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Abstract

We consider a finite dimensional version of Evans-Perkins type stochastic integral formula
in the theory of measure-valued processes. The principal role of the formula consists in
rewriting a product of historical functionals of a specific class and stochastic integral relative
to the orthogonal martingale measure in the Walsh sense into a certain expression involved
with stochastic integral with respect to a Dawson-Perkins historical process associated
with a reference Hunt process. This naturally leads to a variant of stochastic integration
by parts formula in stochastic analysis. Our result is an extension of the Evans-Perkins
lemma(1995). .

§0. Introduction

The purpose of this article consists in a generalization of the Evans-Perkins stochastic inte-
gral formula. There are two reasons why this integration formula is so important. For one
thing, it can provides with a new formula of transformations of stochastic integrals closely
connected with the so-called historical processes. In fact the establishment of the formula
asserts that a product of historical functionals of a specific class and stochastic integral
relative to the orthogonal martingale measure in the Walsh sense is, in its mathematical
expectation form, equivalent to a certain expression of integration that is involved with
stochastic integral with respect to a Dawson-Perkins historical process associated with a
reference Hunt process. In addition, it also allows us to interpret that the formula is noth-
ing but a variant of stochastic integration by parts in an abstract level, that is very useful
as a theoretical tool of stochastic calculus in the theory of measure-valued processes. For
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another, it has an extremely remarkable meaning on an applicational basis. By making use
~of the formula S.N. Evans and E.A. Perkins have succeeded in deriving a kind of 1t6-Wiener
chaos expansion for functionals of superprocesses[EP95].

To make sure its importance for the latter case, let us take a quick historical review
on the matter. The Itd-Wiener chaos expansion theorem was originally proved by K. 1o
(1951). It asserts that every L? functional can be described as a constant Cy plus a sum of
multip‘le stochastic integrals (actually, multiple Wiener integrals) I,(f,) with respect to a
standard d-dimensional Brownian motion B with L? symmetric functions f,’s. In the case
of the Brownian motion, an even stronger result is true, that is to say, every L? functional
has an orthogonal expansion in terms of multiple stochastic integrals with deterministic
integrands. As a matter of fact, any two multiple Wiener integrals of different orders are
orthogonal. That is why it is called Itd’s L? orthogonal decomposition theorem as well.
One may find the orthogonality properties so useful and powerful in many success stories
of this famous theorem applied to various sorts of theories, such as analysis in the Wiener
space, Malliavin calculus, white noise analysis, etc. This result has been extended over
the past four decades to a wide variety of processes. However, it is a task of extreme
difficulty to extend the result to a more general class of processes. So many attempts
have been made by plenty of probabilists in the game of extending Itd’s theorem. Among
them, the work acquired by J. Jacod (1979) has exposed a positive aspect in this direc-
tion of researches. That is, he proved the very most general theorem that the existence of
such a stochastic integral representation for functionals of a certain process is thoroughly
equivalent to the well-posedness of a martingale problem for the underlying process. How-
ever, while existence is now generally known, it is not always clear precisely how to write
the representation. In most cases it would be hard to get explicit representations for the
process functionals even in the sufficiently general setting. On the contrary, a negative
aspect of studies in line with this generalization has been brought by E.B. Dynkin (1988).
Of course, he gave a similar type expression, and also showed the example that even the
definition of multiple stochastic integrals can be difficult, and two stochastic integrals of
different orders are no longer orthogohal. For instance, Dynkin’s counterexample of lack
of orthogonality suggests the criterion, i.e., if the quadratic variational process (M) of the
integrator martingale M is random (= not deterministic), then two stochastic integrals
with respect to dM of distinct multiplicity do fail to be orthoganal. This explains why
[td’s theorem can be beautifully perfect, because the quadratic variation of the Brownian
motion is deterministic, say, (B); = t. As is easily imagined, it would be certain that the re-
search activities of this direction have become less popular since the discovery of Dynkin’s
counterexample(1988). And yet S.N. Evans and E.A. Perkins (1991) have showed that
any L? functional of superprocess may be represented as a constant Cy plus a stochastic
integral with respect to the associated orthogonal martingale measure M. Recently they
have obtained the explicit representations involving multiple stochastic integrals for a quite
general functional of the so-called Dawson-Watanabe superprocesses. Actually, the results
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are obtained in the setting of the historical process associated with the superprocess. [t is
this way that suddenly coming up is the historical process in this field. Based upon the
previous results(1991), they derived partial analogue of the It6-Wiener chaos expansion in
superprocess setting by taking advantage of the "stochastic integral formula” in question.
- Now we shall give a rough idea what the integration formula is like and try to ex-
plain precisely the notation appearing in the expression, but in the form as simple as
possible. The rigorous definition will be given in the succeeding section. First of all,
let us consider the functional F'(H) of a historical process H with branching mechanism
®(a, 3,7, 6) for a real valued function F on C([0, c0); Mp(D)) with the space D of E-valued
cadlag paths. Actually, this F should lie in a suitable admissible subspace U(M (D)) of
C(C([0,00); Mp(D)); R ). Next consider a stochastic integral J(Z; M) = [ [ Z(s,y)dM of
a bounded predictable function = relative to the orthogonal martingale measure M in the
Walsh sense(1986). Then we make a product F(H)-J(Z; M). On the other hand, consider
the integral of another type J(F,Z; H) = [ [ I*[F]=(s,y)dH,ds for some predictable func-
tion I'*[F] which is determined by the functional F/(H) given. Thus we attain the integration
formula if we take the mathematical expectation of those terms, i.e., E [F(H) - J(Z; M)]
= E [J(F,Z; H)].

For the rest of this section, we observe that any two multiple integrals of different orders
as for J(S; M) are not orthogonal any longer. Let us take a look at this in the following
because it is easy. Let P denote the (G,):>,-predictable o-field of functions on (7, c0) x 2
and (U,U) is a measurable space. The following is a well-known fact(Stricker-Yor(1978)).
Suppose the following two conditions:

(C1) ¢: U x (1,00) x D — R is bounded and U x B((7,00)) x D-measurable.
(C2) 9y :U x [r,00) x 2 — R is a i x P-measurable function, satisfying

sup sup P [|[¢¥(u,t)|P] < oo, Vo>T, p>1.
uel T<t<8
Then we have
(a) The stochastic integral

[r:_ /D o(u, s, y)¥ (u, s)dM(s, y)

is well-defined for any u € U, V¢ > .
(b) It satisfies

¢ P _
sup sup P ‘[ L e(u,s,y)¥(u, s)dM(s,y)| < oo V0 > r,Vp > 1.
T+ i ’

uelU 7<t<8

(c) Moreover, there exists a U x P-measurable mapping a such that the random set

{a(u,.,.) [ 'so<u,s,y)w(u,s)dM(s,y>}
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is evanescent for all v € U.

Remark. The above assertion implies that for almost all paths the map a and the stochastic
integral [ [ p1dM are the same. More precisely, if a and [ [ py¥dM are indistinguishable,
then one has

t
a(wt)= [ [ olu,s)p(u,s)dM(s,1), as.
T+
for all t € (1,00), Yu € U. However, notice that the converse is not true.

We may apply the above-mentioned fact to get the absence of orthogonality for the multiple
stochastic integrals.
1. Suppose that for any m > 1

¢i € b({B((T,co))}™ 1 x D), i=12---,m.
Applying the above result we can construct a B((r, c0))™~! x P-measurable function
ai : (1,00)™ ! x (1,00) x 2 = R

such that ay(sg,---,8m;") is indisﬁinguisha.ble from

//‘101(511""sm;'yl)dM(slayl)
T+ JD v

for any s2,83,- -+, Sm.
2. Since the mapping: (s3,---,8m; S2;w) — a1(S2,83,+* -, Sm; S2;w) is B((T,00))™ 2 x
P-measurable, we can apply the above result again to construct '

ap : (T,00)™ 2 x (1,00) x 2 — R,

where a; is a B((7,00))™ 2 x P-measurable function such that az(ss, - - -, 8m;-; ) is indis-
tinguishable from

[ [ exls2 - smimdantse, - mi ) dM (s, 10)

for any sg,---,5m. o

3. Continuing in this way, we can construct successively s, - - - , . We write I (1, - -,
®Ym;t) = am(t). For m > 1, Z,, denotes the set of all random variables of the form
In(p1,- -+ @m;t) for @1,---,0m, and t > 7. Put

o eyl

4. This is nothing but an attempt at giving meaning to multiple stochastic integrals with
respect to M. We can regard I;,(¢1,- -, ¥m;t) as an interpretation of the notation:

T<81 < <am <t
Dx--(m)---x D

- ] Bl o) - e
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Thus, the linear span of T, is analogous to the m-th Wiener chaos.

5. As a matter of fact, this analogy cannot be complete, because Z; is not orthogonal to
Tin L*(P)ifk # L

6. To see this, let us take I; € Z; and I € 1, for example. In addition, assume that
1, P2 are both constant functions taking the value 1, for simplicity. Then we readily get

P [11(<P1;t)»- L(pr, p5t)]= P [/T: H,(D){H,(D) — H,(D)}ds| # 0.

The last inequality is due to the moment estimate by E.B. Dynkin(1988). So that, we
cannot hope for a full analogue of the Ito-Wiener chaos expansion for this generalized
stochastic integrals.

§1. Notation and the Result

Let (E, £) be a Polish space and let D( R ,; E) be the space of E-valued cadlag paths on
[0, 00) and we sometimes write this space as D or D(E) for simplicity. Note that D is a
Polish space as well (cf. §2.1, p.13 in [DP91]). We denote by M (D) or Mp(D) the space
of finite measures on D with the topology of weak convergence. (u, f) or sometimes u(f)
denotes the integral [ fdu when u is a measure and f is a suitable p-integrable function.
Set T, = [s,00), and in particular Ty = [, 00). Define C(M (D)) = C(To; M(D)), and
we write D(t) = (7,t] x D for the integral domain. When F is the o-field or the usual
filtration, then f € F indicates that the function f is F-measurable and P(F) is the totality
of (F)-predictable functions, and bP(F) denotes the whole space of functions that are all
bounded elements of P(F). We use the symbol U(M (D)) for an admissible subset of the
space C(C(M(D)); R ); more precisely U(M (D)) is the totality of real valued continuous

functions F on C(M (D)) such that for some compactly supported finite measure L(dt) on

Ts, the estimate

holds for all f,g € C(M(D)), where we define Af(z,y) = F(z+y) — F(z).
Y = (D,D, Dy, 60:,Y:, P:) is the canonical realization of the Hunt process. Let ®(z,A)
denote the branching mechanism for the corresponding superprocess, namely,

®(z,)) = —a(@)A — (DA + /0 “(l—e™u(z,du), A€ R, B€(0,]]
with a measurable kernel v(z, du) from (E,&) to ( R *, B( R *)) such that
sup /mu Al v(z,du) < co.
z JO

Let H = (,G,Gi4, Hi,@Qm) denote a (Y, ®)-historical process in the sense of Dawson-
Perkins(1991) (cf. [DP91]) with Q@ = D(M(D)) (see also [F88], [DIP89]). We may call it
a (a, 3,7, 6)-historical process as well in what follows. On the other hand, suggested by
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[DkTn98] (see also [P95]) on a filtered space 2 = (2, F, (Fi)i»r, P) we introduce a gener-
“alized {7, a, b, g}-historical process K = {K;,t > 7} with generator A of the corresponding
path-valued process Y*(cf.[P92]). L%(H) denotes the L? space of (D x G;);>,-predictable
functions f : (T,00) x D x @ — R with respect to ds® dH;® dQm. Moreover, L*(K)
denotes the totality of (F; x C);>,-predictable functions f : (7,00) x 2 x C — R. such
that

P [ [+s,0) (s, 9 *Ko(dy)ds <co, for t27.

It is well known that there exists an orthogonal martingale measure M in the sense of
Walsh(1986) [W86] such that the stochastic integral with respect to M

[ [ £ty

is well-defined and belongs to the class M2¥¢(F;) of square integrable continuous (F3)-
local martingales under the measure P for each element f of L?(K). We denote by M

the corresponding martingale measure for the element of L*(H), and [ [ fdM is contained
in M2(G;). Then notice that

< f + fcf(s,y)dM(s,y)>t: / 1 fc Ys,w,9)f(s,w,y)° Ke(dy)ds Vt, as. (1)

holds, where v is a (C, x J;)-predictable process such that (3)7~! is locally bounded.

For stopped paths and related measures, we adopt the same notational system and
terminology as in [P95]. For y € D, we define y'~(s) as y(s) itself if s < ¢ and as y(t—) if
s >t. Q(s,y) is a o-finite measure on C(M (D)) such that

Qs {heC(M(D); T<3t<s, h(t)#0}) =0,

which can be defined by the canonical measure R(T,t,y; d() associated with the law of K;
= K(t) and the path restriction mapping = (cf. §2, pp.1781-1782 in [EP95]) together with
a discussion involved with the Dawson-Perkins theory(1991) (e.g. Theorem 2.2.3(pp.27-
28) and Proposition 3.3(pp.38-39) in [DP91]). Let F be a real valued Borel function on
C(M(D)). Assume that |

IF)s,0.m) = [ AF(h6)Q(s,y";do) @)

is well-defined and bounded below for all s > 7, y € D, and h € C(M(D)). For a bounded
(F:)-stopping time T, we define the Campbell measure Pr associated with K(t) by

Pr(Ax B) = P (K(T,A)- 1 {K(T)})/m(C) (3)

for any Ax B € (DxQ,Dx.F) (cf. [P95], p.21; or [DP91], p.62). Notice that K; = m. Since
the mapping (s,y,w) — I[F](s,y, K(w)) is bounded below and measurable with respect to
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the product of the predictable o-field associated with the filtration (D,) and the o-field F,
we can apply Lemma 2.2(p.1783) [EP95] together with the projection operation argument
and the predictable section theorem (e.g. Theorem 2.14(p.19) or Theorem 2.28(p.23),
[JS87]; see also [E82], pp.50-52), to deduce that there exists a (D, x J;);>,-predictable
function I*[F](s,y,w) : (1,00) X D x @ — R such that

Pr{I[F)(T)/(D x F)r} = I*[F)(T)

holds Pr-a.s. for all bounded (F;)-predictable stopping times T > s. We denote by I*[F]
the (D, x G.)-predictable function constructed by the same procedure, with the o-finite
measure ((s,y) based upon a (Y, ®)-historical process H. It is quite interesting to note
that in particular ' ‘

P [ IFIT,y)K(T,d)) = P [ IFFITYKT, ).

We shall introduce an a.pprbxima.tion map. For each [ € N, let us choose a partition
Al = {tO(); 1 < 7 < k[l]} such that 7 = ¢t®(0) < tO(1) < --- < tO(k[l]) < oo,

lliglo{s%p At[l;k]} =0 and ll_xgg t‘(')(k[l]) - +oo.
The approximation map W{l] from C(M (D)) into C(M(D)) is defined by
WlIl(9)(®) = {Sb(E® (i + 1)) - gtV (0)) — Sb(EV(3)) - g(t® (i + 1))} Atfl; ]

if t € [t (2),tY(i + 1)), and := g(tW(k[l])) if ¢t > t¥W(k[l]), for any element g of C(M(D))
with: Sb(k) = k — t. Immediately we get
Lemma 1.(cf. Lemma 4 [DK98a]) Let F' be an element of C(C(M(D)); R). Then for all
g € C(M(D))

Jim (F o W[I])(g) = F(g)-

We are now in a position to state Evans-Perkins’ stochastic integral formulae, which provide
with the proto-type of our extended result. The following theorem asserts that a finite-
dimensional version of stochastic integration by parts formula holds when one rewrites an
expression of historical functionals of a specific class and stochastic integral relative to
the orthogonal martingale measure M in the Walsh sense [W86] into a certain stochastic
integral with respect to a Dawson-Perkins historical process H associated w1th a reference
Hunt process Y.

Theorem 1.([EP95)) Assume that ® : C(M (D)) — R is a cylinder function with repre-
senting function ¢ : [M(D)]* - R and base 7 < t(1) < -- - < t(k), such that

|1Ap(a, B)| < C Zﬁj(D)
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for some positive constant C, for all o, B = (8,) € [M(D)}k. For allt > T we have the
following integration formula :

P {@(H) J [ ¥ dM(s,w}: P [ [, (@9 ¥(s,y) Hdy)ds

with ® = F o W[l|, if U is a bounded D, x H;-predictable function.

Theorem 2. (Evans-Perkins’ Formula(1995)) Let F' € U(M(D)). If Z is an element of
bP(D; x Gi), then for allt > s, '

anfFun [ [ =) anon
= Quf [ IFle9Ee)Rd)dE @

The following is our main result in this paper. It is a finite dimensional version of Evans-
Perkins type stochastic integral formula. It is also quite interesting to note that this
formula can be naturally regarded as a variant of stochastic integration by parts formula
- in stochastic analysis for measure-valued processes. Note that K is a predictable measure-
valued process whose law is specified by a general martingale problem (MP)[r, K;,~, a, b, g]
(cf. [DkTn98],[P92]; see also [Dk98a]). We postpone explanation of assumptions (A.1)-
(A.5) in the following theorem until §4.

Theorem 3.(Stochastic Integration Formula) Let ® be the same cylinder function with
representing function ¢ as in Theorem 1. Then under assumptions (A.1)-(A.5), fort > T

Plouo [ [ venditen) =P [ [ ol 0¥t K.

holds where ¥ is a bounded (D; x F;)i>--predictable function; K, is a generalized historical
process, and I1#[®] is a predictable function determined in accordance with the given ®.

Remark 1. The assertion of the above theorem is quite similar to Theorem 2.4(p.1785, §2,
[EP95}). However, our stochastic integration by parts formula is valid for a more general
historical process K, while Evans-Perkins showed the formula(Theorem 1 and Theorem 2)
just for a (Y, —\%/2) historical process H, say, for a simple case of (a, 8,7, 6) = (0,1,1/2,0).
Remark 2. Note that it is not hard to extend the assertion in Theorem 3 to the case of a
more vgeneral functional F(K), just as described in Theorem 2 for the special process H.
As a matter of fact, once the integral formula as given in Theorem 3 is established, it is a
kind of routine work to generalize it(cf. §3, [Dk98a]). We shall refer to the matter in §3.

§2. Preliminaries
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Set I = [0,1], E* = D x I'and D* = D(R , E*), and let D* (resp. Dy ) be the Borel
o-field (resp. the canonical filtration) of D*. Now X = (D*,D*, Dy, X, P;) denotes the
inhomogeneous Borel strong Markov process (IBSMP) [DP91, p-22| with cadlag paths and
z = (y,n) € E*."Let G be an (X*, A*) historical process starting at (7, 1), defined on the
stochastic basis (2, H,H,, P *). Suppose that ¢ : (7,00) x D x  — I be an element of
P(D; x H;). Given any cadlag functionn: R , — I, we can construct a o-finite counting-
measure n* on R ; x I by assigning an atom of mass one to each point (s, 2) such that
n(s) —n(s—) = z # 0. Put

At,z,w) =n'({(s,2) €[nt) x I, @(s,9,w) > 2}) (5)

and B(t,z,w) = I {A(t,z,w) = 0}. Then we can define an Mg (D)-valued process K [](t)
by
Klg;J10) = [ 1{}a)B(t,2)G:(da). ©

e, N)= [ [ elo)dN(s,2)

and

hie,6) = [ [ Ae9)e(s,4)Coldr)ds

with D*(t) = (7, ] x D*. Then we define

Algl(t) = exp{i(p, M) = 5120, G) ). NG

Note that Afp](t) is a H,-martingale [EP95, p.1798]. The new probability space (22, , P-*[¢])
is defined by P *[@]{F} := P *{F - Alp|(t)} (cf. [Dk98a]; see also [Dk97b]) for any F' €
bH; with ' | . '

H = V Ht (8)

) t2T - )

(see Theorem 2.1(pp.125-126) and Theorem 2.3b(p.127), [EP94]). According to [DP91]
and suggested by [EP95], we introduce the following notation. For an IBSM process X, we
can define P;, = P*[r,p] as |

Plrul(4) i= [ P{(/7/X) € A}uldz) ©
for any A € D*, p € M(D*)". Generally,
M)} ={meM:(C); y=y, m-—as. yeC}, Vi

Also we define
D; :=D;, \/ {P*[r,u] — null subsets in D"},
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and F* denotes the space of f € b(B(Ty) x D*) such that f(t,z) = f(t,2'), forallt >
and the mapping: Ty € t — f(t,X) € R is P*[r,p]- a.s. right continuous for all ¢t > 7.
Let A* denote the totality of (¢, ) € F* x F* such that

(2, X) = (t, X) — (7, X) — /: (s, X)ds

is a ﬁ:-martiﬁgale under P*|[r,p] for all ¢ > 7. Furthermore we assume from now on that
the (X*, A*) historical process G (resp. the (Y*, A) historical process K ) are defined on
the filtered probability space (2, H, H:, P ) (resp. (2, F, i, P ) ) and also that

Fo=[(o{Ky 7<r< s}- V o{ P —null sets},
’ s>t
for t > 7, and F = VV{F,; t > 7} denotes the minimal o-algebra generated by {F; t > 7}
and ‘

K(t,A) =Gt {z=(y,n)eD; ye€ _A}),

holds for all A € D. We may further assume that K is also a (Y*, A) historical process on
(Q,H, H, P ). Then we have

Proposition 4.(cf. Lemma 4.5, p.1794, [EP95]) Let T be a (D; xH;)-stopping tzme such
. that

T} c U Wnlx 0

where {Upn} s a countable collection of D} -stopping times.
(a) Then

| /D _®(t AT(z),2)Ge(dz) = / /D o 2 A T(E), )N (s, 2)

holds P -a.s. for anyt > T.
(b) The both sides in the above equality belong to MZ.

It is easy to show the following proposition if we apply Proposition 4 by making use of
Dawson’s Girsanov theorem [D93] (see also [P95]).

Proposition 5.(cf. Theorem 5.1, p.1798, [EP95]) The law of K|p] under P [¢] is equiva-
lent to the law of K under P .

§3. Generalization of the Cylinder Function Case

As mentioned in Remark 2 of §1, the essential part of an extension of the Evans-Perkins
type integration formula is compressed into the study on its finite dimensional case, namely,
Theorem 3. The general case easily follows from a kind of routine work. So we shall only
take a short excursion to this topics in accordance with [Dk98a]. We define a real valued

function L* on C(M (D)) by ' '

Lgl = [ 9(t, D)L(e) = (L.g(, D). (10)
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If F € U(M(D)), then from definition (cf. §1) notice that |AF(f,g)| < L*[g] holds for all
f,g € C(M(D)). By assumption of Theorem 2 we can easily obtain

Lemma 2. For all f,g € C(M(D)), we have |A(F o W[I])(f,9)| < (L* o W[I])[g]-
In connection with the measure L (see §1), we introduce the finite measure L(I) = L(I, dt)

which concentrates its mass on {t¥(j); 0 < j < k[l]} (cf. [Dk98a, p.5]). We have (L* o
W) [g) = (L), g(-, D)) for g € C(M(D)). Moreover,

hm L(l (s,+00)) = L((s, +00)), hm(L* o W(I))[f] = L*[f]
holds for all but countably many's > 7 and for any f € C(M(D)). Recall that the following

lemma holds with ease for s < t from Lemma 3.4(pp.41-43), [DP91].
Lemma 3. The following relatzons hold:

[ 9t D) Qls.uide) = /e(D (5,t,3;06) = 1.

The following Lemma 4 is a companion result (with the similar type equality in §1) directly
derived from Lemma 2.2 [EP95] if we repeat the same argument of projection operation
and predictable section theorem, which has been stated in §1. That is to say,
Lemma 4. There exists a bounded D; x Fi-predictable function I*[F o W[l]|(s,y,w) such
that '

P [ IFeWNT,y) K(Tdy) = P [ I#[F o WI)(T, ) K(T,dy)
holds for all bounded Fi-predictable stopping times T.

We introduce now the first important result in derivation for the general case.

Proposition 6. The equality
P [ Qv Ki(dyds

= Jlim P {Qs,5*)(L* o W] [g]} K.(dy)ds

. l—o0 . D(t)
holds with g € C(M(D)) for allt > .

It is quite interesting to note that Dawson’s Girsanov type theory stated in §2 remains
even valid if we replace ¢ by ¥ appearing in the statement of Theorem 3. As a matter of
fact, an Mg (D)-valued process K[¥|(t) is well-defined, A[¥](t) is a H,-martingale, and the
probability measure P [¥](-) is well-defined as well. In addition, note that Proposition 5
in §2 says that the law of K|¥] under P [¥] is the same as that of K under P . The next
proposition is one of the most important assertions in th1s section.

Proposition 7 Forallt > T, zf Z € P(D; x .7-}) then
P / I*[F K,(d
b [F](s,y)Z(s,y) ( y)ds

= Jim P [ [ IHFoWs,0)Z(s) Kaldy)ds. (1)
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In order to get the above, we have only to apply the previous result Proposition 6 together
with Lemma 4 by employing the Fubini theorem and a variant of dominated convergence
theorem of Lebesgue type.

It is well known that for each n > 1, P {K;(D)"} is uniformly bounded on compact
intervals. On this account, we can deduce the next assertion by taking it into consideration
that L has a compact support, i.e.,

Lemma 5. For eachn > 1, P {(L* o W[I])[K]|"} is bounded in .

Another direct result by the aforementioned well known fact is: for all ¢ > 7, the stochastic
integral

| [ @l b (5,0)

has moments of all orders if ¢ € bP(D; x F;). The following assértion is a simple result
from the aforementioned result and Lemma 5. That is, for all ¢t > 7

2

P (12)

(L* oW[l])[K] / L m\I{(s, y) dM(s,y)

is bounded in I. As we have [(Fo W) (K)'| < |F(0)|+ (L* o W{I]) [K] from Lemma 2 (with
setting g = 0) and lim;_,., (F o W[l]) (K) = F(K) from Lemma 1, a uniform integrability
argument (e.g. [E82],[JS87]) together with (12) shows:

Proposition 8. For allt > T

P {F(K) / /D o ¥60) dM(s,y)}=ll_i_To P {(FOW[I])(K) / /D o ¥E0) dM(s,y)}.

To complete the extension discussion in this section we have only to observe that F' o Wl]
satisfies all the conditions of the main result in this article, say, Theorem 3 (cf. Lemma 22,
pp-9-10, [Dk98a]). Thus we have a finite dimensional special case of stochastic integration
by parts formula related to historical processes as far as Prbpositi‘on 4 and Proposition 5
stated in §2 are both valid. Hence, an application of Theorem 3 with Proposition 8 leads
to . _

P {F(K) / L (t)\Il(s,y)dM} = lim P {(FoW[l.])(K) / L (t)\I!(s,y)dM}
= lim P /\/L-?(t) I#[FoW[l]] v(s,9)¥(s,y) K,(dy)ds

l—oc0

= P [ [ o) von) ey Kidi)ds,  (13)

* because in the last equality we employed Proposition 7. Thus we attain
Theorem 9. P [F(K) [ [¥(s,y)dM] = P [ [ I*[Fly(s,y)¥(s,y)K,(dy)ds.

§4. Assumptions and Sketch of Proof of the Main Theorem
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We shall give a rough sketch of the proof of our main result (Theorem 3) which is stated
in §1. Since the space is limited, computation in details will be sacrificed for the sake
of simplicity and clearness. D' denotes the image of D under the map: y — y'. We
define a measure K*[s,t] on D* by K*[s,t](F) := Ki({y : y* € F}). Then the measure
K*|[s,t] is atomic with a finite set of atoms, and we write L[s,t|( C D* ) for the locations
of these atoms. For s € (a,b], let As[¢] be the random measure on D that places mass
©(s,y) at each point y in (L[b,c])* = L[s,c]. On the other hand, let {Tx} be a reducing
sequence [Tn98](see also [P95]). With some localization arguments in stochastic calculus,
the Perkins-Girsanov theorem of Dawson type guarantees the existence of a probability
measure Q y on (2, F) such that

dQn| _ { I o (e) T 0)dN
= [ [or ) Ligls) # 0)d(s,9)

dpP
3L A 16 7 Ol

For brevity’s sake we rather write £(tATy) than the above. On this account, K., satisfies
the martingale problem (MP)[yn, an,bn,0] instead of (MP)[y, a, b, g], where we set fy :=
f- I(r <t < Ty). Moreover, for s € (a,b], y € D*, the symbol M]s,y| denotes the
mapping of the set of functions {m : (7,00) — Mg (D)} into itself and is defined as follows:
ie., {M[s,ylm}:(F) is equal to m,(F) if t < s, or is equal to mi({y’ € F : (V)* #y}) if
t>s. , .
Let us now introduce our assumptions for the principal result, say, Theorem 3.

(A1) g:[r,00)xOxC — R isa (F;xC;)*-predictable process such that gy~ I (g # 0)
is locally bounded. ”

(A.2) For any predictable function f on [r, oo) x I x D* x Q, the counting measure n*
satisfies '

/D~ //(r,t]xz f(s,2,7)n’ (ds ® dz)Gi(dz)

- /1 /D | ( 1 f('s,z,x)dz) Gs(dz)ds + / f ” ( / /(mlxl f(u,z,x)n*(du@)dz)) dN(s, ).

(A.3) There exists a random measure A, on (7,00) X D such that

/ /D( f(s,y)Ap(ds @ dy) = f / F(s,9)Aslp)(dy)ds

holds for any suitable predictable function f.
(A.4) U(s,y)E( A Tyn)! is uniformly bounded in s, Ks-a.e. y, Q y-a.s.
(A.5) For € > 0 we have

Q yIF(Klevl) - F(K) | F]
— . eeAullrooD) / /D oy FMIs, 41K = ()M (ds @ dy) + E(e, F )
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where the residue function R satisfies |R(e, F, ¢)| < o(g).

Thanks to (A.1) we can resort to the Perkins-Girsanov theorem to reduce it to a simpler
case. That is, it is sufficient to verify the integral formula for a special {'yN,aN,b,.,O}-
historical process K..r, under Q n instead of the generalized K with P . Indeed what
we have to show is :

Qu{e(ar) [ [ E6ATY M} = Q y [ [ 1817 - A Tw) M dK ds.

Both sides above are well-defined by virtue of (A.4). Furthermore, ¢ = ¥-£~! is applicable
to (5)-(7) in §2. Hence, by the auguments in §2, A[Y - £-1(t) is a Hy-martingale and the
measure Q [V -£71] is given by Q N[{-}A[¥ - £7']]. Then it follows from Proposition
5 that the law of Koz, [¥ - £7'] under Q y[¥ - £7'] is equivalent to that of K.Ar, under
Q u, which implies that :

Q v {®(Knry)} = Q wle¥E{@(Kan, [e¥ET))-

With an application of elementary stochastic calculus, this enables us to acquire further
reduction, namely, a simple computation of limit. As a matter of fact, we have only to
compute ‘

lime™ Q N { (K nry[e¥ET]) — & (K azy) }- (14)

Clearly (A.5) works nicely for this calculation. While, knowledge of Campbell measure
and cluster random measure, especially understanding of Poisson cluster representation
is really helpful in proceeding the computation of (14), together with (A.2), (A.3) and
(A.5). In fact, after longsome calculation and a little elaborate consideration of measure
' transformation, we observe

Q N//{‘I’(M[s,y]K./\TN) _ @(K,ATN)}AW,g;I(d,g@dy)
| = —Qy [ [ 10l Ve dKumyds.
Consequently the integral formula is established by a limit procedure of another term:
e! Q y[®(Knry) - (A[ETETY(2) - 1)].

The last computation requires uniform boundedness argument as well as convergence'dis—
cussion of stochastic integral, which can be muddled through by assumption.
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