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In this note we consider a natural mapping between the following two spaces:
$E=$ {(certain) linear ordinary differential equations on (marked)

Riemann surfaces $\mathrm{s}.\mathrm{t}$ . the local monodromy representations
around the singular points are as specified},

$R=$ {representation classes of $\pi_{1}$ (punctured surface) $\mathrm{s}.\mathrm{t}$ . the local
representations around the punctures are as specified}.

Let us denote by $F$ the mapping that assigns the elements of $E$ their monodromy
representations and consider for instance a one-parameter family of differential equa-
tions lying in the fiber $F^{-1}(r)$ above a point $r\in R$ . The characteristic feature of that
family is of course that the corresponding monodromy of each element of the family
is always the same $r$ and therefore we call it an isomonodromic family. Our goal
in this note will be to give an infinitesimal description of isomonodromic families
in terms of a completely integrable system of partial differential equations on some
local coordinate parameters of $E$ . More specifically, that amounts to describing the
tangential directions to the fibers $F^{-1}(r)$ and can be carried out in the following
geometric manner. The key observation of our method is that there exists a nat-
ural symplectic structure $\omega$ on the space $R$ of representations [2]. (A symplectic
structure $\omega$ on $R$ is, by definition, a closed nondegenerate 2-form on $R.$ ) By pulling
back the 2-form $\omega$ onto $E$ by the mapping $F$ , we obtain a possibly degenerate closed
2-form on $E$ ; and that 2-form can then be used to describe the tangential directions
to the fibers of $F$ as follows: For a tangent vector $\xi$ to $E$ at a point $p\in E$ , we have

$\xi$ is tangent to a fiber of $F$

$\Leftrightarrow d_{p}F(\xi)=0$

$\Leftrightarrow\omega(d_{p}F(\xi), \cdot)\equiv 0$ since $\omega$ is nondegenerate
$\Leftrightarrow F^{*}\omega(\xi, \cdot)\equiv 0$ where we assume $d_{p}F$ is surjective.
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(The surjectivity condition will always be satisfied in our discussion below.) It thus
follows that the problem of describing the tangential directions to the fibers of $F$

can be reduced to determining precisely the vectors $\xi$ such that $F^{*}\omega(\xi, \cdot)\equiv 0$ (we
say that $F^{*}\omega$ is degenerate in the direction $\xi$ if $F^{*}\omega(\xi, \cdot)\equiv 0)$ and consequently
we shall first write out the pulled-back 2-form $F^{*}\omega$ explicitly in terms of some
local coordinates and then determine the directions making $F^{*}\omega$ degenerate. (The
distribution $\{\xi\in TE;F^{*}\omega(\xi, \cdot)\equiv 0\}$ is obviously integrable (since the fibers of
$F$ are precisely the maximal integral manifolds) and therefore defines a foliation on
$E$ , which will be called the null-foliation of $F^{*}\omega$ . )

. Let $X$ be a compact Riemann surface of genus one, and $H=\{\tau\in \mathbb{C};{\rm Im}\tau>$

$0\}$ the upper half-plane. Selecting a $\mathrm{s}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{b}’ \mathrm{l}\mathrm{e}\tau\in H$ , one can represent $X$ as the
quotient $\mathbb{C}/\mathbb{Z}\cdot 1+\mathbb{Z}\cdot\tau$ ; and then equations on $X$ can be represented as equations
on $\mathbb{C}$ with doubly periodic coefficients. Consider the Fuchsian equation

(1) $\frac{d^{2}y}{dz^{2}}=q(z)y$ ,

$q(z)=k+ \sum_{i=0}^{m}[Hi\zeta(z-ti, \tau)+\frac{1}{4}(\theta_{i}^{2}-1)\wp(z-t_{i}, \mathcal{T})]$

$+ \sum_{\alpha=0}^{m}[-\mu\alpha\zeta(z-\lambda_{\alpha}, \tau)+\frac{3}{4}\wp(z-\lambda_{\alpha}, \mathcal{T})]$ ,

(2) $\sum_{i=0}^{m}H_{i}-\sum_{\alpha=0}^{m}\mu_{\alpha}=0$ ,

where $\zeta(z, \tau)$ and $\wp(z, \tau)$ denote Weierstrass’ $\zeta$-function and $\wp$-function with fun-
damental periods 1, $\tau$ and $t_{0}$ will always be normalized so that $t_{0}=0$ . It has its
(regular) singularities at $[t_{i}](i=0, \ldots , m)$ and $[\lambda_{\alpha}](\alpha=0, \ldots , m)$ with charac-
teristic exponents $\frac{1}{2}(1\pm\theta_{i})$ and $\frac{1}{2}(1\pm 2)$ respectively ( $[z]$ denotes the congruence
class of a point $z\in \mathbb{C}$) and determines its monodromy representation

$\rho:\pi_{1}(X\backslash \{[t_{0}], \ldots, [t_{m}], [\lambda_{0}], \ldots, [\lambda_{m}]\})arrow \mathrm{S}\mathrm{L}(2, \mathbb{C})$

up to conjugacy. If we assume here that (i) the parameters $\theta_{i}’ \mathrm{s}$ are not integers, and
that (ii) the singularities $[\lambda_{\alpha}]’ \mathrm{s}$ are not logarithmic (i.e., apparent), then the local
monodromies around the $[t_{i}]’ \mathrm{s}$ and $[\lambda_{\alpha}]’ \mathrm{s}$ become respectively (conjugate to)

(3) $(-\exp(\pi\sqrt{-1}\theta i)\mathrm{o}$ $-\exp(-\pi\sqrt{-1}\theta i)0)$ and

Keeping this in mind and viewing the $\theta_{i}’ \mathrm{s}$ as fixed (non-integral) constants, let us
define our space $E$ to be the set of equations having the form (1) and satisfying
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assumption (ii). Since it follows from (2) and assumption (ii) (under a generic con-
dition) that the parameters $k,$ $H_{i}(i=0, \ldots, m)$ are described as certain functions

(4) $\{$

$k=k(t\tau,\vec{\lambda},\vec{\mu})arrow$,
$H_{i}=H_{i}(\mathrm{t}\tau,\vec{\lambda},\vec{\mu})arrow$, $(i=0, \ldots, m)$

of the other parameters of equation (1), we find that the space $E$ thus defined
can be locally parametrized by the parameters $(t\tau,\vec{\lambda},\vec{\mu}arrow,)$ . (We have introduced
here the vector notation $tarrow=(t_{1}, \ldots, t_{m})(t_{0}=0),\vec{\lambda}=(\lambda_{0}, \ldots, \lambda_{m}),\vec{\mu}=$

$(\mu_{0}, \ldots, \mu_{m}).)$ Having finished the (local) description of the space $E$ of equations,
we are now ready to write out the specific form of the pulled-back 2-form $F^{*}\omega$ (in
terms of the coordinate parameters $(t\tau,\vec{\lambda},\vec{\mu}arrow,))$ . (In view of the construction of $E$ ,
the space $R$ of representations will correspondingly be defined as

$R=\{\rho:\pi_{1}(X\backslash \{2m+2\mathrm{p}_{\mathrm{o}\mathrm{i}}\mathrm{n}\mathrm{t}\mathrm{S}\})arrow \mathrm{S}\mathrm{L}(2, \mathbb{C})$ ; the local representations around
the punctures are as in (3) up to
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{c}\mathrm{y}\}/\sim$ ,

where $/\sim$ means taking the quotient space by the conjugate action of the group
$\mathrm{S}\mathrm{L}(2, \mathbb{C})$ on $R$ . )

Theorem 1 [3]. In terms of the local parameters $(t\tau,\vec{\lambda},\vec{\mu}arrow,)$ of $E$ , the pulled-back
2-form $F^{*}\omega$ takes the form

(5) $F^{*} \omega=-2(\sum_{\alpha=0}^{m}d\mu\alpha\wedge d\lambda_{\alpha}-\sum_{i=1}^{m}dH_{i}\wedge dt_{i}-dK\wedge d\tau)$ ,

where

$K= \frac{1}{2\pi\sqrt{-1}}[k+\eta_{1}(\tau)(.\sum_{\alpha=0}^{m}\lambda\alpha\mu\alpha-\sum_{i=1}^{m}t_{ii)}H]$

and the term $\eta_{1}(\tau)$ is defined by $\eta_{1}(\tau)=\zeta(z+1, \tau)-\zeta(Z, \mathcal{T})$ .
In particular, it follows from this result that if we consider the space $E_{0}$ of

differential equations (again having the form (1) and $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\Psi$ing assumption $(\mathrm{i}\mathrm{i})$) on
the fixed elliptic curve $X$ (we therefore regard the parameter $\tau$ as a fixed constant),
then the resulting 2-form $F^{*}\omega$ becomes

$-2$ ($\sum_{\alpha=0}^{m}d\mu\alpha$ A $d \lambda_{\alpha}-\sum_{i=1}^{m}dH_{i}$ A $dt_{i}$) ;

and that formula can indeed be viewed as a special instance of Iwasaki’s result [2].
As explained earlier, we turn next to describing the null-foliation of the 2-form

$F^{*}\omega$ , which is given by integrating the distribution $\{\xi\in TE;F^{*}\omega(\xi, \cdot)\equiv 0\}$ . For
this we first note that the first term $-2$ ( $\sum_{\alpha=0}^{m}d\mu_{\alpha}$ A $d\lambda_{\alpha}$ ) of the right-hand side
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of (5) is nondegenerate on the (locally defined) $(\vec{\lambda},\vec{\mu})$-space. From this simple but
useful observation it follows that the leaves of the null-foliation of $F^{*}\omega$ are trans-
versal to the $(\vec{\lambda},\vec{\mu})$-directions, or equivalently that any tangent vector $\xi$ satisfying
$F^{*}\omega(\xi, \cdot)\equiv 0$ must be a linear combination of the vectors having the form

$\{$

$\mathcal{H}_{i}=\frac{\partial}{\partial t_{i}}+\sum_{\alpha=0}^{m}(A_{\alpha}^{i}\frac{\partial}{\partial\lambda_{\alpha}}+B_{\alpha}^{i}\frac{\partial}{\partial\mu_{\alpha}})$ $(i=1, \ldots, m)$

$\mathcal{H}_{\tau}=\frac{\partial}{\partial\tau}+\sum_{\alpha=0}^{m}(C_{\alpha}\frac{\partial}{\partial\lambda_{\alpha}}+D_{\alpha}\frac{\partial}{\partial\mu_{\alpha}})$ ,

where $A_{\alpha}^{i},$ $B_{\alpha}^{i},$ $C\alpha$ , $D\alpha$ are $\mathrm{s}\dot{\mathrm{o}}$me complex numbers. Moreover a simple calculation
shows that the vectors $\mathcal{H}_{i}’ \mathrm{s}$ and $\mathcal{H}_{\tau}$ above make $F^{*}\omega$ degenerate precisely when

(6) $\{$

$\partial H_{i}$

$A_{\alpha}^{i}=\overline{\partial\mu_{\alpha}}$

$B_{\alpha}^{i}=- \frac{\partial H_{i}}{\partial\lambda_{\alpha}}$

$\sum_{\alpha=0}^{m}(\frac{\partial H_{j}}{\partial\mu_{\alpha}}\frac{\partial H_{i}}{\partial\lambda_{\alpha}}-\frac{\partial H_{j}}{\partial\lambda_{\alpha}}\frac{\partial H_{i}}{\partial\mu_{\alpha}})=\frac{\partial H_{j}}{\partial t_{i}}-\frac{\partial H_{i}}{\partial t_{j}}$ $(j=1, \ldots, m)$

and

(7) $\{$

$C_{\alpha}= \frac{\partial K}{\partial\mu_{\alpha}}$

$D_{\alpha}=- \frac{\partial K}{\partial\lambda_{\alpha}}$

$\sum_{\alpha=0}^{m}(\frac{\partial H_{j}}{\partial\mu_{\alpha}}\frac{\partial K}{\partial\lambda_{\alpha}}-\frac{\partial H_{j}}{\partial\lambda_{\alpha}}\frac{\partial K}{\partial\mu_{\alpha}})=\frac{\partial H_{j}}{\partial\tau}-\frac{\partial K}{\partial t_{j}}$ $(j=1, \ldots, m)$

respectively (see [4, pp.10-11]). To describe the null-foliation of $F^{*}\omega$ , it thus re-
mains to prove (or disprove) the third formulas of (6) and (7). Although they can be
shown directly by substituting into them the specific forms of the functions (4) , the
calculation needed is quite complicated and lengthy. Instead, following Iwasaki [1],
we have proved them via the residue calculus of certain meromorphic differentials on
Riemann surfaces. (The third formula of (6) has already been shown by Okamoto [5]
and Iwasaki [1].) In summary then, one concludes that the distribution in question
has as a local basis the vector fields

$\{$

$\mathcal{H}_{i}=\frac{\partial}{\partial t_{i}}+\sum_{\alpha=0}^{m}(\frac{\partial H_{i}}{\partial\mu_{\alpha}}\frac{\partial}{\partial\lambda_{\alpha}}-\frac{\partial H_{i}}{\partial\lambda_{\alpha}}\frac{\partial}{\partial\mu_{\alpha}})$ $(i=1, \ldots, m)$

$\mathcal{H}_{\tau}=\frac{\partial}{\partial\tau}+\sum_{\alpha=0}^{m}(\frac{\partial K}{\partial\mu_{\alpha}}\frac{\partial}{\partial\lambda_{\alpha}}-\frac{\partial K}{\partial\lambda_{\alpha}}\frac{\partial}{\partial\mu_{\alpha}})$

However, since these vector fields just describe the time-evolution directions of
the parameters $\lambda_{\alpha}’ \mathrm{s}$ and $\mu_{\alpha}’ \mathrm{s}$ with respect to the time-parameters $t_{i}’ \mathrm{s}$ and $\tau$ with
Hamiltonians $H_{i}’ \mathrm{s}$ and $K$ (see [4, pp.10-11]), we finally obtain the following result.
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Theorem 2. The null-foliation of the pulled-back 2-form $F^{*}\omega$ is locally de-
scribed by the completely integrable Hamiltonian system

$\{$

$d \lambda_{\alpha}=\sum_{i=1}^{m}\frac{\partial H_{i}}{\partial\mu_{\alpha}}dt_{i}+\frac{\partial K}{\partial\mu_{\alpha}}d\tau$

$d \mu_{\alpha}=-\sum_{i=1}^{m}\frac{\partial H_{i}}{\partial\lambda_{\alpha}}dt_{i}-\frac{\partial K}{\partial\lambda_{\alpha}}d\tau$.
$(\alpha=0, ...\cdot, m)$

Just as before, if we regard the parameter $\tau$ as a fixed constant, the resulting
Hamiltonian system becomes

$\{$

$d \lambda_{\alpha}=\sum_{i=1}^{m}\frac{\partial H_{i}}{\partial\mu_{\alpha}}dt_{i}$

$d \mu_{\alpha}=-\sum_{i=1}^{m}\frac{\partial H_{i}}{\partial\lambda_{\alpha}}dt_{i;}$

$(\alpha=0, \ldots, m)$

and that system has been obtained by Okamoto [5] and Iwasaki [1].
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