0000000000
10230 1998 0 142-155 142

Simplification of Subtyping Constraints and
Its Application for Monadic Programming

Koji KAGAWA
Dept. of Reliability-based Information Systems Engineering
Faculty of Engineering
Kagawa University
1-1 Saiwai-cho, Takamatsu 760-0016, JAPAN
kagawa@eng.kagawa-u.ac. jp

December 1, 1997

Abstract
We discuss type inference for a language which supports both polymorphic records
(variants) and implicit subtyping — useful features for object-oriented programming.
We extend subtyping relation to type constructor variables. We show that such
extension is especially useful for typing monadic-style functional programs, that is,
imperative-style programs written in a purely functional language such as Haskell. It
gives reasonably simple types to monadic (imperative) programs and is, in a sense,
similar to the effect system.
We use the notion of constrained types. The point is to separate matching con-
“straints and subtyping constraints in order to avoid the difficulties caused by recursive
type constraints. We will focus on simplification of such mixed constraints.

1 | Introduction

Monadic style is now becoming more and more popular in purely functional programming
community. It uses two fundamental operators overloaded using a constructor class of Haskell

[3]: |
class Monad m where
return :: a -> m a
>=) “mb->(b->ma) ->nma
It enables us to write programs with various imperative features in purely functional lan-
guages. For example, we can write something like:

readVar x = A x’ —
writeVar x (x’+1) >>= X _ —
writeVar a x’

143

to increment o reference. 'However, monadic style functional programs are still a bit awkward,
since we must introduce variables for all the intermediate results such as x’ above. A well-
known criticism for this is that monadic style resembles assembly programs. Can we write
imperative programs in a more natural notation — like a = x++? One way to do this is to
use the following operator

(@) :m# Monad =>m (a ->mb) ->ma->mb
k@ x =k >»>=)\Af = x>=1f

in place of usual function applications (juxtaposition) likef @@ a @@ b. A more radical way
would be to overload the notation of the usual function applications and translate expressions
as follows [13]:

Alz) =T

AF z~ returnz :mT

(M-Var)

AizurtkFe~eram7

M-Lamb
A F Az.e ~ return (Az.e*) =m (1 — m7') (ambda)

A e wetum(nomm) Abe~elmmn
Al e ex~ e ‘bind'Afelbind fmm

(M-App)

However, without subtyping, the type of functions will be rather complex. For example, the
following function:

until p £ x = if p x then x else until p £ (f x)
has the following type:
until :: Monad m => m ((a -> m Bool) > m ((@a -=>ma) ->m (a -> m a)))

This type is a little bit complex and does not reflect the fact that supplying the first and
the second argument of until causes no side-effect. Therefore, a desirable type would be
something like:

until :: Monad m => (a -> m Bool) -> (a ->ma) ->a->ma

In order to obtain such finer type, we will extend the former proposal [4] — the technique
of subtyping and simplification of mixed type constraints — to subtyping between type
constructor variables as type classes are extended to constructor classes [3]. Especially, we
treat monads as extended polymorphic variants.

In [4], the author proposed a type inference system which separates subtyping and match-
ing (record polymorphism), following to Bruce et al’s proposal. We say that a type matches
another if the former type has at least methods of the latter and the types of corresponding
methods are the same, considering MyType (the type of self) in both types as the same.
While we say 7 is a subtype of o if an expression of type 7 can be used in any context where
an expression of type o is required. Matching is weaker than subtyping. That is, if o has a

144

binary method, then even when T matches o, 7 is not a subtype of ¢. Binary methods are
methods which take another object of the same class as an argument [1].

Like most existing proposals of a type inference system for object-oriented features, we
use a form of constrained types. A constrained type is a pair of a usual type expression and
a set of type constraints. In the study of polymorphic record access [8, 11, etc.], constraints
of the form a#{l :: 7} are used. It means that a type o must be a record with at least a
label [of type 7. While, in the study of subtyping, constraints are of the form 7 > ¢ which
means that an expression of type 7 is coercible to that of type o.

In general, type inference for polymorphic record access is well studied. Polymorphic
record access means that we can define functions which access the same fields of more than
one kind of record types. It is basically type inference for matching — though existing
proposals do not mention recursive records, it seems relatively easy to add such a feature.
They do not, however, support implicit subtyping in general. Therefore, explicit coercions
must be defined and inserted by programmers when they would like to use heterogeneous
collections.

On the other hand, type inference for subtyping suffers from the fact that sets of type
constraints grow too rapidly, since type constraints are usually generated for every function
application. Their sizes are at least proportional to the sizes of programs. Therefore, simpli-
fication of type constraint sets becomes an essential issue. In [2], Fuh and Mishra proposed
rules to simplify subtyping constraints which are otherwise very complicated. Pottier [10]
used a form of recursive subtyping constraints which also support record polymorphism. He
defined a powerful entailment relation between recursive constraint sets and showed that
much simplification is possible. He gave a general condition as to when we can apply sub- -
stitutions to types in order to simplify type constraints and used heuristics to find such
substitutions. : ‘

The point of the system in [4] is to separate subtyping and matching and to use both
forms of type constraints. This separation not only makes it possible to avoid the problem
of binary methods, but also makes the simplification of type constraints easy. The proposed
' system requires that the types of record labels and variant tags should be declared explicitly
by the programmer, especially when they are recursive. The reason of this decision is as
follows. First, the simplification of type constraints becomes much easier — since subtyping
constraints are no longer used in order to unfold recursive types, the complexity of simplifi-
cation is considerably reduced. Second, it is a straightforward extension of the current data
or datatype declaration. And finally, we need type declaration of labels and tags anyway,
when we extend the system to subtyping between type constructor variables as explained
later.

In this system, a record type is declared as follows:

record Stream a = {head :: a, tail :: MyType}

By this declaration, two selector function head and tail become available. We can use such
selectors to define functions as follows:

nthHead n xs = if n==0 then head xs else nthHead (n-1) (tail xs)
nthTail n xs = if n==0 then xs else nthTail (n-1) (tail xs)

145

And the typing system simplifies their types to:

nthHead :: Int -> Stream a -> a
nthTail :: z # Stream a => Int -> z -> =z

where z # Stream a means z is a record type which has two labels head and tail of
appropriate types. Note that the type of nthHead is simplified so that no type constraint is
left.

The rest of this paper is organized as follows. Section 2 gives a brief overview -of the
previous work of the author [4]. It explains our language — type constrains, typing rules,
entailment relation. Simplification rules are given in Section 2.7. There, we also give some
examples to show how type constraints are simplified. Section 3 extends the system to
subtyping between type constructors and show some examples. Section 4 concludes.

2. Overview

In this section, we explain briefly the previously proposed system [4] before extending.it to
type constructor variables, though there are some improvement in presentation as well as
new examples,

2.1 Declaration

We declare record labels as follows:
record Stream a = {head :: a, tail :: MyType}

By this declaration, two labels head and tail become available. For convenience, we give a
name to each set of record constraints such as Stream above and use Stream a as a shorthand
of a longer type expression {head :: a, tail :: MyType}.

Then head! has type ¢ # Stream a => ¢ -> a® and can be used as a selector function
for records which have label head and tail. (As will be shown later, using our simplification
rule, its type can be simplified to Stream a -> a.) Recursive labels are declared using the
keyword MyType. Then, tail has type ¢ # Stream a => c¢ -> c. The type constraint c #
Stream a means that c is a record type which has at least two labels head and tail with
types a and c respectively. Such type constraints are added to the constraint set when we
use selector functions such as head. We write type constraints in the left-hand-side of =>,
following the Haskell syntax. As can be seen from the examples above, record constraints,
in general, have type parameters (e.g. a in ¢ # Stream a). Note that when a type has type
constraints of the same label with different parameters, the corresponding parameters must
be unified. For example, if c is constrained as ¢ # Stream a, c # Stream b, ... then

n this paper, we do not introduce a special syntax in order to access record fields. Selector functions
are syntactically ordinary functions except that they have constrained types. We do not consider operators
which overwrite fields, though it is straightforward to add such operators.

2We use a Haskell- hke syntax here, since we extend subtyping to type constructors later and the Haskell
syntax is appropriate for this purpose — in the previous paper, this type is written as ¢ = a | c#Stream(a).

146

two parameters a and b must be unified. This is a natural requirement, since a field in a
single record type cannot have more than one type. We will refer to parameters before #
(e.g. c above) as independent parameters and parameters after # (e.g. a and b above) as
dependent parameters.

What is important is that we can define coercions in a calculus without subtyping into a
type from any types that match that type, provided that MyType appears only positively in
the definition. We say a type variable appears positively if it appears on the left-hand-side
of an even number of arrows. And a type variable is said to appear negatively if it appears
on the left-hand-side of an odd number of arrows.

Similarly, we can declare polymorphic variant tags in a way similar to ordinary data
declarations as follows:

variant List a = nil | cons a MyType

Then two “constructor” functions are defined — nil has type ¢ # Nil => c and cons has
type c # Cons a => a -> ¢ -> c. They are used as “tags.” '

2.2 Expressions

Our language is an ordinary A-calculus with polymorphic let.
ex=z|Az.e|ee|letz=c¢€ine

The type language is usual except that it has type constraints. Like most existing systems
for subtyping and record polymorphism, we will use constrained types — pairs of an ordinary
type expression (referred to as a type body), and a constraint set. We write a constrained
type as C = 7 where C' is the constraint set and 7 is the type body. We use both matching
(record) constraints of the form 7#7 and subtyping constraints of the form 7> 7 in a single
set. 740 reads “r matches ¢” and it indicates that a type 7 must have labels of ¢.

2.3 Typing Rule
The typing rule of our language is bgiven as follows:

A(z) =VYa.C = 7 ¢ is a substitution of domain &
AFzp(C=r1)

(Var)

AbeCi=>mn o717 AbeuCyi=>n
A}‘€1€QZZCIU02:>T

AizurthenC =1
ArFdze:C=>1—>71

- (Lambda)

(App)

AFe =2Ci=7n Az:ValCi=>nte::Ci=>mn
AFletz=e ine ::Cy > n

(Let)

AFezC=71 C'+FC C'lF1o7
AlFe:C' =1

(Subtype)

147

In (Subtype), we use the entailment relation (I), which will be explained later.

Constructs for building and accessing pairs and records (and variants) are all viewed as
primitive functions as in [10].

A set of type constraints would grow rapidly during type inference. In section 2.7, we
will explain how such constraints are simplified.

2.4 Closure

After assembling type constraints, we calculate the closure of subtyping constraints. A
constraint set C' is closed if and only if the following conditions (+ conditions which will be
explained shortly) hold.

(trans) nea€CAharelC = nornel
(arrow) o, 3007 2T €EC = o, € CAoypr€C
(struct) tTPo" > t7T’ 7" € C A NoBinary(t) = olvrf € CAalarteC

(77 stands for a sequence of positive parameters 77,...,7? and 7" stands for a sequence of
negative parameters 77,...,7, . We write NoBinary(t) to indicate that ¢ have no binary
methods (i.e. MyType does not occur negatively).) C*, the closure of C, is the smallest
closed set containing C'.

When a parameter of a subtyping constraint is neither a type variable nor a record(variant)
type, we reduce it into subtyping relations between its parameters. Moreover, (a0 — 3) > v
would be reduced into o' > o, B> B substituting v with o’ — 3. We do not take the “lazy”
approach as in [10] since subtyping constraints are never recursive. If MyType has a negative
occurrence in the definition of ¢, there is no subtype nor supertype of ¢t @. This means that
if we have t7 > « (or a>t7), @ and t & must be unified. Another way to say this is that if
MyType has a negative occurrence in the definition of ¢, all the parameters of ¢ are treated
as if they appeared both positively and negatively in the definition of t. In the following, we
will assume data types appearing in typing rules do not have binary methods.

When the supertype parameter of a subtyping relation is a record type (y v r 7)?, it will
be decomposed into record constraints and subtyping relations between parameters. For
example,y > Stream o would be decomposed into y#Stream 3 and B a. That is, in order for
v to be a subtype of Stream «, v must also match the interface corresponding to Stream (8
and # must be a subtype of a.

In the opposite case, that is, when the subtype parameter of a subtyping constraint is a
record type but the supertype is a variable (r & > «), the constraint is left as it is. That is,
record constraints do not propagate forward. Moreover, if we have two constraints 7>« and
o#ra® " in C, the record constraint propagate back as 7#r 3 3 and 87 o?, 3" a0?. And
of course, there are corresponding rules for variants. Therefore, we add the following to the

3We use the following convention: r is a record type constructor or a record constraint, v is a variant
type constructor or a variant constraint, and ¢ can be used as any type constructor or any constraint.

148

definition of closed constraint sets.

y#rarar € CAhalvol € CAalao? el
r#r B B €eCABvo? cCABract€C
y#v B B €eCAa?>pBPcCAarafrelC
r#v B B €eCAoPo P eCArolafBlelC

(recordl) yeroPor €l
(record?2) roa€CAaffrororeC
(variantl) vePo" ey €C
(variant2) avT€CAa#verorcC

R

We check then that constraints generated by structural propagation and by transitive
closures do not contain inconsistent constraints — constraints with incompatible toplevel
type constructors such as (o, 8) >~y — 6 and (a — B)#Stream . We say a constraint set C
is consistent if and only if it does not contain any inconsistent constraint. A constraint is
consistent if and only if it belongs to one of the following forms. 7#r & (if 7 has methods
required by r @), 7#v @, (if 7 has methods required by v7), av 8,to> 17, a>r0, 70TT
(if T#r 7 is consistent), r7 e @, v > a, vT > 7 (if T#v T is consistent), a> v T

We must also do “occur check” here so that subtyping of the form a#tr[a], av> 7{a] or
7[a] > a are not used, where 7[a] is some type expression containing «. For example, a type
constraint, a > (o — 3) is forbidden. Then, type variables are stratified into several layers
so that a type variable which belongs to level 0 is not used as type parameters of any other
variables in the constraint set and that a variable which belongs to level ¢ is not used as
parameters of variables of level j(> ¢). (We say a type variable a is used as a parameter of a
type variable v, if one of the following form (y#r[a], r[a] >, v#v(e] and v > v[e]) is found
in the constraint set.) Otherwise, they have a possibility to make a cycle.

At this stage, remaining atomic constraints are either record (variant) constraints or
subtyping constraints of the form av> 3, r 7> and av> v7T where a and 3 are type variables.
Then we can think of a set of atomic subtyping relations as a graph of type variables where
a directed edge between two variables indicate that the source node is a subtype of the
destination node. Fxternal (observable) variables are variables which appear in the type
body. Other variables are said to be internal.

2.5 Entailment Relation

The entailment relation is defined as follows. C I+ C’ reads “C entails C'. The (RECORD)
rule states that a type that matches a record type can be coerced into it, while the (VARI-
ANT) rule says that a variant type can be coerced to any type that matches its corresponding
variant constraint. Note that we simply write C' I c instead of C IF {c}, when the right-
hand-side of |- is a singleton.

ce C*® VeeC'.Cle

(AXIOM) ik e (REFLEX) Clr7o7 (SET) ekl
ClF{nvo,o07} C Ik {o:7mi}
(ARROW) ClFor S o,0m 51 (STRUCT) SIS
= 57 TR S
(RECORD) C I+ {a#r7v,o?. 7} (VARIANT) Cl{a#v7, 077}

Clravr7T ClFvera

149

Lemma:

The entailment relation (IF) is transitive and reflexive.

Proof:

Reflexivity (C IF C) is trivial. Transitivity (Cy IF C2 A C b C3 = C1 I C3) is proved by the
induction on the structure of the derivation of C; IF C3. N |

2.6 Algorithmic Typing Rule

The typing rule introduced in Section 2.3 is not deterministic — it may assign multiple types
to a single expression and not appropriate for type inference.

Here, we give the deterministic (algorithmic) typing rule and show that it is sound and
complete with respect to the original typing rule.

A(z) =Va.C = 7 ¢ is a substitution of domain @
AbregpC=r71)

(Var)®

AizurthenC=>1 a AFte 2Ci=mn =7 AFleuCy=>1
(Lambda)
AFedze:C=>717—> 7 AFte e, CLUCU{mp T} =T

(App)?

Als €1 : C]_iTl A,x‘v’aclﬁﬁ 4 €g il Cy=>7
& =FV(C, = n) \ FV(A4)
AlFelet z =€ iney : Co = 7

(Lety*

That is, we use (Subtype) only in the right-hand-side of (App) rule.
Lemma: (Soundness)
fAR?e::C = 7,then Al e C=rT.
Proof: Each step in the deterministic version can be simulated by a step or two in the
non-deterministic version. |
Lemma: (Minimal Typing Property)
fAFe:C =7, then AFe:: C' = 7’ where C I 7> 7 and C IF C".
Proof: By induction on the structure of the derivation and a case analysis on the ﬁna,l rule
“used.

[

This lemma intuitively means that it sufficient to insert coercion only when functions are
applied to arguments.

What we want to show next is that our type system is sound with respect to the opera-
tional semantics. (Well-typed programs do not go wrong.)

We must show that the type is preserved during the evaluation (Subject reduction) — if
e; 7 and e; —> ey, then e, :: 7. Once we proved the Minimal Typing Lemma, the proof is
standard using the “substitution lemma.”

Of course, this property largely depends on “é-typability.”

Definition (é-typability) Let k be a primitive function. If the type of k instantiates to -
C = 1 — 7and v = C'" = 7 where (C U C')® consistent, then §(k,v) is defined and
o(k,v) T :

150

We plan to check this in the future by translating the calculus into a more elementary
one following Ohori’s translation of record calculus.

2.7 Simplification Rules

For simplification of subtyping constraints, we can use the substitution rule of Pottier [9]:

AFezC=71 T(A)=A CIFT(C) CIFI{(r)>T
AFexzT(C=r1)

(Subst)

where [' is a substitution. ,

The (Subst) rule means that if the effect of a substitution can be canceled later by
(Subtype), we can apply the substitution in order to simplify the type “without fear of
failure in the future.” From the minimal typing lemma, this is also true for the “algorithmic
version.” Typically, this rule is used after type checking the body of let-bound variables.

Instances of this general rule which are especially useful are the following.

¢ Cycles of type variables can be eliminated by identifying them. (Cycle)

o If a type variable appears only positively (resp. negatively) in the type body and has
a unique lower (resp. upper), it can be substituted by the lower (resp. upper) bound,
(provided that their dependent parameters are the same.) (UniqueBound)

Actually, these two rules have been already used in [2].

Note that even if a dependent parameter of some record (or variant) constraint does
not appear in the body, it must be treated as appearing free if its independent parameter
appears in the body. Free variables (FV) must be defined taking this into account. The
definition of positive and negative appearances for such dependent parameters must be also
given similarly.

Another instance of the (Subst) rule which is specific to our system for mixed constraint
sets is,

o If a type variables appears only negatively in the type body and if there are some
record constraints but no outgoing edges, we can substitute the variable with the the
record type.

AteuC=71 y#roeC y¢FV(A) ZAsyvédecC

~ appears only negatively in 7

AF e (C=1)[ra/y]

‘(RecSubst)

where [7/a] stands for the substitution of o with 7. In other words, if there is no
possibility of further constraining -, 7 can be assigned the given record type.

This rule is, of course, applicable when v ¢ FV(7). Note that when v appears negatively
in 7, we can apply the (Subtype) rule and can “internalize” . Therefore, we can think that
essentially, the (RecSubst) rule is used only when = is internal.

And the corresponding rule for variants is:

151

e If a type variables appears only positively in the type body and if there arc some
variant constraints but no incoming edges, we can substitute the variable witli the
variant type.

AbeuzC=171 ~ffvoeC ¢ FV(A) Abbvyel

~ appears only positively in 7

(VarSubst) AF e (C= 1)[vo/a]

We do not insist completeness here. That is, there may be cases where the four rules
above are not applicable but we can find a substitution which satisfies the condition of
(Subst) rule. However, it seems that in most cases, these for rules can make type constraints
simple enough.

2.8 Examples

For example, nthHead and nthTail explained in the introduction:

[}

if n==0 then head xs else nthHead (n-1) (tail xs)
if n==0 then xs else nthTail (n-1) (tail xs)

nthHead n xs
nthTail n xs

have the following types before simplification.

zoInt,Intvz,avz,e>y,yve,evd,

nthHead :: { e#Strea'm. a,d#Streama-

}:>x—>y——>z

_ zo Int,Int>z,evy,yveed z,
nthTail :: { edtStream a =T Yz
But they are simplified to
nthHead :: Int — Streama — a

nthTail :: {z#Streama} = Int - z — z

In the type of nthHead, no type constraint is left. While the type of nthTail still has a type
constraint z#£Stream a. This is because z appears both positively and negatively in the type
expression. If the type of nthTail were simplified to Int — Stream a — Stream a, it could
not handle properly records with labels other than head and tail.

The following examples map and concat

map f nil = nil
map f (cons (x, xs)) cons (f x, map f xs)

concat nil ys = ys :
concat (cons (x, xs)) ys = cons (x, concat xs ys)

[}

have types before simplification:

map : {cvz,List x — List c,w#Listy} = (z - y) = Listc - w
concat :: {aveyvz,zod,dvz,d#Liste} = Lista -y — 2

152

and types after simplification:

map : (z —y)— Listz — Listy
concat :: zffLista = Lista -z = 2

The type of concat has a type constraint z#List a for the same reason as nthTail.

3 Higher-Order Extension

In this section, we extend the system presented so far to simplify type expressions which
typically arise when we write monadic programs, especially when we use the automatic
translation of expressions to monadic form explained in the introduction.

Basically, monads can be seen as a variant type which has constructors corresponding
to return (unit) and then (bind) operators. Its only peculiar point is that the type param-
eter changes in its recursive occurrence. Therefore, we invent new forms of declarations
variantClass and recordClass. '

variantClass m # Monad where
return :: a ->m a
>>) “mb->(db->ma) ->na

Then, return has type m # Monad => a -> m a. The only difference with the ordinary
class declaration is that, in variantClass declaration, the type constructor being defined
must appear as the return type. If the constrained type has no varying parameters, we can
use simple variant declaration.

In general, each monad has other constructors specific to it. For example, the state
transformer monad [6] has two constructors below:

variantClass m s # Monad => m # StateMonad where
readVar : MutVar s a -> m s a
writeVar :: MutVar s a -=> a => m s ()

(Since the first parameter of m (s) is fixed in the definition, it might be possible to treat s
as a simple parameter:

variantClass m’ # Monad => m’ # StateMonad s where
readVar : MutVar s a -> m’ a
writeVar :: MutVar s a -> a -> m’ ()

where s is treated as a dependent parameter of m’ (= m a).)
In order to define the corresponding data type for such variant {record) classes, we will
need existential types.

data Monad a = Return a | Then (Monad b) (b -> Monad a)

153

It is unusual since Monad b occurs in the definition of Monad a and that b must be exis-
‘tentially quantified. We assume that such data types are defined automatically with the
corresponding variantClass declaration.

Accordingly, we must extend the subtyping relation to constructor variables such. as m
above. And, we must change the definition of the closure and the entailment relation to
support this change. First, we extend the notion of closed constraint set.

(cVar) miP T eom Pt e CAm#FTECAMH#Ftpe C
= mom' €CATPoal €eCATIa0? €l

We must also add the following rule to the entailment relation:

! P P n n
Cl-{mom', 77 >0l 7/ a0}
Cl-{m77">m'o?T"}

(CSTRUCT)

In general, a type variable may have more-than one type constraint that is declared
by variantClass (recordClass) declaration. Then, a type variable can be constrained by
more than one higher-order constraint. For example, there may be a case where a type
variable a must be unified with m1 x where m1#Foo and also with m2 y where m2#Bar. In
the current system, two type variables x and y must be unified, though they are essentially
distinct. There would be several possibilities to fix this. However, we do not discuss it here,
for such an extension is not necessary to treat monadic programs.

Then the simplification of higher-kind mixed type constraints becomes possible as well
as first-order ones. Rules such as (Cycle), (UniqueBound), (RecSubst), (VarSubst) can be
naturally extended to constructor variables.

For example, the following function:

incrVar r n = writeVar r (readVar r + n)

has the following type before simplification:

my#Monad,iv Int,av> Int, Int > a
= MutVarsa — 1 — ms ()

inerVar { m, > ms, StateMonad s > my, mg > M3, M3 > My, My > Ms, }
By applying simplification rules, it simplifies to the following:
incrVar i MutVar s Int — Int — StateMonad s ()

Here, we use the following rule to translate and type the expression.

Al-elwel 01:>m1(7'1——>m7') Al—egwez Cy = mq 7o
Al e ey~ € ‘bindAf.e3‘bind' f : CyUC, U {mp o 11ymy > M3, M > M3, My > M3} = M3 T

(M-App)

The type of until:

until £ p x = if p x then x else until f p (f x)

154

before simplification is:

m# Monad,
untd my > Ng, Ny > Ng, N2 > Mg, M5 > N, M3 > Ms,
230> Bool, 210 4,245 o, T4 > To; 24D T5

= (2o — my1 x1) = m2 ((z2 = M3 z3) = M4 (T4 = M5 T5))
After simplification, it becomes as follows:
until = {ms#Monad} = (z4 — ms z4) = Monad ((z4 — ms Bool) — Monad (z4 — ms z4))

If we adopt the convention that a — Monad b should be simply written as, for example,
a » b, the type of until is simply written as:

untid {ms#MOﬁad} = (z4 = ms z4) — (x4 = ms Bool) »— (x4 = ms z4)

Of course, such expressions are mere variant data types as they are. Therefore, we have
to give interpretation of constructors such as (>>=) and return. This would possibly be
done by a mechanism similar to the usual instance declarations.

For a lazy language like Haskell, this extension allows programmers to write imperative
programs in a more traditional and natural syntax. It even has a possibility to allow us to
overload strict and lazy functions — the strict version can be obtained just by interpreting
the monad as the strictness monad or the monad of continuations [13].

4 Conclusion

We studied type inference for a calculus with implicit subtyping and polymorphic records
and variants and extended it to type constructor variables.

In practice, the calculus would be implemented by translation a la Ohori [8] into a calculus
without implicit subtyping and polymorphic record and variant operations. Formalizing
such a translation and proving its correctness is left as a future work as well as efficiency
consideration of type inference. ,

Application of our higher-order extension to monadic programming is very similar to
the polymorphic effect system [7, 12]. Currently, our system does not have sub-regioning.
However, we expect that it can be incorporated into our system by using the notion of
compositional references [5]. Moreover, in our system, programmers can define their own
side-effects. ' v

Unfortunately, it is likely that we cannot expect so much efficiency for such overloaded
monadic programs. Probably, we will need a kind of a Just-In-Time compiler to get a
reasonable efficiency.

Acknowledgment

I would like to thank Jacques Garrigue for the arrangement of the Workshop and other T'TP
Kyoto ’97 participants for their valuable comments.

155

References

[1] Kim Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins Objects Group
(Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens, and Benjamin Pierce.
On binary methods. Theory and Practice of Object Systems, 1(3):221-242, 1996.

[2] You Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing the theory-
practice gap. In J. Diaz F. Orejas, editor, TAPSOFT’89 Proceedings of the International
Joint Conference on Theory and Practice of Software Development, pages 167-183.
Springer-Verlag, March 1989. Lecture Notes in Computer Science 352.

[3] Mark P. Jones. A system of constructor classes: overloading and implicit higher-order

polymorphism. In FPCA 93. Springer Verlag, 1993.

[4] Koji Kagawa. Type inference for the mixture of matching and implicit subtyping. In
Proc. of the Second Fuji International Workshop on Functional and Logic Programming.
World Scientific Publishing, November 1996.

[5] Koji Kagawa. Compositional references for stateful functional programming. In Proc.
of the International Conference on Functional Programming 1997. ACM Press, June
1997.

[6] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and Symbolic
Computation, 8(4):293-341, 1995. ‘

[7] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Annual ACM
Symp. on Principles of Prog. Languages, pages 47-57, 1988.

[8] Atsushi Ohori. A compilation method for ML-style polymorphic record calculi. In
Annual ACM Symp. on Principles of Prog. Languages, pages 154-165, January 1992.

[9] Francois Pottier. Type inference and simplification for recursively constrained types. In
Actes du GDR Programmation 1995 (journée du pole Programmation Fonctionnelle),
November 1995.

[10] Frangois Pottier. Simplifying subtyping constraints. In Proceedings of the 1996 ACM
SIGPLAN International Conference on Functional Programming (ICFP ’96), pages
122-133, January 1996.

[11] Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract
and record types. In TACS ’'94: Conference on theoretical aspects of computer soft-
ware(LNCS 789). Springer-Verlag, April 1994. Sendai, Japan.

[12] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference.
Journal of Functional Programming, 2(3):245-271, July 1992.

[13] Philip Wadler. Comprehending monads. In ACM Symp. on Lisp and Functional Pro-
gramming, pages 61-78, 1990.

156

Other papers presented at the Workshop

For technical reasons, some papers cannot be included in these proceedings. We give
here their references for an easy access.

References

[1] F. Damiani, M. Dezani-Ciancaglini, and P.Giannini. A filter model for mobile
processes. Mathematical Structures in Computer Science, to appear. Available at
ftp://lambda.di.unito.it/pub/dezani/tesi.ps.gz.

[2] A. Barber, P.A. Gardner, M. Hasegawa, and G. Plotkin. From action calculi to
linear logic. In Proceedings of the Annual Conference of the European Association
for Computer Science Logic (CSL), Aahrus, August 1997.

[3] Giorgio Ghelli. Complexity of kernel Fun subtype checking. In Proceedings of the
ACM International Conference on Functional Programming (ICFP), pages 134
145, Philadelphia, Pennsylvania, May 1996. ACM Press.

[4] Didier Rémy. From classes to objects via subtyping. In Proceedings of
the European Symposium on Programming (ESOP), April 1998. Available at
http://pauillac.inria.fr/"remy/publications.html.

[5] Yasuhiko Minamide. A functional representation of data structures with a
hole. In Proceedings of the 25th ACM International Symposium on Principles
of Programming Languages (POPL). ACM Press, January 1998. Avallable at
http://www.kurims.kyoto-u.ac.jp/“nan/hole.popl98.ps.

