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On stability of periodic solutions of the Navier-Stokes equations in unbounded
domains
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1 Introduction

Let Q be an ezterior domain in R™(n > 3), the half space R}, or the whole space R™ and
assume that the boundary 89 is of class C2>*#(0 < u < 1). The motion of the incompressible
fluid occupying {2 is governed by the Navier-Stokes equations:

(N —S) %%——Aw+w-Vw+V7r=f, divw=0 ze€Q,teR,
w=0 on 89, w(z) - 0 as |z| — oo,
where w = w(z,t) = (wl(z,t),---,w"(z,t)) and ™ = 7(z,t) denote the unknown velocity vector

and the unknown pressure of the fluid, respectively, while f = f(z,t) = (fl(=,1t),---, f*(z,t))
is the given external force. In [11], Kozono-Nakao constructed periodic strong solutions in
unbounded domains for some periodic external force f. Their solutions belong to BC(R; L™ N
L) for some n/2 <r < n.

The purpose of the present paper is to show the stability of such solutions. If w(z,0) is
initially perturbed by a, then the perturbed flow v(z,t) is governed by the following Navier-
Stokes equations:

Ov . .
E—Av+v'Vv+Vq=f, divv=0 inQ,t>0,
(N = 51) v=0 on 6Q,t > 0, v(z,t) — 0 as |z| — oo,
v(z,0) = w(z,0) + a(z) for z € Q.

We show that if the periodic solution w is small in L*(0, oo; L™ N L™2) for some m; < n < my
and if the initial disturbance a is small in L™(2), then there is a unique global strong solution v
of (N — S1) such that the integrals

/ lv(z,t) — w(z,t)|"dz forn<r < oo
Q

converge to zero with definite decay rates as t — oo.
Let w and v be solutions of (N — Sp) and (N — Sy), respectively. Then the pair of functions
u=v—w,p = q— 7 satisfies

ot

0
(N — 8 —u—Au+w-Vu+u~Vw+u~Vu+Vp=0 divu=0 inQ,t>0,
u=0 ond0N,t>0, u(z,t)—0 aslz|— o0, ul=o=a.
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Thus our problem on the stability for (N — S) can now be reduced to investigation into existence
of global strong solutions to (N — S’) and their asymptotic behavior. If w = 0, our problem
coincides with the initial boundary value problem for the usual nonstationary Navier-Stokes
equations. Kato [9] constructed a global strong solution of (N — S) having a decay property
by the iteration method. His method needs the global estimate supgc;cq t1/2||Vu(t)|ln < oco.
On the other hand, the periodic solution w prevents us from getting this estimate. Hence we
introduce a notion of mild solution as Kozono-Ogawa [13]. We first construct a global mild
solution having a decay property. Then we shall show that this mild solution can be identified
locally in time with the strong solution. Since the time interval of existence of strong solutions
is characterized by the L?"-norm of the initial data, we may conclude that our mild solution is
actually a strong one.

2 Results

Throughout this paper we impose the following assumption on the domain.

Assumption 2.1 Q@ C R"(n > 3) is an exterior domain with smooth boundary, the half-space
R’ or the whole space R".

Before stating our results, we introduce some notations and function spaces. Let Cg% denote
the set of all C™-real vector functions ¢ = (¢1,---, ™) with compact support in © such that
div ¢ = 0. L7 is the closure of Cg5, with respect to the L™norm || ||,; (-,-) denotes the L?-
inner product and the duality pairing between L™ and L™, where 1/r + 1/7' = 1. || |lscoir
and || |50 denote the L>(0,T; L") and L*(0, c0; L”)-norms, respectively. In this paper, we
denote by C various constants. In particular, C = C(*,---,*) denotes the constant depending
only on the quantities appearing in the parentheses. ~

Let us recall the Helmholtz decomposition:

L" = L) ® G,(direct sum), 1< r < oo,

where G, = {Vp € L";p € L] (Q)}. P, denotes the projection operator from L" onto L, along
Gy. The Stokes operator A, on L7 is then defined by A, = —P,A with domain D(4,) = {u €
Wz’r(ﬂ);’u,,ag =0}nN L.

Our definition of strong and mild solutions of (N-S) and (N-S’) are as follows:

Definition 1 Let a € L}. A measurable function u on Q x (0,T) is called a strong solution of
(N-S’) on (0,T) if :

(i) w € ([0, T); L) N CH(0, T); 12)
(1) u(t) € D(Ay) fort € (0,T) and Ayu € C((0,T); L%);

(111) u satisfies

0
e + Apu+ Po(u - Vu) + P(u - Vw) + P(w - Vu) =0 in L? on (0,T).

Similarly as above, for an external force f € C((0,T); L) we define the strong solution of
(N —8) on (0,T), so we do not write its definition here. Next we define a mild solution of (N-S)
as Kozono-Ogawa [13]
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Definition 2 Let a € L? and let w € L°(0,T; LT) for some m > n. Suppose thatn < r < oo.
A measurable function u on Q x (0,T) is called a mild solution of (N —S') in the class S,(0,T)

if
(i) w € BC([0,T); L) and t1="/")/2y(.) € BC([0,T); L);

(i4) Timogs 1ot~ |fu(t)lr = 0;

(i3i) u satisfies
@(1),8) = (a,8)+ [ (uls) - Ve I4g,u(s))ds
tw s) - Ve (t=8)44 4(5))ds
+ [ (wls) - VeI, u(s))d

¢
+f (u(s) - Ve (79)4¢ w(s))ds
0
for all ¢ € Cg5, and all0 <t <T.

Remark 2.1 By the similar argument given by Brezis [4] and Kato [10], we see that the
condition (ii) follows from (i) and (iii), so (ii) is not necessary. The proof of this fact, however,
is not brief. Hence we impose the condition (ii) for simplicity.

Our results are stated as follows.

Theorem 2.1 Let a € L and let w(t) € L=(0,T; L™ N L72) for some my, my with 2n/(2n —
3) < my < n < my. There are positive numbers A\1(n,m1,ma), A2(n) such that if

(2.1) [wllms 00 + lwllms,c0 < 1/A1,
(22) lalln < 221 = M(lwllma o0 + llwllms,00))?,

then there is a unique mild solution u of (N-S’) in the class S2,(0, o0) with the decay property
lu(®l < Ct~ 3G forn <1< 2n.

Theorem 2.2 Let (2.1) and (2.2) hold. For every 2n < r < oo, there are positive numbers

m(n,mi,ma,r),nm2(n,r) such that if

(2.3) ' [w]lmy 00 + l[@llms,00 < 1/m1,
(24) lalla < m2(L = m(lwllmgo0 + l[wllms,00))%

then the mild solution u given in Theorem 2.1 has the additional decay property

lu(@)lli < Ct 3G for2n <1<
Theorem 2.3 In addition to the hypotheses of Theorem 2.1, assume moreover that w is a strong
solution of (N-S) on (0,00) for some external force f € C((0,00); Ly). Then the mild solution
gwen in Theorem 2.1 is a strong solution of (N-S’) on (0,00).

Remark 2.2. When Q = R™ with n > 3 and when Q is an exterior domain in R" with
n > 4, for small periodic force f, Kozono-Nakao [11] constructed the strong periodic solution
w with (2.1); their solution w belongs to BC(R; L") for 2 < r < n with Vw € BC(R; L9) for
n/2 < ¢ < n. If f is sufficiently small, then ||w||;(0,00;27) + V@l 1(0,00;L4) is also sufficiently
small. By the Sobolev inequality, w € BC(R; L?) for all p € [r,ng/(n—q)]. Since ng/(n—q) > n,
this implies (2.1).

Maremonti [14],[15] also showed the existence of the periodic solutions in the three-dimensinal
whole space R® and the half space Ri. It seems to be an open question wether there exists a
periodic solution in three-dimensional exterior domain.
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3 Preliminaries.

Let us first recall the following LY — L"-estimate for the semigroup {e"*4};>,.

Lemma 3.1 (Kato[9], Ukai[17], Giga-Sohr[7], Iwasita[8],
Borchers-Miyakawa[1],[2])

(3.1) lle7Hall, < M, rt_f(i_%)Hqu, 1<g<r<oo,

(3.2) IVet4all, < My, 736" 3 ally, 1<q<r<n

for alla € LY and allt > 0, where My,, M are constants depending only on q,r.
Concerning 7 = 0o, we have

Lemma 3.2 (Chen[5],Borchers-Miyakawa[1],[3])

(3.3) le™*alles < Myot %t [lally, 1< g < 2n,

for all a € L2 and all t > 0, with the constant M, depending only on q.

By Lemma 3.1, we have the following lemmas.

Lemma 3.3 Let 0 < T < oo. Suppose that u is a measurable function with tl_;g'u() €

L°°(O T; L"/a) for some 0 < a < 1 and that w € L°°(0,T; L7 N L™2) for some mi, my with
<myq <n < my. Then there holds

n—a—1

‘/Ot(W(S)'ve_(t_s)A(];,U(S))ds + I-/Ot(u(s)'ve—(t_S)A¢’w(s))d3

11—«
< C(a,m1>m27n)(”w”m1,°°;T+”w”mzaoo;T)(oquts z ”u( )”n/a)t ”d)” -
0<s

forall0<t<T.

Lemma 3.4 Let 0 < T < 0o and let v and w be measurable functions with w € L*®(0,T; Ln/7)

and t°3° 0] €L°°(OTL"/a) for some 0 < v,a < 1. Then for § € [a,a+7] and 0 < B <
1 é a i
s t3—3-3(>0),

Posih) = | [ w(s) - Vet 94, u(e))ds - [ ws) - 924, o())as

< o( sup Hw(s)llnh) ( sup s“T“nv<s>un/Q)

. 0<s<T

x(RPta=3-eB 4 p3 r%‘lt'lf
h
Fanth) = | [ 006) - Ve 95 w()as - ['(u(s)- 95, u(e)ds
0
<

1—a
C( sup IIw(S)Ilm) ( sup &2 ”v(s)“n/a>
0<s<T

x(RPt2=3—ef 4 pi+i-5-3

IL
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forallh >0 and0<t<t+h <T, where C is independent of w, v, ¢ and T. For é € [a,2q]
and0< <} —a+i(>0),

F,»(t,h)

t+h | ¢
/(;+ ('v(s)-Ve_(t+h—’)A¢,p(s))ds—/(; (v(s) - Ve~ t=9)44 4(s))ds

2
< C( sup %" ||v(s)||n/a) (BPHi7378 4 ot i) g
0<s<T

forallh>0and0<t<t+h<T.

Concerning the mild solution, :we have

Lemma 3.5 Let h € (0,T) and let u be a mild solution of (N — S') in the class S,(0,T),
(n <1 < o0). Then u(-+ h) is also a mild solution of (N — S’) in the class S,(0,T — h) with
initial data u(h).

Concerning the uniqueness of mild solutions, we have

Lemma 3.6 (Uniqueness) Let a € L? and let w € L>(0,T; LY) for some m > n. Suppose
that n < r < co. Then the mild solution of (N — S') is unique within the class S;(0,T).

Proof. Following [13] we give the proof. Let u and v be mild solutions of (N — ') in S,(0,T)
with tha same initial data a. Set

D) = Sup, flu(s) — v(s)lln
K(t) = sup 3(1 A2 |u(s)l s + Sup, sOP2||u(s)|ln/ 85
O0<s<t

where § = n/r. Similarly to the proof of Lemma 3.3, we have by (ii7) in Definition 2 and Lemma
3.1 that

@lt) - (0, 8)] < {c.K@®) + Bai0=D} D)4l 2,
forall ¢ € Cg, and all 0 < ¢ <T, where Ci= M:T%T’n_’f_gB(l_;é’ lfz.é) and B, = nfT—nnM;%fj”w”m,OO;T’
(1/6 =1—-1/m —1/n). By duality we have -

D(t) < (C.K(t) + Bt20-%)D(t), 0<t<T.

Since lim;_, 1o K(t) = 0, we can choose small positive number #o such that D(tp) < %D(to),
which implies
u(t) =v(t) for 0 <t <t

Next we show that‘u(t) = v(t) for tp <t < T, by Lemma 3.5. Let

Dht) = sup |u(s+h) — v(s + h)]ln,
0<s<t
K*t) = sup sV 2)u(s + h)|lnp + Sup (- A2\u(s + Rh)|ln /g,
0<s<t
K. = sup_ sUP2 ()], /ﬁ+ sup_ 81 B2 1u(8) ||/,

0<s<
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for 0 <t <t+h <T. We easily show

- .y =148 _
Kh(t) < KhTEF < Kyg 2 67

forallh>tgandalO<t<T —h.
Suppose that u(t;) = v(t;) for some t; > to. Then, by lemma 3.5 we see that u(- + t1) and
v(- + t1) is mild solutions in the class S,(0,7 — ¢;) with same initial data u(¢op). By the above
argument we have

D (1) < (C.KM(t) 4+ Bot:(-2))Dh (), 0<t<T —t.
Letting £ = min{1/(4Cx to ~5 K*) 1/(43*)m n} we obtain D" (¢) < 1D (¢) which implies
u(t)=v(t) fort; <t<t+E.

Since £ can be choosen independent of ¢1, we can repeat the same argument as above for ¢t > ¢;+¢
and we have u(t) = v(¢t) for all ¢ € [0,T). This proves Lemma 3.6.

4 Proof of Theorems 2.1 and 2.2.
Proof of Theorem 2.1. Let us construct the mild solution according to the following scheme:
(4.1) o ue(t) = e ta,
4D (e = (o) + [ () eI u0)is

- i “w(s) - Ve )40, u;(s))ds

+/0t(uj-(s) . Ve_ﬁt_s)A¢,w(s))ds, j=0,1...

for all ¢ € C§, and all 0 < ¢ < co. Indeed, we can see that there is a function u;,; satisfying
(4.2) with t/%u;11(-) € L®(0,00); L2") if tY/%u;() € L™(0,00); L2*). To see this, we assume
that '

(4.3) sup tl';—a||Uj(t)|[u < Kqj <oo forsome0<a<1/2.
) 0<t<oo «

From Lemma 3.1, we obtain

w0 | [ sl v (6)ds

_ a—1
< M:’T‘“,;};E(Ka,j)zB(aalTa)t 2 ”¢”771—L&

for all ¢ € C§, and all 0 < ¢ < co. By Lemma 3.3, we have

(4.5) ’/Ot('w(s) Ve~ (t=9)4g, u;j(s))ds| + '/t(u]'(s) Ve~ (344 w(s))ds

< Cla,mi,me,n)(|[wllmg,eo + [1wllms,c0 )(s<up 57T () lna)t T llell 2

forall 0 < t < o,
Obviously we have

(4.6) (e a,9)| < lle ™ allz |I¢ll »_ < My t™T IIGII" [

n—Cx
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Hence it follows from (4.4),(4.5),(4.6) and duality that under the assumption (4.3), there is a
unique function u;1(t) € L satisfying (4.2) for all £ > 0 with

(4.7) sup t'7 Hu]+1(t)||n < My zllalln + Ci(@,n)(Kay)®
0<t<o0

+Cs (0t 11,2, 1) ([0l 0 + 1]l 00) K-

Now we have

sup 7 [lug(t))|2 = 2 £ e~ a2 < My zlalln,
0<t<00 [43 (43

which show (4.3) is true for j = 0 with Koo = M, » Ha”n Therefore by induction we see that
for all j = 0,1..., there is a unique function u;41 satlsfymg (4.2) and (4.3) with j repla.ced by
j+1 and that

(4.8) Kaj+1=Kap+ Cl(Ka,j)2 + Co(llwllmy,00 + lwllmz,00) Ko
Moreover, we can see that u; € C(0, oo; Y “). Indeed we have
(ult+ h) = u(t), @) = (™™ = 1)e™a,§) + Fu (4, B) + Fu (6, 3) + Fuyult, )

for all ¢ € CF5, and all 0 < t < t+ h, where Fy ,(t,h) is defined in Lemma 3.4. From Lemma
3.1 we obtain

(67 = 1)e™*a, ¢)| < O(a, B,n) WPt #~ % lallallgll =, (0 < B < 1)

Hence from this estimate, Lemma 3.4 and duality it follows that u; € C(0,c0 : Lg/ ).
If we assume for some 0 < a < 1/2 that

(4.9) C2(a’m1am2>n)(”w”m1,oo + ”w“mz,oo) <1
(4.10) 4My, 2 ||allnCr(a,n) < (1 = Coll[wllmy 00 + [[wllms,00))?,

then the sequence {K4,;}72, is bounded with

1- Coflwll| = /(1 = Calllwlll)? — 4Ka0C1 (e, )

411) K, =k, j=01,..
(4.11) @i < 2C1(a,n) @ J
where |||w|]] = ||w|lm;,00 + [|@]lmz,00- From now on we assume (4.9) and (4.10) for some 0 < o <
1/2. Set v; = uj — uj_1(u_1 =0). By Lemma 3.3 we see that
a=1
(4.12) [(vj+1(2), #)| < (2C1ka + Col||w]|]) ( sup s =a NUJ(S)H") tz ||g]l_o.

Letting Co 3 = 2C1(a,n)kq + Co(||wllm;,00 + ||w||my,00), from duality we obtain

11—« .
sup 5" lojsa(o)lz < Coa ((sup_ ' My(o)lz) s 7=01,m
0<s<o0 * 0<s<00

which yields

l1—c - .
(4.13) sup s 2 [|lvj(s)][z < (Ca,s)’( sup sT IIvo(S)lln) < My z|la]|a(Cas) -
0<s<o0 « 0 “«

<s<00
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Since (4 11) implies 0 < Cy 3 < 1 and since u; = Eg:o v, (4.13) yields a limit u € C((0, c0); LZ/O‘)
with ¢ 3 *u(-) € BC((0, 00); Ln/a) such that

(4.14) sup 7 [luj(t) — u(t)|a — 0 as j — oo,
0<t<oo

Following Kozono-Ogawa, [13], we can show lim;_, o £ lu(t)]|= = 0. Indeed it follows that

(415)  sup t = |leMalx < sup 7 |le” “a—a)lla + s 7% ||e 4G
o<t<T « o<t<T *

< Maalladlln+ Ma 2 3l s 75
for all @ € L% N L2 and all 0 < T < oco. Since (4.3)-(4.11) hold with 0 < ¢ < oo replaced by
0 < t < T for arbitrary T' > 0 and since L? N L2" is dense in L?, (4.11) with the aid of (4.15)
yields
(4.16) sup tl“;—qlluj(t)llg, sup tl_TuHu(t)Hﬁ —0asT —0

0<t<T “ o<t<T «

We next show u € BC([0,00)); L) if (4.9) and (4.10) hold for o = 1/2. From now on we
assume that (4.9) and (4.10) hold for o = 1/2. Since w € L*®(0,00; L™ N L™2), we can take
0 <7 <1suchthat a++v > 1 and w € L*(0, oo; Ln/7) Then, in the similar way to proving
u; € C((0,00); n/a) by Lemma 3.4 (with § = 1) and duality, we have u; € C((0,00); L7).
From Lemma 3.1, we obtain

[uo@lln < Mannllalln

t .
[ i(6)- T uioa| < ML o (8B D6,

n—1'n—1

1

| @s) - Ve 949, ui0)ds| < MLa sa [wllneolks) B Dz,
t .

[ @) Vet uo)ds| < MLy s fwllaoolly) B Dol

for all ¢ € Cg%,, t > 0, which yield the following uniform estimate:

5P lutilln < Muaflafln + Moy 2 (B1)B(3,3) + 2Ma_ s |lwllneokyB(, 5).
(o <]

-1’n-1 n—1'2n—3

Concerning continuity of u; at t = 0 in L?, as above we obtain

n—1’n—1

2
luj 1)) = alln < lle™a —afla + ML _L(Oiuptsl/‘*uuj(s)uzn) B(3:3)
8
n—1'2n—3

ML o Nollngo (502 6410 (0)zn) B D),

which yields with the aid of (4.16) lim¢, 0 ||u;(t) — alln = 0. Concerning v;(= u; — uj_1), as
(4.12) we have

n—1'n—1

1
(0510, 9 < 2L s bs2B (3 3) (502 sHloi(o)lin ) 161,

+2M',. 2 ”wunooB(%,%) (Osup s~1||v]( )||2n) H¢”n'_tl,

n—1'2n—1 <5< 00



133

which implies by duality that
1 -
(4.17) sup ||vj1+1(s)lln < C(n,w,ky/2) sup s%|lv;(s)||2n for j =0,1,....
0<s<o0 0<s<o0

From this and (4.13) with a = 1/2 we obtain

l

(4.18) sup [lu(s) = um(s)lln = sup [ D vi(s)lln
0<s<o0 0<s<o0 j=m+1
-1 )
< CMpgwllalln Y (Cazs)’ for ,1>m > 0.
j=m

Hence it follows from (4.18) and 0 < Cq3 < 1 that the limit u belongs to u € BC([0,00); L7).
To see that u is desired mild solution of (N-S’) in the class S2,(0, c0), we need to prove that u
satisfies (¢4¢) in Definition 2. By Lemma 3.1 and (4.14), we have

lf (uj(s) - Ve~ (t=s)Agp o ;(s)) ds—/ (u(s) - Ve~ (=9)4¢ u(s))ds

< /O(llu]( $)l2n + I1u(s)ll20)lluj (s) — u(s)l2al| Ve~ (=) 49| = ds
< 2Mla n ki sup S4||UJ(S)—u(s)“an(z,%)lWll n_
n—1'n—1 0<$<00 n
—0asj—oo (¢€C5y,),
t St
[ w9 994,565 - [ w(s) - eI, u(e)as
] i
< M s lelnoo0<sup S4||ug(3)—u(8)||2n (5 Dllell =

n—1'2n-3

—0asj— oo (¢€C5y),

] [ () Ve =949, w(e))ds — [ (u(s) - Ve g, w(s))ds
0 0
—0asj— oo (¢€Chy),

which yield (772) in Definition 2. Now it remains to show that
lu(@)|; < Ct™ 7 21 forn S 1< 2n.

Since u € L®(0,00; L") and t'/4u(-) € L*®(0,00; L?*), we get this estimate by the Holder
inequality. This completes the proof of Theorem 2.1.

As for the proof of Theorem 2.2, we have T u( ) € L*(0,00; L), provided (4.9) and (4.10)
hold for @ = n/r. The remaining argument is snmlar to the above. This proves Theorem 2.2.

5 Proof of Theorem 2.3.

Let Lf2 ([0,00); L™) denote the set of all measurable functions u such that v € L*°(0,T; L") for
all T' > 0. To prove Theorem 2.3, We need the following local existence theorem:



134

Theorem 5.1 (Local existence) Let a € L N e for some a € (0,1) and let w be a
measurable function on (0,00) with w € L*®(0,00;L™) for some m > n and t'/2Vw(.) €
7o.([0,00); L™). Then there ezists a mild solution u of (N—S') in the class S5/a(0,T*) satisfying

loc

1 .
u(t) = e~tq — / e~ t=94P(y . Vu+ w - Vu+ u- Vw)(s)ds in L
0

where

_2 2m
T* _ min 1 11—« 1 m—n
16(C+ CoMzzllellz | *\2Ce+ Colullne) [

Clz Cl(a,n)=Mln n B(a,l_Ta)

n—a’n—2«a

Cy = QQL_HMLZ;_I,nB(l-Ta, %) + Q%M:—"%‘n,nB(%(l - %),%)7 Q= ”PI”B(L‘,L,',)>
05 =2M’L mun B(%l,%(l—%))

n—a’lmn—ma—mn

Moreover if there is positive number k € (0,1) such that
w e C*([,T"]; L%), Vwe C™([,,T*]; L")
for all £ € (0,T*), then u is also a strong solution of (N — S') on (0,T*).
Remark. In case w = 0, the existence interval T* was obtained by Giga [6].
Proof of Theorem 5.1. Let us construct the strong solution according to the following scheme:
(5.1) up(t) = e~ t4a,. |

¢
52) ujyi(t)= eta — [ e~ t=94py. . vy, s)ds
J A J 7

t ' t
_/ e*(t_")AP(w . VUJ)(S)dS — / e_(t_s)AP('u,]' . Vw)(s)ds
0 0

Then we can see that for 0 < T < co

(5.3) sup (1) lnja < KI; <00, j=0,1,..,
<t<
(54) sup ¢7]|Vuj(t)lln < LT < oo, j=0,1,..
o<t<T

Suppose that (5.3) and (5.4) are true. Then, multiplying (5.2) by ¢ and integrating by parts,
we obtain the identity (4.2). We have by (3.2) and the Hélder inequality that

(5.5) ‘/Ot(w(s) . Ve_(t_s)AqS,uj(s))ds + ’/Ot(uj(s) Ve (=944 w(s))ds

1—o o—=1 1
< Csllwllmeor(sup 577 |luj(s)lln/a)t s T2 ||g) o,
0<s<t

=

As in the proof of Theorem 2.1, by (4.4) and (5.5) we have that

T

1
(5.6) KZiv1 < KZo+ Cila,n)(KZ )2+ Csl|wllm,c0;7T2 "7 KT .
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Concerning (5.4), we have

IVuo(®)lln < M, allallat™2

t
'v /0 e =AP(u; V) (s)ds| < Qo M'w KT LTB(52 2)1~1/2

n 41 Vﬂﬂ+1’n a,j J

t
’v / e~ (t=)4P(w . Vu;)(s)ds| < Qnm Ml ol wllm,oo L] B(5(1 — 2),3)t" 2
A .

n+m
n

t
‘V/ e~ E=DAP(y; . Vw)(s)ds|| <Q_u M'a_
0

S QML KT OVl BOZE, 72

Hence (5.4) is true with j replaced by j + 1, with

(5.7) Liy1 = My pllalln + Q M B(15%, % aill ()2 V0| 0
+Ca(K g + l[wllm, i LT,

where C; = Q= M’ Tn ,nB(—l—;—‘Z, ) +QﬁM:—,’—‘ﬁ;mB(%( — 2),1). Therefore by induction, we

get (5.3) and (5.4) for j = 0,1,.... Let Cs(T) = 1 — Cs|[w|lm,ecT2A~%). Since we may take
KTy = M z|la]| = T*3*, by (5.6) we have

Co(T) — 1/(Co(T))? — 4C1 M2 2 ||a|| 2 T"T*

(58) Kg:j < = kzy 7=0,1,..,

2C,
provided
(5.9) Co(T) =1 = Cs||wllmeoTz"%) > 0,
(5.10) 4C1 Mz 3 |laf|aT*F* < (1 — Csllwllm,0TF~w))2,

Since Cg(T*) = 1 — c5||w||m,ooT*%(1—l—ri) >1/2, 401M£,§||a1|§T*“T“ < 1/4, T* satisfies (5.9)
and (5.10). Hence, as in the proof of Theorem 2.1, we obviously see that there is a limit
u € C((0,T*); L**) with ' 7°u(-) € BC([0, T*); L) stisfying

sup t7 ||u1 (t) — u(®)llnja — 0 as j — oo,
o<t<T*
sup tl_;g”u(t)nn/a — 0as T — 40.
o<t<T .
Moreover we shall show t1/2Vu(.) € L*(0,T*; L"). (5.7) and (5.8) yield
(5.11) Lty < Mygllalln + Q_a, Mis  B(35%, $)kg [1()/ 2Vl 0
* lyq_n *
+Ca(kE + wllm o T* 70 )LT"

Cs(T )

We can see C4kl” < 1/2 and C’4[|me,ooT*%(1_m) <1/2. Indeed if 72 20 > , then it follows

from (5.8) that k1" < ﬁ. If ﬁ < Cg(g;*),z.e.,C (T*) - & >0, then 1t follows from the
definition of T* that

C1 c'1 > Ci
4(Cr + 04) Cy

* — * C1 * C
4C M 2 ally/alT*) 5 Co(T) < & {206(T 1} |

Cs
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which yields

fro o G =G - &P
@ 2C, 20y

By the definition of 7* we obviously have C4Hw||m’°°T*%(1‘%) < 1/2. Thus we obtain

T

(5.12) Ca(kZ" + [ w]lmeoT* 70 %)) < 1.
Hence from (5.11) we see that the sequence {L]T* }320 is bounded with

My allalln +Q s Mo B(352%, $)II()/*Vlln o kL

(5.13) ¥ < =r7.
’ 1 —C4(kT* + [[w]lm 0 T*2 (=)

By standerd argument, such a bound yields
tY2Vu(-) € L®(0,T*; L™).

By (5.1) and (5.2) we easily show that u; € C([0,T*); L) for j = 0,1,.... In the similar way to
proving (5.11), we have

* * 1
S il < Munllalls + Q2 Moa W B(1— §,$)kg (L7 +1I(-)7 Vaolln,ooi7+)
<i<T*

at1s

+Q.m Mma  B(1— g2, 1)l[]lmcoir L7 T30

m4n

for j = 0,1,..., which yields u € BC([0,T*); L?). Hence as in the proof of Theorem 2.1, we
see that u is a unique mild solution of (N-S’) in the class Sn/a(0,T*). It follows from (iii) of
Definition 2 and integration by parts that

@he) = (a9~ [ P Tu)(s), o)ds
— /t(e_(t_s)AP(w -Vu)(s), ¢)ds — /t(é"(t_’)AP(u - Vw)(s), $)ds,
0 0

for all ¢ € CF5,, all 0 <t < T*. It is easy show that [} e~(¢:=5)4P(y . Vu)(s)ds, Jy e~ =) AP(y .
Vu)(s)ds and [ e~ ¢=9)AP(y . Vw)(s)ds belong to L} for all 0 < ¢ < T*. Thus we obtain

t
(5.14)  u(t)=e—t4 / e-(*—sMP(u V) (s)ds
0
¢ t
- /e_(t_s)AP(w - Vu)(s)ds — /e—(t_s)AP(u - Vw)(s)ds in L2,
0 0

for 0 < t < T*. Next we shall show that this mild solution u is actually a strong solution if w
satisfies, for some x € (0,1), w € C*([¢, T*]; L), Vw € C*([¢,T*]; L) for all £ € (0, T*).
Since w € L*(0, T* Lm) implies that supy 7« s lw(s)lln/s < oo for § = n/m, by (5.14)

we have supo<s<T* s’ ||u( $)lln/s < co. As in [12, Lemma A.4], from Lemmas 3.1 and 3.2 we
obtain for ' > 0 with 0 < §/2 + &' < 1/2,

(5.15) lut+h) —u(t)lee < M(R¥t727% 4 R334 1HE),
(5.16)v ' ||Vu(t+h)—vu(t)”n < M(hn —E‘” +h2 2t 1+2)’
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forall 0 <t < t+h < T*. From these estimates and the hypotheses on w it follows that, for
some rg > 0,

U - VU, w - V’U,, u-Vuw € Cno([g’T*]; Ln)

for all £ € (0,7*). Then a well-known theory of holomorphic semigroup states that u is a strong
solution of (N — §') on (0,T*) (see, e.g., Tanabe [16, Theorem 3.3.4]). This completes the proof
of Theorem 5.1.

Proof of Theorem 2.3. Let w is a strong solution of (N — S) for some f € C(0,c0; L?). Since
w is a strong solution of (N — S) on (0,00), we have Vw € L®(e,T; L™) for all 0 < ¢ < T < oo,
which implies

t2Vw(- + €) € L ([0, 00); L™).

Moreover, as in [12, Lemma A.4], from Lemmas 3.1 and 3.2 we obtain for some & € (0, 1),
(5.17) w € C*([¢,T]; L), Vwe C*([¢,T]; L")
for all 0 < e < ¢ < T < co. Since u is the mild solution in the class Sz, (0, 00), we have

sup ||u(s)|l2n < Ae < oo for € > 0.

8>e€
Letting = 1/2 and
2mgy

T! = mi ! 4 : -
e — n s | ?
16(01 + C4)M2n,2nA6 2(04 + CS)Hw”mz,OO

by Lemma 3.5, Lemma 3.6 and Theorem 5.1 we see that u is a strong solution on all interval
(t,t + T7) C (e,00). Hence we conclude by standard argument that u is a strong solution on
(€,00). Since € > 0 is arbitrary, this completes the proof of Theorem 2.3.
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