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Abstract

We consider groups with cyclic presentations which arise as fundamental groups

of a family of closed 3-dimensional manifolds. These manifolds were firstly described

by Takahashi using Dehn surgeries on links. We demonstrate that the cyclic auto-

morphisms of groups induce cyclic coverings of the 3-sphere branched over 2-bridge

knots. Moreover, polynomials associated with cyclic presentations are equal to Alexan-

der polynomials of corresponding knots.
Ifeywords: fundamental group, 3-manifold, cyclic covering.

1. CYCLICALLY PRESENTED GROUPS

The cyclically presented groups comprise a rich source of groups which are inter-

esting from a topological point of views. The connection between cyclically presented

groups and cyclic branched coverings of knots and links was studied, in particular,

in [2], [4], [5] and [6].

Let $F_{n}=\langle_{X_{1}}, \ldots, X_{n} | \rangle$ be the free group of rank $n$ and $\eta$ : $F_{n}arrow F_{n}$ be an

automorphism of order $n$ such that $\eta(x_{i})=x_{i+1}$ for $i=1,$ $\ldots$ , $n$ , where all indices

by mod $n$ . We recall [8, \S 9] that for a reduced word $w\in F_{n}$ the cyclically presented

group $G_{n}(w)$ is given by

$G_{n}(w)=\langle x_{1},$
$\ldots,$

$x_{n}$
$|$ $w,$ $\eta(w),$

$\ldots,$
$\eta^{n}-1(w))$ .
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A group $G$ is said to have a cyclic presentation if $G\cong G_{n}(w)$ for some $n$ and

$w$ . Clearly, the automorphism $\eta$ of $F_{n}$ induces an automorphism of $G_{n}(w)$ . Such

automorphism defines an action of the group $\mathbb{Z}_{n}=\langle\eta|\eta^{n}=1\rangle$ on $G_{n}(w)$ . Let us

consider a split extension $H_{n}=G_{n}(w)\lambda \mathbb{Z}_{n}$ . The group $H_{n}$ is said to be a natural

extension of a cyclically presented group. It was remarked in [4] that the group
$H_{n}=H_{n}(v)$ always has a 2-generator, 2-relator presentation of the form

$H_{n}(v)\cong\langle\eta, x | \eta^{n}=v(\eta, x)=1\rangle$ ,

where $v=v(\eta, x)=w(x, \eta^{-1}x\eta, . , ., \eta-(n-1)X\eta)n-1$ .

Following [8] we define the polynomial $f_{w}(t)$ associated with the cyclically pre-

sented group $G\cong G_{n}(w)$ as

$f_{w}(t)= \sum\alpha_{i}t^{i}$ ,

where $\alpha_{i}$ is the exponent sum of $x_{i}$ in $w,$ $1\leq i\leq n$ .

Example 1.1. Let us consider the Sieradski groups defined by the presentation

$S(n)=\langle X_{1}, \ldots, X_{n} | x_{i}x_{i+2}=x_{i+1}, i=1, \ldots, n\rangle$ ,

where all indices are taken mod $n$ . This presentation is cyclic and $w(x_{i}, x_{i+1,i+2}x)=$

$x_{i}x_{i+2}x_{i+1}^{-1}$ .

Therefore,

$f_{w}(t)=t^{i}+t^{i+2}-t^{i+1}=t^{i}(t^{2} - t+1)$ .

We recall that $\triangle(t)=t^{2}-t+1$ is the Alexander
polynomial of the trefoil knot [1].

Consider the 2-generator group

$H_{n}(v)=\langle\eta, x | \eta^{n}=v(\eta, x)=1\rangle$ ,
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where $v(\eta, x)=w(x, \eta^{-1}x\eta,\eta-2X\eta)2=x\eta^{-2}x\eta^{2}(\eta^{-}\eta)1_{X}-1=x\eta^{-2}x\eta x^{-1}\eta$ .
Let $\lambda$ be such that $x=\eta\lambda$ . Then we get

$H_{n}(v)\cong(\lambda,\eta$ $|$ $\eta^{n}=\lambda^{n}=1$ , $\eta\lambda\eta^{-1}\lambda\eta\lambda^{-}1=1\rangle$ ,

and we recall that the group

$(\lambda, \eta | \lambda\eta^{-1}\lambda=\eta^{-1}\lambda\eta^{-1})$

is isomorphic to the fundamental group of the trefoil knot [1], where generators $\lambda$

and $\eta$ are meridians.

Example 1.2. Let us consider the Fibonacci groups defined by the presentation

$F(2,2n)=(x_{1,\ldots,2n}x | x_{i}x_{i+1}=x_{i+2}, i=1, \ldots , 2n)$ ,

where all indices are taken mod $2n$ . This presentation is cyclic and for this case
$w(x_{i}, x_{i+1}, xi+2)=x_{i}x_{i+1}x_{i^{1}2}-+\cdot$ Therefore

$f_{w}(t)=t^{i}+t^{i+1}-t^{i+2}=t^{i}(-t^{2}+t+1)$ .

Unfortunately, the polynomial $\triangle(t)=-t^{2}+t+1$ cannot be the Alexander poly-

nomial of a knot [1]. So, we would like to consider another cyclic presentation of

the group $F(2,2n)$ . Suppose $y_{i}=x_{2i}$ for $i=1,$ $\ldots,$
$n$ . Then $x_{2i+1}=x^{-1}x2i2i+2=$

$y_{i}^{-1}yi+1$ . Hence

$F(2,2n)\cong\langle y_{1}, \ldots, y_{n} | (y_{i}^{-1}y_{i}+1)yi+1=(y_{i+1}^{-1}y_{i+2}) i=1, \ldots, n\rangle$ .

Thus we got the cyclic presentation with $w(y_{i}, yi+1, y_{i}+2)=y_{i}^{-1}y^{2}i+1y^{-1}i+2yi+1$ .

Therefore

$f_{w}(t)=-t^{i}+2t^{i1}+-t^{i+2}+t^{i+1}=-t^{i}(t^{2}-3t+1)$ .

We recall that $\triangle(t)=t^{2}-3t+1$ is the Alexander
polynomial of the figure-eight knot [1].
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Consider the 2-generator group

$H_{n}(v)=\{\eta y$ $|$ $\eta^{n}=v(\eta,y)=1\rangle$ ,

where $v(\eta, y)=w(y, \eta^{-1}y\eta, \eta-2y\eta^{2})=y^{-1}\eta^{-1}y^{2}\eta-1y-1\eta y\eta$ .
Let $\lambda$ be such that $y=\eta\lambda$ . Then we get

$H_{n}(v)\cong\langle\lambda, \eta | \eta^{n}=\lambda^{n}=1, \eta^{-1}[\lambda, \eta]=[\lambda, \eta]\lambda\rangle$ ,

where $[\lambda, \eta]=\lambda^{-1}\eta^{-1}\lambda\eta$ . We recall that the group

$\langle\lambda, \eta | \eta^{-1}[\lambda, \eta]=[\lambda, \eta]\lambda\rangle$

is the fundamental group of the figure-eight knot [1], where generators $\lambda$ and $\eta$ are

meridians.

2. TAKAHASHI MANIFOLDS

In this section we describe a series of closed orientable 3-manifolds whose funda-

lllelltal groups were studied by M. Takahashi [13].

For any integer $n\geq 2$ we consider a link $L_{2n}$ with $2n$ components, each of which

is ullkllotted and is linked with exactly two $\dot{\mathrm{c}}\mathrm{t}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{t}\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{f}\mathrm{l}\mathrm{l}$) $\mathrm{O}\mathrm{l}\mathrm{l}\mathrm{c}\mathrm{n}\iota \mathrm{S}$ , similar to $\iota \mathrm{I}\mathrm{l}\mathrm{C}$

figure below, where the link $L_{6}$ is pictured.

It was shown by W. Thurston [14, Section 6.8.7] that for $n\geq 3$ the link $L_{2n}$ is

hyperbolic and the hyperbolic volume of the complement $S^{3}\backslash L_{2n}$ is given by the

formula

$vol(S^{3} \backslash L_{2n})=8n[\Lambda(\frac{\pi}{4}+\frac{\pi}{2n})+\Lambda(\frac{\pi}{4}-\frac{\pi}{2n})]$ ,

where $\Lambda(x)$ is the Lobachevsky function [14]:

$\Lambda(x)=-\int_{0}^{x}\ln|.2\sin\theta|d\theta$.
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The link $L_{6}$ .

Let us cyclically enumerate components of $L_{2n}$ , and consider closed manifolds

$M_{2n}(p_{1}/q_{1}, \ldots,p_{2n}/q_{2n}.)$ obtained by Dehn surgeries on components of $L_{2n}$ , where

a surgery coefficient $p_{i}/q_{i},$ $i=1,$ $\ldots$ , $2n$ , corresponds to the i-th component of
$L_{2n}$ . The manifolds $M_{2n}(p_{1}/q_{1}, \ldots,p_{2n}/q_{2n})$ are refer as Takahashi manifolds. The

presentations of the fundamental groups of manifolds $M_{2n}(p_{1}/q_{1}, \ldots,p_{2n}/q_{2n})$ where

studied in [13] where the following nice result was obtained.

Theorem $2.1.[13]$ The fundamental $g\mathrm{r}o$up of a $m$anifold $M_{2n}(p_{1}/q_{1}, \ldots,p_{2n}/q_{2n})h$ as

the following presentation

$\langle a_{1}, \ldots, a_{2n} | a_{2k}^{q_{2k-}1}-1a_{2k^{2k}}^{-p}=a_{2k}^{q2k+}+11, a_{2k}^{q_{2k}}ap_{2k+1}2k+1=a_{2k+2}^{q2}2k+, k=1, \ldots, n\rangle$

where all indices are taken mod $2n$ .

Let us consider the following particular cases.

Example 2.1. Assume that $p_{i}=q_{i}=1$ for all $i=1,$ $\ldots,$
$2n$ . Then the fundamental

group of the manifold $M_{2n}(1,1, \ldots, 1,1)$ is given by

$\pi_{1}(M_{2n}(1,1, \ldots, 1,1))$

$=\langle a_{1}, \ldots, a_{2n} | a_{2k-1}a^{-1}2k=a_{2k+1}, a_{2k}a_{2k+1}=a_{2k+2}, k=1, \ldots, n\rangle$

$=\langle a_{1}, \ldots, a_{2n} | a_{2k-1}=a2k+1a2k, a_{2k}+1=a_{2k}^{-1}a_{2k}+2, k=1, \ldots , n\rangle$

$=\langle a_{1}, \ldots, a_{2n} | a_{2k+1}=a_{2k3}+a_{2}k+2, a_{2}k+1=a_{2k}^{-1}a\wedge 2k+2, k=1, \ldots, n\rangle$.
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Therefore $a_{2k+3}=a_{2k}^{-1}$ for all $k=1,$ $\ldots,$
$n$ . Hence using the notation $x_{i}=a_{2i}$ for

$i=1,$ $\ldots,$
$n$ , we get

$\pi_{1}(M_{2n}(1,1, \ldots, 1,1))$

$=\langle x_{1}, \ldots, x_{n} | x_{k-1}^{-1}=x_{k}^{-1}x_{k+}1, k=1, \ldots, n\rangle$

$=\langle x_{1}, \ldots, X_{n} | x_{k}=x_{k-1^{X_{k+}}}1, k=1, \ldots, n\rangle$ ,

that is isomorphic to the Sieradski group $S(n)$ . It was shown in [2] that groups $S(n)$

are isomorphic to fundamental groups of the $n$-fold cyclic coverings of the 3-sphere

$S^{3}$ branched over the trefoil knot. Indeed, the Takahashi manifold $M_{2n}(1,1, \ldots, 1,1)$

is homeomorphic to the $n$-fold cyclic covering of $S^{3}$ branched over the trefoil knot

(see discussion in [12] for small $n$ ).

Example 2.2. Assume that $q_{i}=1$ for each $i$ and $p_{i}=(-1)^{i+1}$ , where $i=1,$ $\ldots$ , $2n$ .

Then the fundamental group of the manifold $M_{2n}(1, -1, \ldots, 1, -1)$ is given by

$\pi_{1}(M_{2n}(1, -1, \ldots, 1, -1))$

$=\langle a_{1}, \ldots, a_{2n} | a_{2k^{-}1}a_{2k}=a2k+1, a2ka2k+1=a_{2k+2}, k=1, \ldots, n\rangle$

$=\langle a_{1}, \ldots,a_{2n} | a_{i}a_{i+1}=a_{i+2},\dot{i}=1, \ldots, 2n\rangle$ ,

that is isomorphic to the Fibonacci group $F(2,2n)$ . It follows from [5] and [6]

that the group $F(2,2n)$ is isomorphic to the fundamental group of the $n$-fold cyclic

covering of the 3-sphere $S^{3}$ branched over the figure-eight knot. Indeed, it was

shown in [3] that the Takahashi manifold $M_{2n}(1, -1, \ldots, 1, -1)$ is homeomorphic to

the $n$-fold cyclic covering of $S^{3}$ branched over the figure-eight knot.

3. $\mathrm{T}\mathrm{w}\mathrm{o}-\mathrm{F}\mathrm{O}\mathrm{L}\mathrm{D}$ BRANCHED COVERINGS

Let us define a family of knots and links which are closely connected with the

Takahashi manifolds. We recall [1] that any link can be obtained as a closed braid.
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For coprime.integers $p$ and $q$ we denote by $\sigma_{i}^{p/q}$ a rational $p/q$-tangle [1] whose

incoming arcs are i-th and $(i+1)$-th strings of the braid. For $n\geq 1$ and pairs

of coprime integers $p_{i}$ and $q_{i},$ $i=1,$ $\ldots,$
$2n$ , we denote by $I\mathrm{f}_{2n}(p_{1}/q1, \ldots p_{2n}/q_{2n})$ a

closed rational 3-strings braid

$\sigma_{1}^{p1/1}\sigma qp22/q2\ldots\sigma_{1}^{p_{2n-}}1/q2n-1\sigma_{2}p2n/q2n$.

As an example, the diagram of the link $I\mathrm{t}_{4}’(3/2, -3/2,3/2, -3/2)$ is pictured below.

The link $IC_{4}(3/2, -3/2,3/2, -3/2)$ .

There is the following $\mathrm{c}$.onnection between the Takahashi manifolds and the above

links.

Theorem $3.1.[9]$ Any Takahashi manifold $M_{2n}(p_{1}/q_{1}, \ldots,p_{2n}/q_{2n})$ can be $obi\mathrm{a}i\mathrm{n}\mathrm{e}d$

as the two-fold branched $co$vering of the $li\mathrm{n}kK_{2}n(p1/q_{1}, \ldots,p_{2n}/q_{2n})$ .

The proof of the theorem is based on the Montesinos algorithm [11], which ad-

mits to describe a two-fold covering presentation for a manifold obtained by Dehn

surgeries on a strongly invertible link.

Because for the case $q_{i}=1$ for all $i=1,$ $\ldots,$
$2n$ , a rational 3-strings braid becomes

an ordinary 3-strings braid, we get

Corollary 3.1. For any closed 3-strings braid its two-fold branched covering is a

Takahashi manifold.

The following particular case of Theorem .3.1 was discussed in [12] for small $n$

and in [2] for the general case.
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Corollary 3.2. Takahashi manifolds $M_{2n}$ (1, 1, $\ldots$ , 1, 1) are two-fold coverings of 3-
strings torus knots $T_{n,3}=(\sigma_{1}\sigma_{2})^{n},$ $wh\mathrm{e}re$ in particular, $T_{2,3}$ is the $t\mathrm{r}\mathrm{e}$foil knot $3_{1}$ ,

and $T_{3,3}=8_{19}$ .

As a particular case $\mathrm{o}\mathrm{f}\cdot \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}3.1$, in virtue of [3], we get the following result

remarked in [10].

Corollary 3.3. Takahashi manifolds $M_{2n}(1, -1, \ldots, 1, -1)$ are two-fold coverings of

Turks bead links $Th_{n}=(\sigma_{1}\sigma_{2}^{-1})^{n}$ , where in particular, $Th_{2}$ is the figu$\mathrm{r}e$-eight knot
$4_{1},$ $Th_{3}$ are Borrom$ean$ rings $6_{2}^{3}$ , and $Th_{4}$ is th $\mathrm{e}$ knot $8_{18}$ .

Because the link $K_{2}(p_{1}/q_{1},p_{2}/q_{2})$ is a connected sum of 2-bridge $(p_{1}/q_{1})$-link and
$(p_{2}/q_{2})$-link, the manifolds $M_{2}(p_{1}/q_{1},p_{2}/q_{2})$ can be easy described.

Corollary 3.4. Takahashi manifolds $M_{2}(p_{1}/q_{1},p_{2}/q_{2})$ are connected sums of lens

spaces $L_{p_{1},q_{1}}$ and $L_{p_{2}.q_{2}}$ .

4. CYCLIC BRANCHED COVERINGS

In this section we consider Takahashi manifolds with cyclic symmetries. We will

be say that a manifold $M_{2n}(p_{1}/q_{1}, \ldots,p_{2n}/q_{2n})$ is $n$ -periodic if surgery parameters

are such that $p_{2i-1}/q_{2i-1}=a/b$ and $p_{2i}/q_{2i}=c/d$ for $i=1,$ $\ldots,$
$n$ , where $a/b$ and

$c/d$ are some rational. In this case we will be use a notation

$M_{n}(a/b, c/d)=M_{2n}(a/b, c/d, \ldots, a/b, c/d)$ .

According to this notations the Fibonacci manifolds can be written in the form
$M_{n}(1, -1)$ where $\pi_{1}(M_{n}(1, -1))=F(2,2n)$ .

Analogously, we consider $n$-periodic closed rational 3-strings braid $I\iota_{n}’(a/b, c/d)$ ,

that is the closure of $(\sigma_{1}^{a/b}\sigma)^{n}2^{/d}C$ . In particular cases we get following 2-bridge knots.

Lemma 4.1. For any integers $k$ and $l$ the link $I\iota_{n}’(1/k, -1/l)$ is the 2-bridge $(2k+ \frac{1}{2l})-$

knot.
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Lemma 4.2. For any integers $k$ and $l$ the link $I\mathrm{t}_{n}’(1/k, 1/l)$ is the 2-bridge $(2k- \frac{1}{2l})-$

knot.

Similar to [.7], we use the following notations for orbifolds whose singular set is a

two-bridge knot or link. We denote by $(p/q)(n)$ an orbifold whose underlying space

is the 3-sphere $S^{3}$ and whose singular set is the 2-bridge $p/q$-knot with index $n$ . By

$(p/q)(m, n)$ we denote an orbifold whose underlying space -is the 3-sphere $S^{3}$ and

whose singular set is the 2-bridge $p/q$-link with indices $m$ and $n$ corresponding to

its components. By $I.C_{n}(a/b, c/d)(2)$ we denote an orbifold whose underlying space

is the 3-sphere $S^{3}$ and whose singular set is the $n$-periodic closed rational 3-strings

braid $I\mathrm{f}_{n}(a/b, c/d)$ with index 2 corresponding to each component of $I\mathrm{f}_{n}(a/b, c/d)$ .

Theorem 4.1. Let $M_{n}(1/b, -1/d),$ $n\geq 2,$ $b>0,$ $d>0$ , be a $n$ -periodic Takahashi

manifold. Then the following $co$vering diagram holds:

$(p/q)(.A, n)$

where $p=8bd+2$ and $0<q<4bd+1$ such odd that $2dq=\pm 1$ (mod 4$bd+1$ ).

Proof. The 2-fold covering

$M_{n}(1/b, -1/d)-^{2}IC_{n}(1/b, -1/d)$

holds by Theorem 3.1. Obviously the orbifold $I\{\mathrm{i}_{n}(1/b, -1/d)(2)$ has the symmetry

$\rho$ of order $n$ . Consider the quotient orbifold $\mathcal{O}^{b,d}(2, n)=I\iota_{n}’(1/b, -1/d)(2)/\rho$ . Its

singular set $\mathcal{L}^{b,d}$ is the 2-component link in the figure below with indices 2 and $n$

corresponding to components. We remark that components of $\mathcal{L}^{b,d}$ are unknotted

and equivalent.
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The link $\mathcal{L}^{b,d}$

Using the method from [10], we can define an epimorphism $\theta$ : $\pi_{1}(\mathcal{O}^{b,d}(2, n))arrow$

$\mathbb{Z}_{2}\oplus \mathbb{Z}_{n}$ such that $\theta^{-1}(\mathbb{Z}_{n})=\pi_{1}((2b+1/2d)(n)),$ $\theta^{-1}(\mathbb{Z}_{2})=\pi_{1}(IC_{n}(1/b, -1/d)(2))$ ,

and $Ic_{e}r(\theta)=\pi_{1}(M_{n}(1/b, -1/d))$ . The covering diagram holds from the diagram of

subgroups and Lemma 4.1. $\square$

Theorem 4.2. Let $M_{n}(1/b, 1/d),$ $n\geq 2,$ $b>1,$ $d>0$ , be a $n$ -periodic Takaha$s\mathrm{A}i$

manifold. Then the following covering diagram holds:

$(p/q)(.\angle, n)$

where $p=8$bd-2 and $0<q<4bd-1$ such odd that $2dq=\pm 1$ (mod $4bd-1$ ).

Proof. Analogously to the proof of Theorem 4.1. $\square$

5. GROUP PRESENTATIONS

Theorem 5.1. Denote by $\mathcal{M}_{n}(p/q)$ the $n$ -fold cyclic branched covering of the 2-bridge
$(p/q)$ -knot. (i) If $p/q=2k+ \frac{1}{2l}$ , then

$\pi_{1}(\mathcal{M}_{n}(p/q))=\langle_{X_{1}}, \ldots, x_{n} | (X_{ii+}^{-ll}X)^{k}1X_{i+}1=(X_{i+1}^{-l}xi+2)^{k}l, i=1, \ldots, n\rangle$ .
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(ii) If $p/q=2.k- \frac{1}{2l}$ , then

$\pi_{1}(\mathcal{M}_{n}(p/q))=\{y_{1},$
$\ldots,$

$y_{n}$
$|$ $(y_{i}^{-ll}yi+1)^{k-1}y_{i+1}=(y_{i1}^{-ll}+y_{i}+2)^{k}$ , $i=1,$ $\ldots,$

$n\rangle$ .

Proof. (i) By Theorem 4.1 the manifold $\mathcal{M}_{n}(2k+\frac{1}{2l})$ is the Takahashi manifold

$M_{n}(1/k, -1/l)$ whose fundamental group can be found by Theorem 2.1:

$\pi_{1}(\mathcal{M}_{n}(2k+1/2l))=\pi_{1}(M_{n}(1/k, -1/l))=$

$(a_{1},$
$\ldots,$ $a_{2n}$

$|$ $a^{k}a2i+12i+2=a_{2i3},$$a_{2}akl+i2i+1=a_{2i+2}^{l}$ , $i=1,$ $\ldots,$
$n\rangle$ .

The formula from the statement of the theorem will be obtained if we suppose

$x_{i}=a_{2i},$ $i=1,$ $\ldots,$
$n$ .

(ii) Analogously, by Theorem 4.2 the manifold $\mathcal{M}_{n}(2k-\frac{1}{2l})$ is the Takahashi

manifold $M_{n}(1/k, 1/l)$ whose fundamental group can be found by Theorem 2.1:

$\pi_{1}(\mathcal{M}_{n}(2k-1/2l))=\pi_{1}(M_{n}(1/k, 1/l))=$

$(a_{1},$
$\ldots,$ $a_{2n}$

$|$ $a_{2i+1}^{k}a_{2}-1i+2=a_{2i3},$$a_{2}a_{2}kl+ii+1=a_{2i+2}^{l}$ , $i=1,$ $\ldots,$
$n\rangle$ .

The formula from the statement of the theorem will be obtained if we suppose

$y_{i}=a_{2}i,$ $i=1,$ $\ldots,$
$n$ . $\square$

Corollary 5.1. The polynomi$al$ associated with the cyclic presentation $o\mathrm{f}\cdot\pi_{1}(\mathcal{M}7l)(\mathrm{P}/(\mathit{1})$

from Theorem 5.1 is equivalent to the Alexander polynomial of the two-bridge p/q-

knot: if $p/q= \mathit{2}k+\frac{1}{2l}$ , then

$\triangle(t)=klt^{2}-(2kl+1)t+kl$ ,

and if $p/q=2k- \frac{1}{2l}$ , then

$\triangle(t)=klt^{2}-(2kl-1)t+kl$ .

In $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{C}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{i}\dot{\mathrm{O}}\mathrm{n}$ we remark that the present paper was inspired in part by the nice

paper of M. Dunwoody [4], where he constructed a family of 3-manifolds whose
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fundamental groups are cyclically presented, and asked are these manifolds cyclic

branched coverings of knots or links.

It is easy to check that all cyclically presented groups from [4] with $w=w(x_{i}, x_{i1}+, x_{i}+2)$

are of the type (i) or of the type (ii) from Theorem 5.1 for some $k$ and $l$ .

Corollary 5.2. Each cyclically presented group from [4] with $w=w(x_{i}, x_{i+1,i+2}x)$ is

isomorph$ic$ to the fundamental group of the cyclic branched covering of the 2-bridge
$( \mathit{2}k+\frac{1}{2l})$ -knot or $( \mathit{2}k-\frac{1}{2l})$-knot for $som\mathrm{e}k$ and $l$ .

References

[1] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Mathematics, 5,

Berlin-New York, 1985.
[2] A. Cavicchioli, F. Hegenbarth and A. C. Kim, A geometric study of sieradski

groups, to appear in Bull. Australian Math. Soc.
[3] A. Cavicchioli and F. Spaggiari, The classification of 3-manifolds with spines

related to Fibonacci groups, in: Algebraic topology, homotopy and group co-

homology, Proceedings, Barselona, 1990, Lect. Notes in Math., 1509 (1992),

50-78.
[4] M. J. Dunwoody, Cyclic presentations and $\mathit{3}$-manifoldsf in: “Groups-Korea’94”,

Proceedings of the International Conference, held in Pusan, Korea, August 18-
25, 1994, Edited by A. C. Kim and D. L. Johnson, de Gruyter, Berlin New

York, 1995, 47-55.
[5] H. Helling, A. C. Kim, and J. Mennicke, A geometric study of Fibonacci groups,

SFB-343 Bielefeld, Diskrete Strukturen in der Mathematik, Preprint (1990).

[6] H. M. Hilden, M. T. Lozano, and J. M. Montesinos, The arithmeticity of the

figure-eight knot orbifoldsj in: $\mathrm{T}_{\mathrm{o}\mathrm{p}}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}’ 90$ , Edited by B. Apanasov, W. Neu-

mann, A. Reid, and L. Siebenmann, de Gruyter, Berlin, 1992, 169-183.

211



[7] H. M. Hilden, M. T. Lozano, and J. M. Montesinos, On the arithmetric 2-bridge

knot and link orbifolds and a new knot invariant; J. Knot Theory and its Ram.,

41995, 81-114.

[8] D. L. Johnson, Topics in the theory of group presentations, London Math. Soc.

Lecture Notes Series 42, Cambridge University Press, 1980.

[9] A. C. Kim and A. Yu. Vesnin, Fractional Fibonacci groups and $manif_{\mathit{0}}ldS_{f}$ to

appear in Siberian Math. Journal.

[10] A. D. Mednykh and A. Yu. Vesnin, Fibonacci manifolds as two-fold cover-

ings over the three-dimensional sphere and the Meyerhoff-Neumann conjecturef

Sibirsk. Mat. Zh. 37 (1996), no. 3, 534-542 (Russian), translated in Siberian

Math. J. 37 (1996), no. 3, 461-467.

[11] J. M. Montesinos, Surgery on links and double branched covers of $S^{3}$ , in: Knots,

Groups, and 3-Manifolds, Edited by L. P. Neuwirth, Princeton University Press,

Princeton, 1975, 227-259.
[12] D. Rolfsen, Knots and links, Publish or Perish Inc., Berkely Ca., 1976.

[13] M. Takahashi, On the presentation of the fundamental groups of 3-manifolds;

Tsukuba J. Math, 13 (1989), 175-189.

[14] W. P. Thurston The geometry and topology of 3-manifolds, Lecture Notes,

Princeton University, 1980.

212


