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SHIMURA CURVES OVER FINITE FIELDS AND. THEIR
' ' RATIONAL POINTS

" YASUTAKA THARA -

-0. INTRODUCTION =

ThlS is a brlef survey of a series of our old works on the title subJect We
assume no prerequ1s1tes on Shimura varieties to understand what the main results
are. We are going to remind you that just as each torsion-free discrete subgroup of
PSLy(R) with compact quotient determines a compact Riemann surface of genus >
2, each torsion-free discrete subgroup I' of PSLz(R) x PSLa(F,)(Fy: a p-adic field)
with compact quotient, whose projection to each component is dense, ‘determines
a proper smooth irreducible curve Xr of genus g > 2 over the finite field F,, where
g = N(p)?, together with a special set St of Fy-rational points of Xr with cardinality
(v@—1)(g—1), such that T' ~ (Xr, St) is functona.l in the obvious sense. Subgroups
of T' with finite indices and finite unramified irreducible coverings of Xr over F,,
in which all points of St decompose completely, correspond bijectively with each
other. Moreover the Frobenius element of each closed point of Xr — St in these
coverings can be described by “the corresponding positive primitive R-elliptic I'-
conjugacy class”. It is unknown which (X, S) corresponds with some I', but when
(X,S) = (Xr,Sr), the (finitely presented) discrete group T is just so large that
a certain group-theoretically characterizable conjugacy classes (“positive primitive

") of T' correspond bijectively with the closed points of X — S, via Frobenius
correspondences in this tower of coverings. On the one hand, this gives an equality
between the zeta function of Xr — Sr and a Selberg type zeta function of I'. From
the point of view of the main subject of this conference, this theory can be regarded
as giving the first known series of examples of curves over finite fields with many
rational points (g = p?/ (even power) fixed, g — 00). Our description of Frobenius
elements of closed points.of Xr — St in terms of I can be used to check whether
Xr has more Fg-rational points than Sr. It is a series of old works (conjectured
during 1960’s, proved during the 70’s using works of Shimura, Morita and others),
but because of close connections with the main subject of this conference, -and
because of rather scattered references, we shall take this opportunity and give a
brief survey (somewhat more general than as described above), together with a
guidance to references. - :

1.- THE DISCRETE SUBGROUPS

The basic datum defining each commensurability class of discrete subgroups T
HIS a pair of a quaternion algebra B over a totally real number field ' and a non-
archimedean place p of F satisfying certain conditions. Let

F: a totally real number field, d = [F : Q), ’

00;(1 £ ¢ £ d): the embeddmgs F < R into the reals

p:a non—archlmedean place of F '
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F‘3 ‘the p-adic completion of F'.
Let B be a quatermon algebra over F whlch is unmmzﬁed at co; and p, and

ramified at 00z, -+ ,004. In other words, B is an algebra over F such that

(1) ' B®Fo, RS My(R), B®F, F, ™ My(F,) .

but that

) B®F; RPM(R) (2<i<d),

where M2( ) denotes the matrix algebra of degree 2. (A word about the existence
and a parametrization of such B. For any given finite set {q1, -+ ,q-} (r = 0) of

distinct non-archimedean places of F suchthat q; #p (1 <j < r)and d—1+r =0(
mod 2), there exists by the Hasse principle a unique F-isomorphism class of B
ramified ezactly at the places co; (2 < i < d) and q; (1 £ j < 7).) Fix two R-
(resp F,-) isomorphisms in (1), and call them ig (resp. ip). Consider a locally
compact group '

(2) N G = Gr x Gy,

where ' | -

(3 Gr=PLf(R) = SLy(R)/{%1},

3) Gy =PLf(F,) = {g € GLy(Fy);ordy(det g) = 0(mod 2)}/Fy*

(ord,: the normalized additive discrete valuation of F,). Note that G, contains
PSLy(F,) = SLy(F,)/{%1} as an open normal subgroup with index a power of 2
(equals to 2 if p { 2). Define a commensurability class £p,p of discrete subgroups of
G as follows.. Let D(p) = Un>0p "OF (OF: the ring of integers of F), and let O be

any O)-order in B, i.e., a subring of B containing 1 which is a finite D¥)-module
_satlsfymg F-9=B8B. Put
(4) - T(©O)={ye€O;Np/r(7) =1}/{*1} <« G

via R X1ip

Here, Np/r is the reduced norm, which corresponds with the matrix determinant
via (1). Let Lp, denote the set of all subgroups I' of G that are commensurable
with T(O) (i.e.,, T NT(O) has finite indices both in T' and in I'(D)). Then Lp,
is independent of the choice of 9. It depends on ig,p, but the effect of changing
these isomorphisms is merely that Lg , is replaced by its conjugate by an element
of PLy(R) x PLy(Fy). Each T € Lp,p is a discrete subgroup of G whose quotient
G/T has a finite invariant volume. The projections I' — Gr,I' — G, are always
injective, and the image is dense in Gg (resp. the closure of the image in G}, contains
PSLy(F,)). Moreover, '

(i) the initial data F,001,B,p can be recovered from Lp,p;

(ii) all irreducible lattices in G are obtained this way (a special case of Margulis
[Ma]).

Here, by an irreducible lattice in G, we mean a discrete subgroup I' C G such
that G/T has finite invariant volume, which is not commensurable with a product
of discrete subgroups of Gr and of Gy. '

When F = Q and B = M5(Q),Lp,p, is the commensurability class of discrete
subgroups of PL} (R) x PL (Q,) represented by PSL> (Z[ 2]). This case is referred
to as the elliptic modular case. In this case, G/T is non—compact In other cases,
B is a division algebra, and G/T is compact for any I' € Lp,, (referred to as.the
division case).
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In each case, each I" € Lp ; contains a subgroup of finite index which is torsion-
free. We shall denote by L}, the subset of Lp, formed of all such T' € Lp,; that
are torsion-free. Each group I' € Lp , is residually finite, i.e., the intersection of
all subgroups of I with finite indices reduces to {1}, or equivalently, the canonical
homomorphism T' — I* to the profinite completion is injective.

Let F°® denote the maximal abelian extension of F' (in C, w.r.t. 00;). We shall
pick and fir an extension p of p in F®,

2. THE MAIN RESULTS

Main Theorem. Let B/F, p, p, iR, i, be as above, and put ¢ = N(p)%. Then:
(i) To each T € L%,p is canonically associated a triple Xr = (Xr; Sr,TT), where
Xr : a proper smooth irreducible curve over Fy,
St C Xr(F,) : a non-empty set of Fy-rational points of Xr (called “special
points”),
Tr € Xr(F,) — Sr : a finite set of points (called “cusps”), stable
under conjugations over Fq; It = @ & the
division case.

It is such that there exists a rational diﬁ’erentidl wr on Xr of order \/q — 1, holo-
morphic outside Tt (i.e., an element of H°(Xr — Tt (Q}Kr)®(*/‘7’1))), whose divisor
1S :

(5) (wr) =25t — (Vg — 1) Tr;
in paﬁiqular, the cardinality of St is given by
1
(© #(5r) = (VA - gr = 1+ 5#(T0)),

gr being the genus of Xr.
The association ' — AT is functorial in the following sense. For any I',IV €
ﬁ%,p, there is a canonical bijection

Hom(I",T) ~ Hom(AT, Ar)
[ [

(1) {Tg(ge@B); gI'g~' CcT} Af : Xp — Xr, ¢ finite Fy-morphism
s.t. f—l(S[‘)_ = Srv, f_l(Tr)_ =TI, f
tamely ramafied, and unramified outside

_ Tr}.
(ii) Conversely, if T € E%,p and if f : X' — Xr is a finite irreducible tamely
ramified covering over Fy, unramified outside It, such that

(8) f7H(Sr) C X'(F,),

then there ezists T' C T with finite indez such that X' = Xp and that f corresponds

with T' - 1 € Hom(I",T'). In particular, as for the profinite completion I' of T',

(9) I' 5 riome(Xr — Tr)/(Frobenius conjugacy classes above Sr),

where Ti™¢( ) denotes the tame fundamental group.



(iii) There is a canonical bijection
(10) -

{Xr'(]f'q) — S — Tt} /F,- conjugacy o { ‘Positive pmmztwe R- ellzptzc }

I'-conjugacy classes
P S cp b

such that the I'-conjugacy class determined Aby cp is the Frobenius element of P
in I'. Here, a I'-conjugacy class, represented by v € T, is called R-elliptic if the
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projection yr of v on Gr has imaginary eigenvalues £{\, A\~1}, primitive if v gen- -

erates its centralizer in I, and positive if ordp(/\) > 0, where A is so chosen that
the corresponding eigen (| column) vector t(wl,wg) has the property Im(w Jwe) > 0.
This bijection preserves the degree,

(11) v deg P = degcp,

where deg P is the degree of P over F,, and degcp = ordy(A).
| 3. VARIOUS REMARKS

(A) The above theorem can be generalized to the case where I' € L, has torsion,
but the description becomes more complicated. The. basic fact is that when I' €
Lp,p and I" is a torsion-free normal subgroup of I with finite index, I'/T acts on
A1 (via (7) for Hom(I,I")) and Ar is its quotient.

(B) The above isomorphism (9) (in Theorem (ii)) gives some informations on
wi3Me(Xr — Tr). Note that this is not restricted to the prime-to-p part.

(C) By Theorem (iii), we can compute #Xr(Fym) (m > 1) knowing T' but without
knowing explicit equations defining the curve Xr.

(D) The congruence subgroup property for I'. Whether every subgroup of I with
finite index contains some congruence subgroup (congruences in the orders of the
corresponding quaternion algebra B) is generally unknown. This is known to be
valid when B = M,(Q) (Mennicke (p = 2), Serre (general) [Se;]), but unknown
in the division quaternion cases. When I' = PSLy(Z [ ]), by this property, I' =

(I SL2(Zy))/{£1}.
I#p

(E) Advantages of relating to I'. Theorem (iii) is one of them. That Theorem (ii)
can be proved without using the congruence subgroup property for T, is also an
advantage of using I' (instead of its adelic version).

(F) Many F,-rational points. The curve Xr has at least
(Va-1)(gr - 1)
number of F,-rational points. This gave rise to the inequality
Alg) 2 vVa-1 (cf. [I11])
for ¢ = p*/.

(G) We know more about the structure of the set Sr (esp. its relation with the
canonical divisor). Can we not make use of this for further applications to coding
theory? For example, the above theorem gives immediately:

(12) ) Jac(Xp)(]Fq)/(s - sl; S, sl € SI‘) = canonraba



where Jac(Xr) is the Jacobian variety, and I'* is the abelianization of ' (which is
always finite and is computable). L ' ' -

4. HOW TO CONSTRUCT AXr FROM I

As is well-known, G, = PL}(F,) is a free product of two maximal compact
subgroups " '

N\ =1
(13) Uy =PLy(0,) = GLy(0,)/OF and U, = (g (1’) U, (g (1’)
with amalgamated subgroup U,? = U, NU,, where O, is the ring of integers of F,
and 7 is a prime element of F,. More intrinsically, the G,-conjugacy class of the
pair {U,, Uy} can be understood as the pair of stabilizers of adjascent vertices of
the (regular bipartite) tree associated with Gy. Let A, A’, A® = AN A’ be the pull-
backs of Uy, Uy, Uy, respectively, via the projection I' — G, and for any subgroup
H C T, let Hg denote the image of H under the (injective) projection I' — Gkg.
Then AR, AR, A% are discrete subgroups of Gr with finite-volume quotients, and
I'r is a free product of Ag and Ap with amalgamated subgroup A%. The group
Gr acts on the Poincaré upper half plane H in the usual manner, and the quotients
Ar\H, AR\H, AZ\'H are compact (resp. can be compactified by addition of finitely
many cusps) according to whether B # M,(Q) (resp. B ~ M>(Q)). Call R, R', R°
the compact Riemann surfaces thus obtained from Ag, Apg, A, respectively, con-
sidered also as complex algebraic curves, and call ¢ : RO — R, ¢’ : RO — R’
the projections which are of degree N(p) + 1(= (U, : U?) = (U} : U7)). When
I = PSLy(Z[3)), | | |

, 0\ ~*, 0
(14) Ag = PSLy(Z), Ak = (g 1) Ar (f)’ 1),

. A%;{(i Z)GAR; c=0 (modp)},

and hence R is the (compactified) complex j-line, R’ can be identified with R
(via the automorphism 7 — pr of H), and R? is the normalization of the graph on
R xR of the modular equation of degree p. In general, thanks to Shimura [Sh; ][Shy]
(esp. [Shg]), we know that there is a standard model of each of R,R’,R?, ¢, @'
over the maximal abelian extension F%® of F, and moreover that each curve (say
R) has various models over subextensions of F**/F depending on the choice of
adelic open compact subgroups Uy of B} (the adele group of B*) with which
“Preo,(Ua N (B*)T) = AR”. Here, we choose what we called the “p-canonical
model”. Let F(P) denote the decomposition field of p in F*¢/F, and F(**) /F(») the
unique quadratic subextension in F2/F(P) in which § is unramified. Then there is
a canonical model of the system

(15) | O RERL R

over F**) ([Ig], I§6). The key word for the definition is “divide by the scalars FX".
Its conjugate over F(P) is the transpose of (15). So far, the objects constructed
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depend on I' and p but not on p. But the next object, i.e., the system of curves -

obtained by reduction mod p of (15), will depend on the choice of an extension
of p. By Shimura [Shy], Morita [Mo] and others (cf. [I;2, (§4)], it is known that R
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~ has a good reduction at p (call it X), and moreover that the reduction mod p of
(15) can be described as follows: : :

(15); < Cx& ] &x
X: a proper smooth irreducible curve over F, (¢ =N (p)z), :

X': the F sg-conjugate of X,
ol Pyl are isomorphisms, and (15); induces the following two commutative

diagrams
(16)
wpl / \ipln . sopln/ \pplnl
—_—s Y - X
\/E-th power morphism \/ﬁ-th power morphism

The intersection [[N]]" is non-empty, and [],]] meet transversally at each
point of [[N]]’. The projection Sp = prx([INJI’) is a non-empty subset of
X (qu). When B = M,(Q), cusps on R are algebraic points, and the reduction
mod p of cusps is injective, and the image is, by definition, Tr. A key lemma for
~ the proof of Theorem (i)(ii) is that the strict categorical equivalence holds among

(a) subgroups with finite indices of I’,

(b) finite etale coverings of the system (15)

(c) finite etale coverings of the system (15); ([Is],11§4).
The equivalence between (a) and (b) follows from the fact that I' is a free product of
A and A’ with amalgamated subgroup A°, while that between (b) and (c) is quite
delicate, because we include the case where the degree of the covering is divisible
by p. A result of [I-M] is essential.

About the bijection (10). The association {y}r — P is defined as follows. The
projection g of v on Gg has a unique fixed point z on H (because of the R-ellipticity
of 4). The projection of z on R = Ag\H is F®*-rational (Shimura). Let P € X(F,)
be its reduction mod p. Then the F,-conjugacy class of P depends only on {v}r,
and one can prove that (10) is bijective, using our study of the zeta function of T,

ete. ([ [Ts]).

Remark 1. SinceIis a free product of two fuchsian groups A, A’ with amalgama-
tion A%, one knows, in principle, a way of presentation of ' in terms of generators
and relations. Suppose for simplicity that B # M,(Q) and that I' is torsion-free.
Let g = gr, the genus of R (and of R'). Then g > 2, and A (resp. A’) has standard

generators ay, - - ,ag, by, ,by (resp. aj,--- ,ag, b’ -+, bg) which are subject to
the relations
(17) . [al,bI] T [ag’by] =1, [a;.’blll [a'g’ g] L,

where [g, '] = g¢'g™'g'~!. Now the genus of R is ¢® = 1+(,/g+1)(g—1), and. A°
is generated by 2¢° elements ¢; (1 < j < 2go) (subject to a single similar relation).
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Now express each c; in terms of the a;, b;’s, and also in terms of a;, b}’s:
(18) (Cj =)Fj7'(a'11"' 1a'g;bla"' b ) = G_‘i(alla"' va'gv o bl) (1 S] S 290)

Then T is generated by the a;,b;,a},b; (1 < i < 2g), and (17) and (18) give a
system of defining relations.

Remark 2. Which (X,S) corresponds with some I' ? This question has not been
answered. It is of course closely related to the question of liftability of the system
(15); to (15), which is studied to some extent in [I7]{Io][I10] (esp- [L10])-

5. ABOUT THE DIFFERENTIAL wr

(A) The differential wr is determined up to Fy-multiples, and is independent of
the choice of ' € L% . This is because if I' C I with (I',T") < oo, then Srv (resp.
Tr) consists of all pomts of Xps that lift Sp (resp. It).

(B) The existence of wr is closely related to the liftability of the system (15); to
a system modulo p? (see [I7]). Moreover, wr is closely related to the solution of the
reduction mod p of the Schwarzian differential equation defining the uniformization
H — a\H = R ([L4][Is]). By using these, one can compute X = (Xr, Sr,TTr)
explicitly in some special cases ([I5]; see §6 below).

(C) There is also a p-adic differential wg ) such that

wr = (@ (mod p))®VT~V

([T6], cf.[K]§2 for a published version). This C[z?) lives in a certain complete p-adic
field whose residue field is an infinite cyclic extension of the function field Fy(X) of
X whose Galois group is an open subgroup of Z; . It is Galois semi-invariant, and
defines a character

xr : 71 (Xr - Sr) = Z,.
6. EXAMéLEs

Example 1 Let F = Q and B/Q be the quaternion algebra ramified exactly
at 2 and 3. Let p # 2,3, be a maximal Z[%]-order in B, and put

I'={y€0; N (v)=17=1(mod V60)}/{£1},
B/Q

where V60 is the unique two-sided O-ideal with reduced norm 6. This group I is
torsion-free. In this case, one can show ([Is] §4.3, [I10] §3.1) that Xr is the smooth
compactification of the affine curve ' :

y?=1+1°

over F,2, which is of genus 2, and St is the set of zeros of a hypergeometric poly-
nomial of degree p — 1. For example, if p = 1(mod 24), Sr is the set of zeros
of
1 6 __ 1 2
24’ 24° 2 (—4z9)
Here, F(a,b;c;t) = 1+ & bt + ﬂlﬁ%—%l—zt? -+ (mod p), which is truncated to be
of degree Z~ L (in ¢). See [15] for more details and for other similar examples.



Example 2 F = Q(v2), B/F is ramified exactly at 002, (5).
" Let p = (v2), O be a maximal O{F)-order in B, and put

F={ye€0; N v) = 1}/{%1}.

'Then Xr/Fy is of genus 2, #(Sr) = 1. In this case, I have not been able to compute
Xp and Sr exphc1t1y

Example 3 XcC 1?2 over Fy is a smooth plane quartxc defined by the homo—
geneous equation

XY - XY 4+ XYZ*+2*=0.

The genusis 3. Let S be the 4 points of X defined by Z = 0. Then X « IIYII' — Xis
liftable to a system over Z, (cf. [Io] §3.1). It is very plausible that this corresponds
with some I'. Find B, T’ for this system ! ! :

(I1]

(I7]
(Is]
(Io]
(I10]
(l11]

(I12]

(I-M]
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