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In this note we consider a natural mapping between the following two spaces:

E = {(certain) linear ordinary differential equations on (marked)
Riemann surfaces s.t. the local monodromy representations
around the singular points are as specified },

R = {representation classes of 7 (punctured surface) s.t. the local
representations around the punctures are as specified } .
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Let us denote by F' the mapping that assigns the elements of E their monodromy
representations and consider for instance a one-parameter family of differential equa-
tions lying in the fiber F~(r) above a point r € R. The characteristic feature of that
family is of course that the corresponding monodromy of each element of the family
is always the same r and therefore we call it an isomonodromic family. Our goal
in this note will be to give an infinitesimal description of isomonodromic families
in terms of a completely integrable system of partial differential equations on some
local coordinate parameters of E. More specifically, that amounts to describing the
tangential directions to the fibers F~!(r) and can be carried out in the following
geometric manner. The key observation of our method is that there exists a nat-
ural symplectic structure w on the space R of representations [2]. (A symplectic
structure w on R is, by definition, a closed nondegenerate 2-form on R. ) By pulling
back the 2-form w onto E by the mapping F', we obtain a possibly degenerate closed
2-form on E ; and that 2-form can then be used to describe the tangential directions
to the fibers of F' as follows: For a tangent vector £ to E at a point p € E, we have

£ is tangent to a fiber of F'
= dpyF(§) =0 |
< w(d,F(€),-) =0  sincew is nondegenerate

= F*w(, ) =0 where we assume d,F is surjective.
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( The surjectivity condition will always be satisfied in our discussion below. ) It thus
follows that the problem of describing the tangential directions to the fibers of F'
can be reduced to determining precisely the vectors £ such that F*w(€, -) = 0 (we
say that F*w is degenerate in the direction ¢ if F*w(¢, -) = 0) and consequently
we shall first write out the pulled-back 2-form F*w explicitly in terms of some
local coordinates and then determine the directions making F*w degenerate. ( The
distribution {£ € TE; F*w(£, -) = 0} is obviously integrable (since the fibers of
F are precisely the maximal integral manifolds) and therefore defines a foliation on
E , which will be called the null-foliation of F*w.)

Let X be a compact Riemann surface of genus one, and H = {r € C; Im7 >
0} the upper half-plane. Selecting a suitable 7 € H, one can represent X as the
quotient C/Z -1+ Z - 7; and then equations on X can be represented as equations
on C with doubly periodic coefficients. Consider the Fuchsian equation
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where ((z, 7) and p(z, 7) denote Weierstrass’ {-function and p-function with fun-
damental periods 1, 7 and o will always be normalized so that t, = 0. It has its
(regular) singularities at [t;] (¢ = 0, ... ,m) and [Ay] (a = 0, ... ,m) with charac-
teristic exponents 1(1 % ;) and (1 & 2) respectively ([2] denotes the congruence
class of a point 2z € C) and determines its monodromy representation

p: (X \ {[to), - - [tm)s [Xo)s -+ s [Am] }) — SL(2,C)

up to conjugacy. If we assume here that (i) the parameters 6;’s are not integers, and
that (ii) the singularities [A\,]’s are not logarithmic (i.e., apparent), then the local
monodromies around the [¢;]’s and [A\,]’s become respectively (conjugate to)

3) (_e*p(ﬂo‘/?lei) Centeavm1ey) 4 (3 —01)'

Keeping this in mind and viewing the 6;’s as fixed (non-integral) constants, let us
define our space E to be the set of equations having the form (1) and satisfying
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assumption (ii). Since it follows from (2) and assumption (ii) (under a generic con-
dition) that the parameters k, H; (i =0, ... ,m) are described as certain.functions

(4) - I
H;=H;(t,7,A\,i) (i=0,...,m)

of the other parameters of equation (1), we find that the space E thus defined
can be locally parametrized by the parameters (, 7, X, Z). (We have introduced
here the vector notation £ = (f1,...,tm) (to = 0), X = (Ao, ... ,Am), f =
(K0, -+ , tm) .) Having finished the (local) description of the space E of equations,
we are now ready to write out the specific form of the pulled-back 2-form F*w (in
terms of the coordinate parameters (£, 7, X, £)) . (In view of the construction of E ,
the space R of representations will correspondingly be defined as

R = {p: m (X \ {2m + 2 points}) — SL(2,C); the local representations around
the punctures are as in (3) up to
conjugacy}/ ~ ,
where / ~ means taking the quotieﬁt space by the éonjugate action of the group
SL(2,C) on R.) :

Theorem 1 [3]. In terms of the local parameters (t X ,i)of E,the pulled—back
2-form F*w takes the form

(5) Frw = -2 (Zdu,,/\d/\ ZdH A dt; —dK/\dr),,

a=0 =1

where o
, 1 s ,.
_ r..__l[ - m(r) (z o= 3 )}

| and the term n;(7) is defined by n(7) = C(z+1,7)—((2, 7).

In particular, it follows from this result that if we consider the space Ej of
differential equations (again having the form (1) and satisfying assumption (ii)) on
the fized elliptic curve X (we therefore regard the parameter Tas a ﬁxed constant)
then the resulting 2-form F*w becomes

m . m
-2 (Z dpa AdAg — Y dH; Adt,;) ;

a=0 i=1

and that formula can indeed be viewed as a special instance of Iwasaki’s result [2].

As explained earlier, we turn next to describing the null-foliation of the 2-form
F*w, which is given by integrating the distribution {£ € TE; F*w(¢, -) = 0}. For
this we first note that the first term —2 (3" dpq A d),) of the right-hand side
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of (5) is nondegenerate on the (locally defined) (X, ji)-space. From this simple but
useful observation it follows that the leaves of the null-foliation of F*w are trans-
versal to the ()\ ji)-directions, or equivalently that any tangent vector £ satisfying
F*w(&, -) = 0 must be a linear combination of the vectors having the form

; ; 0 .
+Z(A°‘8_)\—+B°‘6u) (z—-l,...,m)‘

. 0
7*;((”“%*”%:)’

where A%, B ,C,, D, are some complex numbers. Moreover a simple calculation
shows that the vectors H;’s and H, above make F*w degenerate precisely when

(. _ OH;
4 = P
' ; . _OH;
=\ (0H; 3Hz OH; 0H;\ _ 0H; OH; .
Z (Bua 0o 0o ap,a> T8t ot (i=1,...,m)

\' a=0
and
( _ 0K
o = P
oK

M P=="a, - |
i": (aﬂj 0K  OH; 8K) 0H; 0K

e Do a Opa) ~ or o, UTLeom

\ a=0

respectlvely (see [4, pp.10-11]). To describe the null-foliation of F*w , it thus re-
mains to prove (or disprove) the third formulas of (6) and (7). Although they can be
shown directly by substituting into them the specific forms of the functions (4), the
calculation needed is quite complicated and lengthy. Instead, following Iwasaki [1],
we have proved them via the residue calculus of certain meromorphic differentials on
Riemann surfaces. ( The third formula of (6) has already been shown by Okamoto [5]
and Twasaki [1].) In summary then, one concludes that the distribution in question
has as a local basis the vector fields

o & (0H, & OH 0 L
e = a—tz +,az=:o (a.ua OXg - a)\a aﬂa) (=1...,m)

d (0K 0 0K 0
HT = - .
or - ;::0 (3ua 0da  OXq aua>
However, since these vector fields just describe the time-evolution directions of

the parameters A,’s and puo’s with respect to the time-parameters ¢;’s and 7 with
Hamiltonians H;’s and K (see [4, pp.10-11}), we finally obtain the following result.
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Theorem 2. The null-foliation of the pulled-back 2-form F*w is locally de-
scribed by the completely integrable Hamiltonian system

m
8H; 0K
o= —tdt; + —
dX ; o, Gt + 7o dr
T - . (x=0,...,m)
o= =Y artdt — o—dr.
du Za,\a ¢ a/\adT

Just as before, if we regard the parameter 7 as a fixed constant, the resulting
Hamiltonian system becomes

m

Ao =) ?dti

i=1 @
m
OH;
dpe = — ; ﬁdti;

and that system has been obtained by Okamoto [5] and Iwasaki [1].

(a=0,...,m)
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