e)$ is

an element of $E^{+}$ and for each 1-cell of $T$ given proper orientation is an element of $E^{+}$ .
Let $\Sigma^{+}$ be the set of 1-cells of $X$ which correspond to the elements of $E^{+}$ . Let $E^{-}$

be the set of representatives of $\Sigma^{+}/G\sim$ with an orientation such that for each $e\in E^{-}$ ,

$o(e)\in V(T)$ . Let $\Sigma^{-}$ be the set of 1-cells of $X$ which correspond to the elements of $E^{-}$

For each $e\in E^{+},$ $t(e)$ may not be an element of $V(T)$ , but there is one and only one

element of $V(T)$ in the orbit of $t(e)$ by the action of $G$ . We denote this vertex by $w(e)$ .
By the definition of $w(e)$ , there is at least one and not unique element $g_{e}$ of $G$ such that

$w(e)g_{e}=t(e)$ . When $e\in E(T)$ , we choose $g_{e}=1$ . For any $g\in c_{t(e),ggg_{e}}e-1\in G_{w(e)}$ .
Hence, we can define isomorphism $c_{e}$ from $G_{t(e)}$ to $G_{w(e)}$ by $c_{e}(g)=g_{e}gg_{e}^{-1}$ . Any

element of $G_{e}$ preserve $t(e)$ , so we can naturally consider $G_{e}$ as a subgroup of $G_{t(e)}$ . We

can define in the natural way the injection from $G_{e}$ to $G_{w(e)}$ , we denote this injection

also by $c_{e}$ . For the sake of giving the presentation, we need to present $g_{e}gg_{e}^{-1}$ as an

element of $G_{t(e)}$ for each generator of $G_{e}$ .

Each edge $\epsilon$ of $X$ , such that $o(\epsilon)\in V(T)$ , fall into the following three cases: (1) $\epsilon$

corresponds to a 1-cell in $\tilde{\Sigma}^{+}$ and there is an element $e\in E^{+}$ , and an element $g\in G$

such that $eg=\epsilon,$ (2) $\epsilon$ corresponds to a 1-cell in $\tilde{\Sigma}^{+}$ and there is an element $e\in E^{+}$ ,

and an element $g\in G$ such that $\overline{e}g=\epsilon,$ (3) $\epsilon$ corresponds to a 1-cell in $\tilde{\Sigma}^{-}$ In these

cases, $\epsilon$ is as indicated in the following figures.

(1) $\phi \mathrm{t}\mathrm{J}\overline{\mathrm{e}R\prime-\epsilon}(4)@4*$ $(h\in G_{v}, e\in E+)$

(2)
$\Lambda r\mathrm{J}\overline{\mathrm{e}}\mathrm{t}^{\overline{\mathrm{e}}^{1}}\mathit{4}_{\iota^{-}}-\epsilon 0\mathfrak{l}\mathrm{e}\tau_{7^{\overline{\mathrm{e}}}}|*$

$(h\in G_{w}, e\in E+)$

(3) $\wedge’\overline{\mathrm{e}^{\chi\underline{-}}\epsilon}’\iota)\mathrm{x}f_{(}$ ( $h\in G_{v},$ $t\in E^{-},$ $t\in G_{\sigma}$ reverse the orientation of $\sigma$)

We can consider $\epsilon$ as a bridge between $T$ and $Tg$ for some $g\in G$ . The above figure

indicates the way how to give this $g$ for each $\epsilon$ . In (1), $g=g_{e}h$ , in (2), $g=g_{e}^{-1}h$ ,

in (3), $g=th.$ Let $\alpha$ be a colsed path in $X$ such that whose base point $v_{0}$ is in
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$V(T)$ . We choose an element $g_{\alpha}$ of $G$ as follows. This path is a sequence of edges

$e_{12n}^{\prime_{e\cdots e}}\prime\prime$ . The first one $e_{1}’$ is an edge such that $o(e_{1})/=v_{0}\in V(T)$ , we can obtain

elements $v_{1}\in V(T),$ $g_{1}\in G$ such that $v_{1}g_{1}=t(e_{1})/$ in the above manner. The initial

vertex of $e_{2}=e_{2}’g_{1}^{-}1$ is $v_{1}\in V(T)$ . Hence, in the same way, we can obtain elements

$v_{2}\in V(T),$ $g_{2}\in G$ such that $v_{2}g_{2}=t(e_{2})$ . This means $t(e_{2}’)=v_{2}g_{2}g_{1}$ . We continue

this construction successively for other $e_{3}’’,$$e_{4},$ $\ldots$ and $e_{n}’$ , then we can get a sequence

$g_{1},g_{2},$ $\ldots g_{n}$ of elements of $G$ such that $v_{n}gn\ldots g_{2}g_{1}=t(e_{n}’)$ . In our situation, $\alpha$ is a

loop, so $v_{n}=v_{0}$ . Hence, $g_{\alpha}=g_{n}\cdots g_{2}g_{1}$ is a element of $G_{v_{\mathrm{O}}}$ . Let $\hat{G}=()*v\in V^{*}(T)^{c_{v}}$

$(*c_{\sigma})*\sigma\in\Sigma-(*e\in E+<\hat{g}_{\epsilon}>)$ . In the above construction, $g_{i}$ is a product of $g_{e},$
$t\in G_{\sigma}$ and

$h\in G_{v}$ . The element $\hat{g}_{i}$ of $\hat{G}$ is given $\mathrm{h}\mathrm{o}\mathrm{m}g_{i}$ with replacing $g_{e}$ with $\hat{g}_{e}$ . Let $F$ be the

set of representatives of 2-cells of X modulo $\mathrm{G}$ such that, for each $\tau\in F,$ $\partial\tau$ go through

$V(T)$ . In the above way, we construct $\hat{g}_{\partial\tau}$ . By the following theorem, we can obtain a

presentation of $G$ .

Theorem [Br]. In the above situation, $G$ is presented as $\hat{G}$ with the following relations:

(1) for $e\in E(T),\hat{g}_{e}=1$ ,

(2) for each $e\in E^{+}$ and $g\in G_{e},\hat{g}_{e}i_{e}(g)\hat{g}_{e}^{-}1=c_{e}(g)$ , where $i_{e}$ : $G_{e}arrow G_{o(e)}$ is the

indusion and $c_{e}$ : $G_{e}arrow G_{w(e)}$ is the injection given above,

(3) for each $e\in E^{-}$ and $g\in G_{e},$ $i_{e}(g)=j_{e}(g)$ , where $i_{e}$ : $G_{e^{\mathrm{e}}}arrow Go(e),$ $j_{e}$ : $G_{e}\mathrm{c}arrow G_{\sigma}$

are inclusions,

(4) for each $\tau\in F,\hat{g}_{\partial\tau}=g_{\partial\tau}$ . $\square$

3. The disk complex [Jo]. In this subsection, we introduce simply connected CW-

complex, where the group $\mathcal{H}_{2}$ acts simplicially.

The disk complex $\Delta(H_{2})$ of $H_{2}$ is the simplicial complex whose $m$-simplices are iso-

topy classes of $(m+1)$-tuples $(D_{0}, D_{1}, \ldots, D_{m})$ of essential and pairwise non-isotopic

disjoint disks. In $H_{2}$ , there is no more than three disks which define a simplex. Hence,

$\Delta(H_{2})$ is a 2-dimensional simp\‘iicial complex. By some cut and paste argument, we

can see $\Delta(H_{2})$ is simply-connected [Jo; Prop. 2.2]. This simplicial complex is not a
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FIGURE 3

$\mathrm{A}f_{1}$

$\mathrm{u}_{\mathrm{L}}$

FIGURE 4

$\nabla_{1}$

$T_{\mathrm{L}}$

FIGURE 5

$\tau_{\mathrm{I}}$
$- \mathrm{c}_{\mathrm{L}}$

FIGURE 6

manifold, because, for each edges, there are more than three faces emanating from this

(see Figure 3). By the elementary argument, we can see:
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$\Theta_{-}$ .

FIGURE 7

FIGURE 8

(1) the set of representatives of $V(H_{2})/\mathcal{H}_{2}$ consists of two elements $v_{1}$ and $v_{2}$ (see

Figure 4),

(2) the set of representatives of 1-cells of $\Delta(H_{2})$ modulo $\mathcal{H}_{2}$ consists of two elements

$\sigma_{1},$ $\sigma_{2}$ , one of them $\sigma_{1}$ is inverted and the other $\sigma_{2}$ is non-inverted (see Figure

5),

(3) the set of representatives of 2-cells of $\Delta(H_{2})$ mod $\mathcal{H}_{2}$ consists of 2-elements $\tau_{1},$ $\tau_{2}$

(see Figure 6).

Here, we make a choice. Let a tree of representatives $T$ be the subcomplex of $\Delta(H_{2})$

which consists of $\sigma_{2},$ $v_{1}$ and $v_{2}$ . Let $e_{1}$ be an edge which is $\sigma_{1}$ with orientation given in

Figure 7, $e_{2}$ be an edge which is $\sigma_{2}$ with orientation from $v_{1}$ to $v_{2}$ . We set $E^{+}=\{e_{2}\}$ ,

$\Sigma^{+}=\{\sigma_{2}\},$ $E^{-}=\{e_{1}\}$ and $\Sigma^{-}=\{\sigma_{1}\}$ . Since $t(e_{2})\in V(T)$ , we choose $g_{e_{1}}=1$ and

$w(e_{2})=t(e_{2})$ . In the next section, we give presentations for $G_{v_{1}},$ $G_{v_{2}}$ and $G_{\sigma_{1}}$ , sets of

generators for $G_{e_{1}}$ and $G_{e_{2}}$ .

2. SUBGROUPS OF $\mathcal{H}_{2}$

In this section, we will give presentations for the groups which we use to give a pre-

sentation for $\mathcal{H}_{2}$ . Let $D_{1},$ $D_{2},$ $D_{3}$ be disks properly embedded in $H_{2}$ indicated in Figure
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$\mathrm{c}_{1}$

$c_{L}$

FIGURE 9

8. With these notations, $G_{v_{1}}=\pi_{0}(D\dot{i}ff^{+}(H_{2}, D1)),$ $G_{v}2=\pi_{0}(D\dot{i}ff^{+}(H_{2}, D_{3})),$ $c_{\sigma_{1}}=$

$\pi_{0}(D_{\dot{i}}ff^{+}(H_{2}, D_{1}\cup D2)),$ $G_{6_{1}}=\pi 0(D\dot{i}ff^{+}(H2, D1, D_{2}))$ and $G_{e_{2}}=\pi_{0}(Diff^{+}(H_{2,1}D$ ,
$D_{3}))$ .

Proposition 1. Let a, $b,$ $c_{1},$ $C_{2},$ $d,$ $t1,$ $t_{2}$ be the elements of $\pi_{0}(D\dot{i}ff^{+}(H_{2,1}D\cup D2))$ given

in Figure 9 This group admits a presentation with generators a, $b,$ $c_{1},$ $C_{2},$ $d,$ $t1,$ $t_{2}$ , and

defining relations,

$t_{1}^{222}=t_{2}=b,$$d=1,$ $dt_{1}d=t_{2},$ $dc_{1}d=c_{2}$

$t_{1}^{-1}$ at$1=t_{2}^{-1}at_{2^{-}}-b-1-a1C_{1}^{-}c22-2$ , $t_{1}\Leftrightarrow t_{2}$ ,

$a\Leftrightarrow c_{1},$ $c_{2},$
$d$ , $b\Leftrightarrow c_{1},$

$c_{2},$
$d$ , $c_{1}\Leftrightarrow c_{2}$

$t_{1},$ $t_{2}\Leftrightarrow b,$ $c_{1},$ $c_{2}$ .

$\square$

Proposition 2. Let a, $b,$ $c,$ $d,$ $t,$ $e$ be the elements of $\pi_{0}(D\dot{i}ff^{+}(H2, D1))$ given in Figure
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FIGURE 10

$=_{-}\iota$

$\mathrm{e}_{\iota}$

$\mathrm{T}_{1}$

X $\iota$ -k; $\mathrm{Y}$

FIGURE 11

10. This group admits a presentation with generators a, $b,$ $c,$ $d,$ $t,$ $e$ and defining relations,

$aba^{-1}b^{-1}=d^{2}c^{2},$ $dad^{-1}=aba^{-1}b-1da^{-1},bd-1=ab^{-1-1}a$ ,

$e^{2}=1,$ $t^{-1}bt=ba$ ,

$e\Leftrightarrow a,$ $b,$ $c,$ $d,$ $t,$ $t\Leftrightarrow a,$ $c,$ $d$ ,

$c\Leftrightarrow a,$ $b,$ $d$ .

$\square$
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Proposition 3. Let $e_{1},$ $e_{2},$ $t_{1},$ $t_{2},$ $r$ be the elements of $\pi \mathrm{o}(Diff^{+}(H2, D3))$ given in

Figure 11. This group admits a presentation with generators above 6 elements and

defining relations,

$e_{1}^{2}=e_{2}^{-2},$ $r^{2}=1,rt_{1}r=t_{2}$ ,

$re_{1}r=e_{2}^{-1}$ , $e_{1}\Leftrightarrow t_{1},e_{2},t_{2}$ ,

$e_{2}\Leftrightarrow t_{1},t_{2}$ , $t_{1}\Leftrightarrow t_{2}$

$\square$

Proposition 4. The group $\pi_{0}(Diff^{+}(H2, D1, D_{2}))$ is generated by $e_{1},$ $e_{2},$ $t_{1},$ $t_{2},$ $t_{3}$

given in Figure 11. $\square$

Proposition 5. The group $\pi_{0}(Diff^{+}(H2, D1, D_{3}))$ is generated by $e_{1},$ $e_{2},$ $t_{1},$ $t_{2}$ given

in Figure 11. $\square$

3. A PRESENTATION FOR $\mathcal{H}_{2}$

Let $\hat{G}=G_{v_{1}}*G_{v_{2}}*G_{\sigma_{1}}*<\hat{g}_{e_{2}}>$ . We put suffix $\alpha,$
$\beta,$

$\gamma,$
$\delta,$ $\epsilon$ for each element of

$c_{v_{1}},$ $c_{v_{2}},$ $c_{\sigma_{1}},$ $G_{e_{1}},$ $G_{e_{2}}$ respectively. For example, $a\in G_{v_{1}}$ is denoted by $a_{\alpha},$ $t_{1}\in G_{\sigma_{1}}$

is denoted by $t_{1,\gamma}$ and so on. Following the theorem by Brown, we give a presentation

for $\mathcal{H}_{2}$ . The edge $e_{2}$ is in the tree $T$ , hence, (1) means $\hat{g}_{e_{2}}=1$ . Since we choose $g_{e_{2}}=1$ ,

$c_{e_{2}}$ : $G_{e_{2}}arrow G_{w(e_{2})}$ is a natural inclusion. Since $o(e_{2})=v_{1},$ $w(e_{2})=t(e_{2})=v_{2},$ $(2)$

means, for each $g\in G_{e_{2}},$ $i_{e_{2}}(g)=j_{e_{2}}(g)$ , where $i_{e_{2}}$ : $G_{e_{2}}arrow G_{v_{1}},$ $j_{e_{2}}$ : $G_{e_{2}}arrow G_{v_{2}}$ are

inclusions. We get the following relations:

$e_{1,\beta}=e_{1,\delta}=d_{\alpha},$ $e_{2,\beta}=e_{2,\delta}=e_{\alpha}d_{\alpha}^{-1}$ ,

$t_{1,\beta}=t_{1},\delta=c_{\alpha}^{-1},$ $t_{2,\beta\alpha}=t_{2,\delta}=t$

(3) means, for each $g\in G_{e_{1}},$ $i_{e_{1}}(g)=j_{e}1(g)$ , where $i_{e_{1}}$ : $G_{e_{1}}arrow G_{v_{1}},$ $j_{e1}$ : $G_{e_{1}}arrow G_{\sigma_{1}}$ .
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FIGURE 12

We get the following relations:

$d_{\alpha}=e_{1,\epsilon}=t_{1,\beta}^{-1},$ $e\alpha d_{\alpha}^{-1}=e2,\epsilon t2=,\beta$ ,

$c_{\alpha}^{-1}=t_{1,\epsilon}=c_{2,\beta},$ $t_{\alpha}=t_{2,\epsilon 1,\beta}=C$ ,

$a_{\alpha}^{-1}t_{\alpha}=t_{3,\epsilon}=a^{-1}\beta$ .

To get the relations induced by (4), we need to give a presentation of $g_{\partial\tau_{1}}$ and $g_{\partial\tau_{2}}$ .

Let $e_{1}^{\prime/;},$$e_{2},$ $e_{3}$ be the edges of $\partial\tau_{1}$ indicated in Figure 12. We choose a sequence $g_{1},$ $g_{2},$ $g_{3}$

of the elements of $\mathcal{H}_{2}$ corresponding to these edges. The element $d_{\gamma}$ of $G_{\sigma_{1}}$ satisfies $v_{1}d_{\gamma}$

$=t(e_{1})$ , and $b_{\alpha}\in G_{v_{1}}$ satisfies $eb_{\alpha}=e_{1}’$ , therefore, we choose $g_{1}=d_{\gamma}b_{\alpha}$ . The element

$b_{\alpha}^{-1}$ of $G_{v_{1}}$ satisfies $eb_{\alpha}^{-1}=e_{2}’g_{1}-1$ , therefore, we choose $g_{2}=d_{\gamma}b_{\alpha}^{-1}$ . The element $b_{\alpha}$ of

$G_{v_{1}}$ satisfies $eb_{\alpha}=e_{2}’(g_{2}g1)-1$ , therefore, we choose $g_{3}=d_{\gamma}b_{\alpha}$ . The element $g_{3}g_{2}g_{1}$ is

in $G_{v}$ , namely we can check $g_{3}g_{2}g_{1}=c_{\alpha}a_{\alpha}^{-1}d_{\alpha}e_{\alpha}$ . Hence we get the following relation:

$d_{\gamma}b_{\alpha\gamma}db_{\alpha\gamma\alpha}^{-}1db\alpha=c_{\alpha\alpha}a^{-1}de\alpha$ .

Let $e_{1}$ ”, $e_{2}$”, $e_{3}$
” be the edges of $\partial\tau_{2}$ indicated in Figure 13. By the same manner,

we get the following relation:

$d_{\gamma}=r_{\beta}^{-1}$ .

We get a presentation of $\mathcal{H}_{2}$ , by Proposition 1 to 5, and relations given above. We apply
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FIGURE 13

Tietze transformations [MKS; \S 1.5] to this presentation, then we obtain the presentation

given in Theorem 1.

4. THE SURJECTION FROM $\mathcal{H}_{2}$ TO $GL(2, \mathbb{Z})$

There is a natural surjection from $\mathcal{H}_{2}$ to the outer automorphism group of the free
group of rank 2, Out $(F_{2})$ , which is defined by the action of the elements of $\mathcal{H}_{2}$ on the

fundamental group of the handle body of genus 2. For the sake of check the presentation

given in Theorem 1, we show this result with using this presentation. The group
Out $(F_{2})$ is naturally identified with $GL(2, \mathbb{Z})$ (see [MKS; p.169]). The group $GL(2, \mathbb{Z})$

is generated by $R_{1},$ $R_{2},$ $R_{3}$ :

$R_{1}=,$ $R_{2}=,$ $R_{3}=$ ,

and the following is the set of relations between them which defines $GL(2, \mathbb{Z})$ :

$R_{1}^{2}=R^{2}2=R^{2}3=E$ ,

$(R_{1}R_{2})^{3}=(R1R3)^{2}=Z$, $Z^{2}=E$ ,

where

$E=,$ $Z=$
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(see [CM; Chapter 7]).

A homomorphism $\psi$ from $\mathcal{H}_{2}$ to $GL(2, \mathbb{Z})$ defines by:

$a,$ $c,t\mapsto E$ ,

$b\mapsto R_{1}R_{3}R_{2}R_{1}$ , $d-R_{3}$ ,

$e-R_{1}R_{3}R_{1}R_{3}(=^{z)},$ $f\mapsto R_{1}R_{3}R1R_{3}R_{1}$ ,

is a natural surjection. A homomorphism $\phi$ from $GL(2, \mathbb{Z})$ to $\mathcal{H}_{2}$ defined by considering

natural identification of (once punctured torus) $\cross[0,1]$ with $H_{2}$ :

$R_{1}\mapsto fe$ ,

$R_{2}\mapsto d^{-1}ac^{-}1fbf$,

$R_{3}-d^{-1}aC^{-1}$ ,

is a injection and satisfies.$\psi\circ\emptyset=idcL(2,\mathbb{Z})$ . The above two facts are verified by using

the representation of $\mathcal{H}_{2}$ given as a Theorem 1.

Problem. A injection $\phi$ from $GL(2, \mathbb{Z})$ to $\mathcal{H}_{2}$ , which satisfies $\psi\circ\emptyset=id_{GL(2},\mathbb{Z}$ ) is not

unique. Is it unique up to conjugation ?
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