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POLYNOMIAL HULLS WITH NO ANALYTIC STRUCTURE

Norman Levenberg

0. Introduction. Let X be a compact set in CV and X its polynomial hull:
X = {(21, ..y 2n) € CVN - |p(zy, -+ 2N8)I < llpllx for all polynomials p},

where ||p||x denotes the supremum norm of p on X. If X contains the boundary of an H® disk, 1.e., if there
exists a bounded, nonconstant holomorphic map g = (91, ---»gn) from the unit disk A in C into CV with
radial limit values g*(e*®) belonging to X for a.e. 8, then, by the maximum modulus principle, X contains
the analytic disk g(A). In general, we say a set S has analytic structure if it contains an analytic disk g(A).
In this note, we discuss well-known examples of Stolzenberg [S] and Wermer [W] and recent modifications
which show that a compact set can have non-trivial hull (i.e., X # X) with X (or at least X\ X ) containing .
no analytic structure. We remark that in both examples, the set X is constructed as a limit (in the Hausdorff
metric) of compact subsets of analytic varieties in C2.

1. The Stolzenberg Example. Stolzenberg’s set X is a subset of the topological boundary of the bidisk
A x A in C? such that the origin (0,0) lies in X. However, the projection of the hull in each coordinate
plane contains no nonempty open set; hence X contains no analytic structure. The rough idea of the
Stolzenberg construction is, first of all, to take a countable dense set of points {a;} in the punctured disk
{t € C: 0 < |t| < 1} and form the algebraic varieties C; := {(z,w) € C? : (z - a;)(w — aj) = 0}. These
varieties avoid (0,0) and have the property that each of the coordinate projections «, and m, of the union
U;(C5N(A x A)) equals {a;}. Then a decreasing sequence of compact subsets X; of the topological boundary
of the bidisk is constructed inductively so that (0,0) lies in X; for each i and X; N (U;-=ICJ-) = 0; ie., the
hulls X; avoid more and more of the algebraic varieties Cj. The intersection X := NX; is the desired set.

Remarks. Although the coordinate projections of X are nowhere dense, they have positive Lebesgue measure
(as subsets of R?). This can be seen as follows: first of all, despite the lack of analytic structure in X,
(holomorphic) polynomials are not dense in the continuous (complex-valued) functions on X, or, in the
standard notation of uniform algebras, P(X) # C(X). Indeed, for any p € P(X), llpllx = llpllx; thus if
f € C(X) satisfies |£(0,0)] > ||f|lx (such f clearly exist), f ¢ P(X). Now if the coordinate projections of
X have positive Lebesgue measure, by the Hartogs-Rosenthal theorem, the functions 7 and @ are in P(X);
then, using the Stone-Weierstrass theorem, we get that P(X) = C(X), a contradiction.

Further Examples. By choosing {a;} a bit more carefully (in particular, to avoid an entire interval [a, 8]
instead of just the origin), and by slightly modifying the construction of the sets X;, Fornaess and the author
proved the following.

Theorem 1 ([FL]). Let D be a bounded domain in C? with D = D and such that both coordinate
projections of D yield the unit disk. Let 0 < a < b < 1. Then there exists a compact set X C 8D such that
X contains no analytic structure but with [a,b] x [a,b] C X \ X.

We remark that [a,b] x [a, ] is non-pluripolar in CZ; i.e., if a plurisubharmonic function u is equal to —oco
on [a,b] X [a,}], then u = —co.
Abstracting the concrete ideas in [FL], Duval and the author generalized Theorem 1.

Theorem 2 ([DL]). Let D be a bounded domain in CN with D = D. Given K C D with K = K (or

KcDwithK=K=K NOD), there exists X C 8D compact with K CA)Z' such that X \ K contains no
analytic structure. In particular, if K contains no analytic structure, then X contains no analytic structure.

As a corollary, by taking K =T x ... x ' (N times) where I is a Jordan arc in C with positive Lebesgue
measure (in R?), we get a compact set X in 8D whose hull X contains no analytic structure but such that
X \ X has positive Lebesgue measure in R2V

Remarks. Intuitively, one might expect that if X \ X is nonempty but contains no analytic structure, then
X \ X should still be “small” in some sense. The previous two theorems show that X \ X can still be quite
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“large” in certain cases. The next result, due independently to Alexander and Sibony, shows that X \ X
is always “large” when X \ X is nonempty but contains no analytic structure. Below, hy(S) denotes the
Hausdorff 2—measure of a set S.

Theorem 3 (Alexander [A1], Sibony [Si]). Let X C CN be compact and let g € X\ X. If there exists
a neighborhood U of ¢ in CN with h2(X NU) < 400, then X QU is a one-dimensional analytic subvariety
of U.

As a corollary, if X \ X # 0 and X \ X contains no analytic structure, then hy(X \ X) =

2. The Wermer Example. In 1982, Wermer [W] constructed a compact set X in A x C C C%; i
7,(X) = OA (recall 7, denotes the projection onto the first coordlnate) with 7,(X) = A and such that
b'e \ X C A x C does not contain any topological disk; i.e., there is no continuous nonconstant g : A — c?
with g(A) C X \ X. Clearly since 7,(X \ X) = A, the reason X \ X contains no analytic structure is not
because of “small” coordinate projections as in the Stolzenberg example. Here, X is constructed as a limit
(in the Hausdorff metric) of Riemann surfaces =, over A which branch over more and more points. Starting
with a countable dense set of points {a;} in A, one chooses a sequence {c;} of positive numbers decreasing
rapidly to 0 so that the graphs of the 2" —valued functions

() =avz—aite(z—a)Vz—a+..+ea(z—a1) (2= an1)Vz —an

over A form the desired Riemann surfaces X,,. To be precise, the actual construction done in [W] takes place
over the disk of radius one-half centered at the origin in the z—plane; this yields the estimate |a — b| < 1 for
la|, |b] < 1/2.

Remarks. Although X \ X contains no analytic structure, there remains some semblance of analyticity in
this set. A result of Goldmann [G] shows that functions in the uniform algebra P(X) behave like analytic
functions in the sense that if f € P(X) vanishes on an open set U (relative to X ), then f vanishes identically.
Such a uniform algebra is called an analytic algebra.

Further Examples. One can choose the parameters in the Wermer construction so that the intersection of
X \ X with any analytic disk is “small”.

Theorem 4 ([L]). There exist X compact in A x C with 7,(X) = A and such that g(A) N (X \ X) is
polar in g(A) for all H*® disks g.

Note that in the Wermer example, we have no analytic structure in X \ X; however, the set X itself
can contain lots of analytic disks. Indeed, we have the following “fattening lemma” of Alexander.

Theorem 5 (Alexander [A2]). There exists a Wermer-type set X (X compact in A x C with, (X)=
and such that X \ X C A x C contains no analytic structure) such that for all proper, closed subsets « of
0A and all M > 0, setting

Z:=XU{(z,w): z € a, lw| < M},

we have Z\ Z = X \ X.
Remarks. One can also construct the Wermer set X as a decreasing intersection of the generalized lemniscates

Xn =A{(z,w) : |z| £ 1/2, |pa(z,w)| < €n}

where {p,} are polynomials in (2, w) which satisfy

1. £, = {(z, w) |2 <1/2, pa(z,w) =0};

2. pa(z,w) = 2" 2™ + Ry,(2,w) where degR,, < m,, :=degp,;

3. {en}, {en} tend to 0 rapidly enough so that X,,; C X, for all n and X =0nX,
(cf., [W]). Thus, from results in [LT], if

lim ( )1/'"" =0,

-+ 00

the set X \ X is pluripolar in C2 (see {L])
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In general, if X is compact in A x C with 7,(X) = A&, then X\ X C A x C is pseudoconcave in the
sense of Oka; i.e., (A x C)\ (X \ X) is pseudoconvex. In the terminology of set-valued functions, X \ X
is the graph of an analytic multifunction over A (cf. [SI]). Yamaguchi [Y] ‘has shown in this setting that
the function z — log C(X.), where X, := {w : (z,w) € X} is the fiber of X over z and C(S) denotes the
logarithmic capacity of the compact set S, is subharmonic on A. Thus, if there exists one z in A such that
the fiber X, is non-polar in C, then X \ X is non-pluripolar as a subset of C2.

3. Final comments and open questions. Theorem 1 gives a concrete example of a compact set X with
X \ X being non-pluripolar without containing any analytic structure. It is unknown if the Wermer example
can be modified in this manner.
1. Does there exist X compact in A x C with 7,(X) = A such that X \ X contains no analytic structure
but is non-pluripolar?

From the discussion in section 3, once X, is non-polar in C for one z in A, then X \ X is non-pluripolar in
c2.

Suppose S C A x C is pseudoconcave. Sadullaev has shown [Sa] that S is pluripolar in C2 if and only
if each fiber S, is polar (“only if” follows from Yamaguchi’s result).
2. Let S C A x C be pseudoconcave with each fiber S, being polar. Is it true that for each r < 1,
ST := 5N {|z| < r} is complete pluripolar; i.e., there exists u plurisubharmonic in {|z| < r} x C such
that

S" ={(z,w) : u(z,w) = —0}?
Is it true that S N {|z| < r} is polynomially convex for each r < 1?

Recall that for the Stolzenberg example, P(X) # C(X). Recently, Izzo [I] has constructed an example of
a compact set X in the unit sphere B in C? which is polynomially convex (X = X)) but with P(X) # C(X).
Note that a subset of the unit sphere 8B in CV contains no analytic disk; thus there is no analytic obstruction
to P(X) being dense in C(X). However, it is unkown if such an example can be constructed in C2.
3. Suppose X C OB C C? is compact and polynomially convex. Is P(X)=C(X)?

We end this note by remarking that Alexander [A3] has recently constructed a compact set X in the
unit torus 0A x A in C? such that the origin (0,0) lies in X but such that X contains no analytic structure.
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