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A variational solution of the Cauchy problem in elastostatics

ERTATEEE /]MASEF  ( Kinko Kobayashi )
WRERERIER KT ( Yoko Ohura )
RYEATRFEER KPaF05E  ( Kazuei Onishi )

An inverse problem in two-dimensional elasticity is considered. The purpose is to present a
variational approach to identification of the boundary conditions for resolution of the Cauchy
problem governed by the Navier equations in plane elastostatics. The Cauchy problem is fea-
tured by simultaneously prescribed displacement and traction on a part of the boundary of
an elastic body. The boundary data may contain some noises. The problem is re-formulated
as a minimization problem of a functional with constraints, then the minimization problem
is recast into successive primary and dual boundary value problems with no constraints in
the corresponding plane elasticity problem. Two variational formulations, ¢.e. displacement
approach and traction approach, are described. It is suggested that our variational method

is convergent and the proposed rocess is stable.
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1 INTRODUCTION

We consider a cross section of an isotropic, linearly elastic bounded body. The deformation of the body
with small strains is assumed to be described on the cross section denoted by Q. Using the rectangular
coordinates T = (z1, ;) in {2, we denote by u; the i-th component of the displacement (i = 1, 2), and by
&j and o;; the ij-th component of strain and stress, respectively. The compatibility equations relating
the displacements to the strains are described by .

E;j;——'+—+)- : (1)

The constitutive equations representing Hooke's law are given by

oij = 2peii+ Aijer for plane strain, ' (2)
oij = 2pei;+ ﬁ‘sijskk for plane stress

with the Lamé constants p and A, Kronecker’s symbol 6;5, and the bulk strain ey, in which Einstein’s
summation convention is used for repeated indices. The Lamé constants are related to Young’s modulus

E, the shear modulus G, and Poisson’s ratio v as

0G _ vE

1-2v (1+v)(1-22)’
E
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The force equilibrium equations with no external body force are written by

(90’,']' _
o = 0. (3)

We let © be enclosed by a piecewise smooth boundary denoted by I with no singularities, which is
composed of two connected non-zero measure parts I'y and [y = I'\I'¢, see Figure 1. On the boundary

[y, we prescribe both displacements as the Dirichlet data and tractions as the Neumann data:
U = U and gijn; = F,‘ on I’y (4)

simultaneously, with the unit exterior normal n = (n;,n,) to the boundary T'. The system of equations
(1)-(3) with partially overprescribed boundary conditions as in (4) constitutes a Cauchy problem in
elastostatics.

Suppose that the Lamé constants u and A are known & priori. We suppose also that the geometry
of 2 and the locaton of I'y are known. We notice. that, if the data %; and S; are exactly available, the
displacement u;(z) satisfying the system of equations (1)-(3) as a solution of the Cauchy problem is
uniquely determined [1]. We shall take the case into account when the data ; and S; involve some errors
in the measurement. When the data are noisy, or when the boundary displacements and tractions in (4)
are given arbitrarily in such a way that they are not consistent, there exist no solutions satislying (1)-(4)
at all.

~ Our problem, therefore, consists of identifying proper boundary displacements u; = w; on 'y, so that

the solution u;(z) of the system of equations (1)~(3) reflects the simultaneous boundary conditions (4)
given on T'y.

Iy

Ly

n

Figure 1. Cauchy problem in elastostatics.
. »
In this paper the inverse problem under investigation is the conventional Cauchy problem. We present

a variational approach, which is often employed in control theory [2], for the resolntion of the inverse prob-
lem to identify boundary displacements. Our inverse problem is formulated as a minimization problem
of a regularized least-squares functional with no constraints. By the use of the direct variational method
combined with the gradient method, the minimization problem is recast into a series of well- posed primary

and adjoint boundary value problems in elasticity.
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-2 VARIATIONAL FORMULATION

2.1 Displacement Approach

We will write u;(z) = u;(z;w) to show explicitly the dependence of the solution u; on unknown
boundary displacements w = (wy,wz) to be identified on I;4. Along the boundary, put u; = %4; on I'y,
u; = w; on ['y4, and assume that »; € C(T).

Our strategy to find a proper w; is to consider the following object functional to be minimized:
J(w) = / [us(2;w) — @ (z)2dT + 1 / oijei;dDY (5)
Ty Q

with a regularization parameter # > 0, among all admissible displacements u;(z;w) with the constraints
oijnj = S; on ['q. Here we regard J : HI/Z(F.‘d)2 3 w+—— Ry =[0,400), and the sums are taken for
repeated indices 1,7 = 1, 2. ' . ' .

The strain energy added to the integral of the square of the difference in (5) as a regularizer guarantees
unique existence of the minimum of the functional J(w) [3] even for noisy data. With a suitable choice

of positive real numbers a, for n =0, 1,2, -+, we will consider the minimizing process;
W) = ™ _ o, J'(w®), (6)
where the functional gradient J'(w) can be deﬁﬁed from the first variation;
J( +6w) - J(w) = < J'(w),60 > + of|| 6w ) (7)

with a real-valued functional o(|| 6w ||) of higher order than || §w || as it tends to zero with the (L?)?-norm
on Ti4. Owing to (6), we require that J'(w) € HY?(['i4)? to keep w(+1) again in HI/Z(F;d)Q.
The key for the success of the minimizing process in (6) is to seek a concrete expression of J'(w). We

notice that
J(w+ fw) — J(w)
= [ {tu@o+50) - 5@ - u(z; 0) - w@)F ) ar
T4

+7 /Q {oij(z;w + bw)e;j(z;w + bw)
—0ij(%; w)eij(z; w)} O
- [ (@300 + 80) + w(2i0) - 20 (2)]
[ui(z;w + Sw) — ui(z; w)] AT
+n /Q {o:ij(z;w + bw)e;j(z;w + bw)
~0ii(T;w + bw)e;j(z; w)
+ 0i(%; w + w)eij(T; w) — 04 (T w)eyj (x5 w) } O

= [0ui(z; w) + 2ui(z; w) — 2% ()] 6ui(z; w)dT
Tq

+n/s_2{a;j(z;w + dw)beij(z;w)
+60’,'j(22; w)e,-j(:c; w)} )
./r‘ 2 [ui(z; w) — 2i(x)] 6ui(x; w)dl
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+'r)/s;{a.~j(a:;w)65;j(:c;w) + 60.-,~(:c;w)s,‘-j(:z:;w)} dQ
+o(|| 6w 1)
- /F 2 [us (3 ) — ()] us (2 w)dT"

+77/ 20,;(z; w)be;j(; w)dQ + o(|| bw ||)
Q

/ 2 [ui(2; @) — ()] bui(z; w)dT
I'q

O6u;
41 [ 2035023 0) S @)+ of | 60 )
Q z

/F 2 [ui(@; w) — i(z)] bui(z; w)dl

+'q/ 203 (z; w)njbu;(z; w)dl + of|| bw |])
r

"Here we have put .
bui(z; w) = wi(z; w + fw) — ui(z; w), (8)
and correspondingly for ée;; and §0;j. Moreover, we used the relations; '
oijbei; = (2ueij + Abijerk )0eij
= 2peijbeij + Aegrben
= (2ubeij + Abijben)esj = boijei;,

and

1 (06u; Obu;
0'.','65,‘1' = U;jg ——awj + 6a:,-

- l 01_8611,,‘ +0“36u]‘
- 2 Y 31'1' I Bx.-
L, 9w 08w
2 'J 63:,- Y Bx,-

= 0’,",'-5—

from the symmetry ¢;; = 0j;. In the last equality we used the Gauss divergence theorem and (3).

We notice that the stresses 60, induced by the displacements §u; ‘satisfy

350','1' . )

— =0 Q,

52, in (9)
60'.-jnj =0 on Iy, . (10)
Su; = bw; on F,d . (11)

Equation (10) follows the constraints o;;n; = §; on 'y imposed in the admissible space.
We now introduce the adjoint displacement (i1(x), d2(z)) € H'(2)? and the corresponding adjoint

stresses 4;j, as being the solution of the system of equations;

365 )
3_z]- =0 in §, (12)
subject to the boundary conditions; |
dijn;j = 2[ui(x;w)—w(z)]+20S; on Ty, . (13)

4 = 0 on [;q. (14)



Using the Gauss divergence theorem, we know that

36‘.‘_,' / R ) / . 3611,,’
§u; dQ = [ 6;in;6u;dl’ — | 6;;,——dS2.
/n ox; r 7 o 9z,

From the relations;

85u.~

&ij—a—x_- Gijbe; = (2/.l.§,'j + A6gj§kk)5e,'j
f)
= 2éijll»55ij + ErpAbey = é,‘j(?[!,&E,‘j + /\5,‘1'5511)‘
= E,’j&d’,l
dii; .
= 3.1:; 6o s

we get .
aAi' . ) Ai
/Lgu,-dﬂ = /aijn,-5u;dr—/ O i dY
360';

= /&.-,-nﬁu{d[‘—/11;60.-,-n,-d[‘+/ u;
r r o Ogj

Therefore, from (12), (10), (14), and (9) we obtain

140,

0= / &;,-nﬁu.-dl‘ +/ &gjﬂj&ﬂ;dr.
Iy | A )
Consequently, from (13), (15), (11), and using the traction condition in (4), we know that

J(w + 5(41) - J(w) = / &,-,-n,-&u;dl" -2 5',-6u,~d1‘
' Ty . g

+17/ 2«7.-,-n,~6u,-d[‘ + 0(" dw. ”)
r

-—/ &;jnjtsw;dl‘+n/ 20;;n;6widl + o(]| 6w ||)

| AFF] id

/ (—5,','12,' + 27]5,‘)(5‘(.4),'6”.1 + 0(” Sw “) .
Tid
Now we know the explicit form

J,’(w) = —06;jn; + 295; . on Tia.
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(15)

(16)

Using this result, we can summarize an algorithm for the minimization in the displacement approach

as follows;

[1] Given w(®.

[2] For n=0,1,2,---, do:

oo™ ~
[2.1] Solve —3‘7;-71— =0 with o's;)njhd =S, uf“)lpu = w§n)

to find u™(z) on Tg and S™(x) on Tig.
96"
[2.2] Solve 7;-71— =0
with 6P n;lr, = 2fu{™(z) - @ (x)] + 205,
;ﬁgn)lf‘u =0
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to find J'(w™) with the components
,J,-'(w("),) = —5',.(") + 2'175,.(") onTiq .
[2.3] Update 0™+ = ™) — o, J'(w™).

2.2 Traction Approach

In the previous subsection, we considered the identification of the boundary displacements w =

(w1, ws) on I';4. We will consider in this subsection the identification of boundary traction T = (1,72) on

'Tiq. Here we express u;(z) = u;(;T) to stress the dependence of the solution u; on unknown traction 7
to be identified.

Our objective is to find a proper 7;, which minimizes the folléwing functional
K(T) = / [S,-(:c; 1') - 5;(:1:)]2111‘ + 17/ U;jsgjdﬂ (17)
T'q i : Q

among all admissible tractions S;(x;7) with the constraints v; = @; on I'y. Here we regard K :
HY(ig)? 3 7+ Ry.
Along the same line of argument as in the preceding displacement approach, with the suitable choice

of positive real numbers a, for n = 1,2, .-, we will consider the minimizing process;
T+ = 2 _ o K'(+ ™), : (18)
where K'(1) € H'/?(T';4)? can be defined from the first variation
K(r+6r)-K(t) = < K'(T), 6T > +o (|| :61' - (19)
To seek a concrete expression of K'(7) in a similar way as regard to J'(w), we notice that

K(r+67) - K(r) = /P ASi(z;7) - 5i(2))6Si(;7)dT

.\ By, |
40 [ 2o(@im) TR +o () 87D,
Q J

xr

where we put variations in the boundary traction by
6Si(z; 1) = Si(z; 7 + 67) — Si(z; 1),

and 6u;(x; T) are corresponding variations in the displacement.

Using the relation

O8ui _ Oui
7 oz dx; Tijs

and by the Gauss divergence theorem, it becomes
. »

K(t+67)-K(t) = / 2[Si(z;7) — Si(z)}6Si(w; T)dT
TCa

dbo;;
+27)/ u;bojn;dl’ — 21;/ Uu; boij dQ+o (|| 67 ).
r Q 63:,
The stresses §o;; induced by the displacements éu; satisfy
860ij 0 in Q, (20)
6.'L'j
bu; = 0 on [y, ' (21)

55,’ = 5T,' on F,‘d. (22)



We now introduce the adjoint system
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3&,‘,’ . .
4 2
5a; 0 in §, ‘ (23)
subject to the boundary conditions;
U = 2[5;(13;1’) - g,(ﬂ!)] +29%; on T[g4, : (24)
V 5’,‘ = 0 on F,‘d . (25)

From (23), (20), (21), (25), and (22) we can see that

0 = /%161;,-(19 )
Q

Ty

which yields the relation;

/0.,n,6u,dl" fa.,ifm
O
/ $;6u;dl — / 52, 090
/ §;6u;dl’ — / G603 ;dT + / 259 40
ox;

—/ ﬁ;&S.-dF—/ 11,'57’,'6“‘,
| A T

ag

/ 4;65;dT" = —/ a;67;dl . (26)
Tq Tia

Consequently, from (24), (20), (22), and (26) we know that

K(r +6r)—- K(7)

Cia

/ ﬂi6S;dP—2n/ u;&S;dI‘+2n/u.-6S;dF+o(|| 5t |))
Ta . 'y r

/ a,-as.-dr+2n/ wibnidl + o (|| 67 )
Tq

- /F (i + 2nu;)8dT + o (|| 67 |]).

Therefore we obtain K'(7) in the explicit form

Ki(t) = —d; + 2nu; . (27)

Using this result, we can summarize an algorithm for the minimization in the traction approach as

follows:

[1] Given 7.

[2] Forn=0,1,2,-, do:
a0™
[2.1] Solve —F;{J— =0 with uf”)lpd = %, U'-(;)njl[‘id

to find S,»(")(z) on g and uf")-(z) on I'y4.
- (n)

06;;
[2.2] Solve —55% =0
with 4™ |r, = 2[5""(z 7) = Si(@)] + 20,
o 0
nJlF.d =
to find Ki(™) = —“(") + 27711.( ™ onTiq .
[2.3] Update T®*D) = 7" — o, K'(w™).

=T

(n)

13
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3 CONCLUSIONS

We have considered the Cauchy problem of the Navier equations in elastostatics, regarded as a bound-
ary inverse problem. The problem consists of identifying either unknown displacements or unknown
tfactions on a part of the boundary of the elastic material, when displacements and tractions are si-
multaneously prescribed as the Cauchy data on the rest of the boundary. Theoretically, when the data
are exactly available, the unknown displacement or traction is uniquely determined. We ipcluded the
case when noises are likely to be contained in the data. In order to make the unknown displacement or
traction uniquely determined even for the noisy data, we considered regularization of the Tikhonov-type
in the objective functional to be minimized.

Our inverse problem is recast by the use of the variational method into an infinite number of iterative
processes consisting of direct primary and adjoint mixed boundary value problems in elastostatics. The
process yields either-a boundary displacement or traction, at which the objective functional attains its
minimum. ‘ ,
~ Simple numerical examples suggested that our variational method of solution to the inverse problem
is convergent to the minimum of the objective functional, and our numerical process is stable irrespective

of measurement errors in the data.
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