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Integral Functional and Euler-Lagrange Inclusion
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Abstract

Let X and Y be separable Banach spaces. A control problem

minimize  J(z,u) = | " (¢, 2(t), 2(t), u(t)) dt
subject to x(t) € F(t,z(t),u(t)),
uwt)eUt)CY

is reduced to the problem

’ b
minimize J(z,u) = / L(z, &) dt

(P) subject to z(t) € A%, 1<p<oo with
Li(z,z) = L(t,z(t), ) = infyeve) 9(t, (), £(t), u(t)).

In this note, we establish the generalized Euler-Lagrange inclusion for a non-convex, non-
locally Lipschitz Lagrangian L;(-,-) in (P) to be that for any solution z of (P), there
exists an absolutely continuous function « : [a,b] — X*, the separable dual of X, such
that |

(a(t),a(t)) € OLy(z,z) for a.a. t € [a,b)].

If Li(-,-) € C!, then the above differential inclusion reduces to the usual Euler-Lagrange

equation .
d . .\
7 Lii(x, &) = Ly z(z, ).
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1. Introduction

In control theory, we often consider an integral functional including
a state variable z and a control function v where z and u are obeying
some differential equations or inclusion. While a control u is given in a
practical system, we assume that one can solve the state z from the system
of differential equations.

The integral functional may be regarded as the cost when the system is
functioned. As u varies in a control space, then one will minimize the cost
functional under the constraints determined from the system of differential
equations. In mathematical interesting, it will find the optimality condi-
tions in which the integrand of the cost functional is defined in various
spaces.

In general, a minimization problem of such integral functional is for-

mally formulated as follows.

b
minimize J(z,u) = [ g(t,z(t), (t), u(t))dt
(P.) subject to &(t) € F(t,z(t), u(t)),
u(t) € U(t) fort € [a,b].
Problem (P,) can be reduced to be an implicit constraint problem (cf,
Chen and Lai [4]) as

[ rminimize J(z,u) = /ab Ly(z,z))dt |

) subject to z(t) € AC C'([a, b], X) |

- with Ly(z, &) = infygeve 9, 2(t), 2(t), u(t)),
where Li(z, ) = L(t, z(t), £(t)).

(P)

\

In classical variational problem, it is taken X = R" and
A={z=C"(o,b), R")|z(a) = o, o(b)=5; a,f€R}.

If L has continuous partial derivatives with respect to = and z, the optimal
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state z satisfies the Euler-Lagrange equation:

d N
EL,;;C(HZ &) — Ly z(z,2) = 0.

The questions arise that how we can relax the space X to a general
Banach space, and the space A to a more general function space without
the assumption of differentiability on the integrand of (P.) as well as (P).
Early Rockafellar [13] proved the solution of (P,) satisfies the generalized
Euler-Lagrange equation for a convex integrand g(¢,-,-,-) : R"X R"X R" —
R. Clarke [5,7] extended the convexity of g to locally Lipschitzian. Both of
them are taken A as a space of absolutely'continuous function. Recently,
Chen and Lai [1,2] established the Moreau-Rockafeller type theorems for
nonconvex, non-locally Lipschitz integrand. Employing these results, we
can ask that how about the Euler-Lagrange like equation if the Lagrangian
Ls(:,-) in (P) is nonconvex, non- locally Lipschitz, and the constraint space
A is replaced by a more general function space: To this end, we let

A% = the space of all absolutely continuous functions, a : [a,b] —» X
such that :
b
= z(a) + /a v(T)dT

& =v e I([a,b], X)
where X is a Banach space. Further the generalized subgradient 8" L;(-, -)

with

of the Lagrangian L.(z, z) is defined and discussed. In this note, we will
get an extended Euler- Lagrange inclusion. Precisely, we will have that if
z is an optimal solution of (P) then there exists an absolutely continuous
function ¢ : [a, b] — X*, the separable dual space of X, such that

(&(t), p(2)) € BTLt(z(t),z'(t)) for a.a. t € [a,b)]. - (1.1)
This extends the classical Euler-Lagrange equation. Actually if Ls(-,-) is

differentailable then (1.1) is reduced to the Euler—Lagrange equation:
d
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We would like to explore some basic idea and extend the integral func-

tional in an implicit optimization problem as next section.

2. Preliminaries and Definition

Let X and Y be separable Banach spces, and

F :a,b] x X x X — 2% a multimapping,

g:[a,b] x X x X xY — (—o0,+00] integrable on t € [a, b].
Denote A% = AP([a,b], X) the space of all X-valued absolutely contin-

uous mappings z : [a,b] — X such that

z(t) = z(a) + /abv(T) dr
with
& =v € L*([a,b], X).
We supply the norm form A% by |
[z = llz@®)llx + 2], forze Ay, 1<p<oo,
where ||z||x is the norm of X. |
Consider an optimal control problem as the form:
minimize J(z,u) = [ g(t,2(t), 2(t), u(t)) dt
subject to u(t) e U(t) CY fora.a. t € [a,b]
and z € A%, 1 < p < 00, such that
z(t) € F(t, z(t)u(t)),
where U(t) stands for the control space at t. |
For a function f : X — (—o00,+00), the generalized directional deriva-

tive of f (see Hiriart-Urruty [8, Def. 6], see also Rockafellar [11 §2 and 12

§4]) is defined by
M) — 1 . - f(y + )\d) —
f(z;v) = lim ltf:)i‘:? delvgfe B A : (2.1)
A0
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where (y, ) — x5 means that (y,a) € epif such that (y,a) — (z, f(z)),
and B is the unit open ball of O in X. :
If fisls.c. at x then (2.1) becomes

(R TP . fly+Ad) — a .
fiz;v) = 161%1 llrﬁj}lp delvl}rfaB S (2.2)

A—=0 - .

2

where y — x5 means that y — = and f(y) — f(z). The Clarke’s direc-
tional derivative of f at x € X in the direction v € X in the direction
v € X is defined by

0 : fly+ ) — f(y) '
V) = : 2.3
f(z;v) lzjinzs;i%) 3 (2.3)
If f is locally Lipschitz at z, then
N (z;v) = fO(z;v) for any v € X. (2.4)

Furhtermore, if f is convex and locally Lipschitz at z € X, then

o+ 7d) ~ f(o)

fl(@;v) = f(z;0) = f(2;0) = lim 5 (2.5)
We define the Rockafellar generalized subgradient of f at z by
O f(z) = {z € X*| (2,v) < fl(z;v), v e X}, (2.6)
and the Clarke genemlized subgradient of f at x by
f(z) = {z € X*| (2,v) < fOz;v), ve X}, (2.7)
If f is locally Lipschitz then | |
0'f(z) = 8°f(z) # &. (2.8)

Further, if f is convex at z, then

9 f(z) = f(a). 29
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where f(z) = {z € X*| (z,y — z) < f(y) — f(z), y € X} is the usual
subdifferential of f at . | '
It can be shown that if f is finite at x € X, then

Of(x)=¢ if and only if f!(z;0) = —oo0.
Otherwise f!(z;0) =0 and 9'f (m) £, it fplloWs that
f‘T(w; v) = sup{(z, v)[z c 9 f(x)} forallv € X. (2.10)
The following properties are not hard to see |
(i) If f iézﬁﬁjte at 7, then fT(i; 0) — 0 and
BTfT(x; 0) = 5fT(:v;04)'= 8" f(z).
(ii) If fis continuous differeﬁtiable at z, then

8" f(x) = {Df(@)}.

Indeed

(i) , since v — f1(x;v) is Ls.c. and sublinear on v € X, it is convex.
Evidently f(z;0) =0, we have

8" f(z) = {z € X*| (z,0) < f(z;v) forall v € X}
= {z € X*| (z,v) < fl(z;v) — f'(z;0) forallve X}
= 8f'(z;0)
= 91 f1(z;0).

(i) , if f has a continuous derivative at z, it is locally Lipschitz at z,

~ then . |
N (z;v) = fO(z;v) = (Df(z),v) forallveX.

‘This implies that 0! f(z) = {Df(z)}.
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3. Lagrange Problem

Recall a control problem on A%:

minimize J(s;) = [ g(t,(0), (¢ £), u(t)) dt
subject to z(t) € A%, 1<p< oo |
a(t) € F(t,x(t), u(t)) |
u(t) eU(t) CY foraa. t€[a,b,

,

(P.) !

\

where Y is another Banach space, U(t) is a convex compact subset of Y,
and F(t,-,-) : X x X — 2% is a multimapping.

Problem (F,) can be reformulated by an unsonstrained problem as

(P) minimize /ab h(t, =(t), (t), u(t)) dt
' subject to z € A%, 1<p< o0
where . _ |
h(ta £L'(t), i'(t)7 u(t)) = (t) w(t)a S.E(t)7 u(t)) + IG’)“F(t,-,-)(m(t)7 i(t)) U(t))
+y(y (u(t)),

GrF(t,-,) = {(z,v,u) e X x X xY|v € F(t,z,u)}
the graph of F(t,-, ), |
and- | Ix(-)  is the indicator function of the set K.

Recall Li(z,z) = L(t,z(t), z(t )) Assume that the infmum

Li(z, &) = e o 0 h(t, z(t), £(t), u(t))

is attained. Then (P,) is reduced to problem:

b
minimize J(z) = F(z,z) = /G-Lt(:c,j:) dt
subject to z € A% .

(P)

This problem (P) is called the generalized Lagrange problem.
If the integrand Li(-,-) in (P) is non-convex, non-locally Lipschitz but
pseudo locally Lipschitz, then under some natural conditions, the gener-

alized subdifferential operator 8! acting on the integral functional F(z, %)
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is satisfying the Moreau Rockafellar type theorem:
b
8'F(z,3) C [ 0'Li(w, 3) dt

where z € A%, 1 < p < 00, (see Chen and Lai [2, Theorem 4.1], cf also [1,
Theorem 3.1]). Employing this theorem, we can established the optlmahty
condition for a local solution of problem (P).

For convenience, in (P) we say that the integrand f; : X — RU {400}
is pseudo locally Lipschitz at z(t) € X in the direction v € X if there exist

a neighborhood W in the neighborhood system of v and functions

: | | 1 1 -
kl € Lq([a7 b]’ R+)’ k2 € Lp([a’a b]7 R+)7 ; + a =1 »

such that A € (0, A) and
i@+ dw) — fi(z)

A
forallw € W and z € {z € X| ||z — 2(t)||x < &}, for some A > 0 and
e>0. -

Now we can state some results for the optimality condition of problem

(P).

< bty + kot

4. FEuler-Lagrange Inclusion

Theorem 1. Suppose that z € Ay, '1 < p < o0, is a local solution of
problem (P) and assume that | .

(i) for each (s,v) € X x X, Ly(s,v) is measurable in t € [a,b] and for

each t, L(-,-) is continuous on X x X,

(i) Ls(-,-) is pseudo local Lipschitz at (z(t),z(t)) € X x X in any
direction (s,v) € IntL}(z, ;-,-) and

Niefap IntDomlLi(z, %, -) # ¢,
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(iii) L] (2, %-,-) =0 for allt € [a,b],

(iv) either the normal cone Npem.(0,0) = {0, 0} or
DomL = Dole (2, 2;-, ) has positive measure for t in some subset
of [a,b]. | |

Then there exists an absolutely continuous function o : [a,b] — X*
such that.
(&(t),a(t)) € 8'Ly(2, %) for a.a. t € [a, b].

Proof. Applying Chen and Lai [1, Theorem 3.1], the conditions (i)-
(iv) would imply | |
b
O'F(2,%) C [ 8'Ly(w,&)dt.

It follows that for any w = (w;,w;) € 0'(2,%), there exist absolutely

continuous functions o and 3 such that

(1) (B(t), (t)) € 8'Ly(2,%) for a.a. t € [a,b],
and for any s € A% and v = § € LP([a, ], z),

(2) (w1, wa), (5,0)) = [ {{B(1), s(0)) + (alt), v(e))} dt.

As z is a local minimum of (P), F attains the local minimum at (z, z) and

N | ~ (0,0) EIBTF(”z,‘z').
Taking (w1, ws) = (0,0), (2) turns to
L@, s®)dt = — [(aft),vo(t)) at. BNCS)
As s e A%, v =3 € L’([a,b], X), we have
s(t) =s(a) + [ v(r)dr.

Choosing
o(t) = uxn (), ue X
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and so -

s(t) = [ uxpan(®)di + s(a)

_Jult—a)+s(a) ift<rT
" u(r—a)+s(a) ift>T

Substituting such s and v in (3), we have
[ (8(t),u(t=) + s(@) dt + [ (B(t), u(r — a) + s(a)) dt
== @), v dt. |
Differentiating the above idéntity with respect to 7, we obtain

[(6(t),wydt = (~a(r),u).

It follows that
b
—a(r) = [ B(t)dt for r € [a,b].
Hence 3(t) = &(t) for a.a. t € [a,b], and (1) follows that
(&(t),aft)) € O Li(», ) .
O
We say that a function f;(-) is quasi locally Lipschitz at z € E C
LP([a,b], X) if there is a function k € LI([a, b], RT) such that for ¢ € [a, D],

|fi(s1) = fu(s2)| < k(®)][s1 = s2l|x, for 51,52 € Ny,

where N,y = {z € X| ||z — 2(¢)||x < e0o} for some gy > 0.
In Theorem 1, if the pseudo locally Lipschitz of L is replaced by the
quasi locally Lipschitz, then we have |

Theorem 2. If z is an optimal solution of (P), and assume that

L¢(z, 2) is measurable in t and satisfies the quasi locally Lipschitz at (z, 2)

| Le(s1,v1) — Le(s2,v2)| < k(t)|s1 — 52,01 — v2)|
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for all (s1,v1), (s2,v2) € (2(¢), 2(t)) + eBxxx, the e-neighborhood of (z, z)
where B is an open ball and € > 0 is arbitary. Then there is an absolutely

continuous function a € A}g such that
(&(t), alt)) € 8°Ly(z, 5) for a.a. t € [a,b]

where 8°Ly(z, #) is the Clarke generalized subgradient of Ls(-,-) at (2, %).

If Li(-,-) € C'(X x X), then Theorems 1 and 2 are reduced to the usual

Euler-Lagrange equation which we state as follows.

Theorem 3. Let z be a solution of (P) and let Ly(-,-) be continuous
differentiable with respect to (s,v) € X x X. Then

d .

ZE Lt,j,(z; Z)

Proof. If Li(-,-) € C1(X x X), then
L?I(Z7 Z? 'Ula'UZ) - L?(Z, Z) Ul7v2) = <-DLt(Za Z)) (U17U2)>

for all (v1,v;) € X x X, where DL(z, #) denotes the Frechet derivative of
L at (z,2). Hence |

O'Li(z, 2) = 8°Ly(2, 2) = {DLy(2, 2} = {Ls o(7, ), Ly 5(2, #)}.
By Theorems 1 and 2, we obtain
(d7a) = (Lt,x(zz z)?Lt,ﬂ?(zy Z)) -

This shows that

d : .
ELt,j;(Z? z) = Lia(z,2) .

As an example to solve the optimal solution from the differential inclusion
like in Theorem 2. We give a practical problem as the airplane tak-off or

landing in which one will minimize the loss of energy:.
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Example. Let a > 0, b > 0 and consider the problem :

minimize /01 (t)| + bi(t)? ]dt
subject to z € AC([0, 1],R) and z(0) =0, z(1)=1/4

The integrand of J(z) is not smooth, one will minimize J(z) with the
given constraint. '
If b= %m, a = mg where m denotes the mass of body and g the
gravity, then o
mgz(t) is the potential energy obtained and
ima(t)? is the kinetic energy lost.
The problem will minimize the loss of energy when a plane W111 take off

over the time interval [0, 1].

Solution. If z is an optimal trajecting, we denote a neighborhood of
(2, 2) by
N ={(s,0): s — 2(8)] < 1, Jo— 5(8)| <1}

then the Lagrangian |
| L(t, s,v) =.a|s| + bv®

is convex and locally Lipschitz. Indeed for any (si,v1), (s2,v2) in N,

|L(t, s1,v1) — L(t, s2,v2)|

< alsy — sg| + blvy + val[v1 — v2
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< a|-31 — 82| + 2b(1 + Z(t))|1}1 — ’02'
< la+2b(1+ 2())]ll(s51 — s2,v1 — wa)].
Here k(t) = a + 2b(1 + 2(t)) € L'[0,1]. By Theorem 2, there exists an

absolutely continuous function « : [0,1] — R such that
(@(t), a(t)) € OL(E, 2(t), £(t)).
Since L; and L; exist except z(t) = 0, it follows that

{(Lz, Lz)} = {a,2b2)} if 2(t) >0
(a(t),a(t)) € { {(Ly, L)} = {—a,2b2)} if z(t) <0
OL(t, z,2) = {(s,2b2)|s € [—a,a]} if z(t) = 0.
Hence |
(i) if 2(t) > 0 then &(t) =a and «ft) = 2bz
= Z2=a/2b;

(ii) if 2(£) < 0 then &(t) = —a and a(t) = 2b3
= Z=—a/2b;

(iii) if z(t) = 0 then &(t) € [—a,a] and oaf(t) = 2bz
= %= [—a/2b, a/2}] .

The case (ii) does not happen since z(t) > 0. Thus we may assume that
there exists d € [0,1) such that z(t) =0 for 0 <t < d and z(t) > 0 for
d<t<l1.

1. If d = 0, we solve the equation :

5(t) = a/2b, O <t<1
z(0) =0 and 2(1)=1/4

and get the solution

z(t) = (a/4b)t* + (1/4 — a/4b) t
2(t) >0 onlyif a <b.
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2.f0<d <1, 2(t) =0 for 0 <t < d, then we solve the equation :

5(t)=a/2b for d<t<1
2(d)=0 and 2z(1)=1/4

and get the solution

z@%z@ﬂ@@—@zimm60<d:1—igmﬁhb<a.

a
Consequently,

1. If b > a, the optimal solution of (P) is

2(t) @t (Z — @)t
with optimal value
a b a?
J(2) = -+ — =~
(2)=3+16~

2. If b < a, the optimal solution of (P) is

b
z(t):fg(t—d)2, 0<d=1—\J—;

with optimal value

J(z) = %\/E
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