
Computing the Combinatorial Canonical Form
of a Layered Mixed Matrix

京大数理研 室田–雄 (Kazuo Murota, Kyoto U)
ミュンヘン工科大 マーク . シャープロ $-$ ト (Mark Scharbrodt, $\mathrm{T}\mathrm{U}-\mathrm{M}\ddot{\mathrm{u}}\mathrm{n}\mathbb{C}\mathrm{h}\mathrm{e}\mathrm{n}$)

1. Introduction. A matrix $A=$ is said to be layered mixed (or
$\mathrm{a}.\mathrm{n}$

LM-

matrix), if the set of nonzero entries of T is algebraically independent over the field to
which the entries of Q belong. Its Combinato$r\cdot ial$ Canonical Form (CCF for short) is a
(combinatorially unique) finest block-triangular representation of the matrix under the ad-
missible $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$

. of the form

$P_{r}P_{c}$,

where S is a nonsingular matrix, and P_{r} and P_{c} are permutation matrices. In the CCF, each
diagonal block is a full rank square matrix. For a singular or rectangular matrix the CCF
includes also full rank horizontal $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ vertical tails. Note that the CCF reduces to the
well-known Dulmage-Mendelsohn decomposition [BR91, DER86, DM59, DR78, EGLPS87,
Gu76, Ho76, PF90] if the Q-part is empty.

Example 1. If $t_{i}(i=1,2,3,4)$ denote independent parameters, A below is a $4\cross 5$

$\mathrm{L}\mathrm{M}$-matrix, and its CCF is given by \tilde{A} , which consists of a $1\cross 2$ horizontal tail and a $3\cross 3$

square nonsingular block, with an empty vertical tail:

$A==$, $\tilde{A}=$.

The concept of mixed matrices was introduced by Murota-Iri [MI85] as a tool for describ-
ing discrete $\mathrm{p}\mathrm{h}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}/\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}$systems (see [Mu96] for exposition), and subsequently, the
CCF of $\mathrm{L}\mathrm{M}$-matrices was established by $\mathrm{M}\mathrm{u}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}-\mathrm{I}\mathrm{r}\mathrm{i}$ -Nakamura [MIN87] and Murota [Mu87].
An efficient algorithm for computing the CCF was designed with matroid theoretical meth-
ods (submodular flow model). This algorithm, to be described in Section 2, operates in two
phases; the first phase detects a maximal independent assignment in an auxiliary network,
and the second phase finds the decomposition.

In the present paper, we deal with practical computing of the CCF. Since engineering
applications usually are large scale, it is important to identify typical characteristics in
practical situations in order to significantly speed up the algorithm on top of its theoretical
efficiency. In that line, based on the original algorithm, we will present practically faster
versions which use simple but very effective procedures in order to improve solving the
underlying independent assignment subproblem. Also, we discuss implementation strategies.
We implemented the algorithm in the Mathematica language which is suitable especially for
symbolic computation. The code is available via anonymous ftp (see Appendix A for details).

2. The original CCF-algorithm. The CCF of a layered mixed matrix can be com-
puted by first identifying a maximum independent assignment in an associated bipartite
graph, and then applying the ${\rm Min}-\mathrm{c}_{\mathrm{u}}\mathrm{t}-\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{P}\mathrm{o}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ to the resulting auxiliary network.
This is based on the fact that the rank of a layered mixed matrix can be characterized by
the minimum value of a certain submodular function that can be represented as the cut
function of an independent assignment problem. In what follows, we describe the algorithm
of [Mu93], while referring the reader to $[\mathrm{M}\mathrm{u}87][\mathrm{M}\mathrm{u}93]$ for theoretical backgrounds.

For a layered mixed matrix A , we define $R_{T}=\mathrm{R}\mathrm{o}\mathrm{w}(\tau)$ and $C=\mathrm{C}\mathrm{o}1(A)$. Furthermore,
let C_{Q} denote a disjoint copy of C , where the copy of $j\in C$ will be denoted as $j_{Q}\in C$. The

数理解析研究所講究録
1040巻 1998年 125-134 125

network for the underlying independent assignment problem is a directed graph $G=(V,B)$
with vertex set $V=R_{T}\cup C_{Q}\cup C$ and arc set $B=B_{T}\cup B_{C}\cup B^{+}\cup M$, where $B_{T}=$

$\{(i,j)|i\in R_{T}, i\in C, T_{ij}\neq 0\},$ $B_{C}=\{(j_{Q},j)|j\in C\}$ and B^{+} and M are arcs which
are dynamically defined with respect to the current independent assignment; B^{+} allows to
perform exchanges in the base of matrix Q , whereas M is built by the reversals of the arcs
matched in the assignment. We denote by ∂M the set of end vertices of M .

In addition, the algorithm works on two matrices P and S and a vector base. At the
beginning of the algorithm, P is set to Q and finally, after executing pivotings, P can be
permuted to a block triangular matrix according to the CCF decomposition. The other
matrix S gi.ves the matrix S in the admissible transformation. The variable base is a vector
of size m_{Q} , which represents a mapping $R_{Q}arrow C\cup\{0\}$. Then, the algorithm can be stated
as follows, where Step 1 to Step 3 compute the independent assignment and Step 4 aims at
processing the decomposition:

[Algorithm for the CCF of a layered mixed matrix A]

Step 1: $M:=0;base[i]:=0(i\in R_{Q});P[i,j1:=Q_{1j}.(i\in R_{Q}, j\in C)$;
$S:=\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{t}$ matrix of order m_{Q} .

Step 2: $I:=\{i\in C|i_{Q}\in\partial M\cap C_{Q}\}$;
J $:–\{j\in C-I|\forall i:base[i]=0\Rightarrow P[i,j]=0\}$;
$S_{T}^{+}:=R\tau-\partial M;S_{Q}^{+}:=\{j_{Q}\in C_{Q}|j\in C-(I\cup J)\};S^{+}:=S_{T}^{+}\cup S_{Q}^{+}$;
$S^{-}:=C-\partial M$;
$B^{+}:=\{(i_{Q},j_{Q})|h\in R_{Q}, j\in J, P[h,j]\neq 0, i=base[h]\}$.

Step 3: If there does not exists in G a directed path from S^{+} to S^{-} (including the
case where $S^{+}=\emptyset$ or $S^{-}=\emptyset$) then go to Step 4; otherwise execute

the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$:
{Let $L(\subseteq B)$ be (the set of arcs on) a shortest path from S^{+} to S^{-}

(“shortest” in the number of arcs);
$M:=(M-L)\cup\{(j, i)|(i,j)\in L\mathrm{n}B\tau\}\cup\{(j,j_{Q})|(jQ,j)\in L\mathrm{n}Bc\}_{1}$.
If the initial vertex $(\in S^{+})$ of the path L belongs to S_{Q}^{+} , then do
the following:
{Let $j_{Q}(\in S_{Q}^{+}\subseteq C_{Q})$ be the initial vertex;

Find h such that $baSe1h1=0$ and $P[h,j]\neq 0$;
$\mathrm{U}\in C$ corresponds to $j_{Q}\in C_{Q}$]

$base[h]:=j;w:=1/P[h,j]$;
$P[k,$ $l1:=P[k, l]-w\cross P[k,j]\cross P[h, l](h\neq k\in R_{Q}, l\in C)$;
$S[k, l]:=S[k, l]-w\cross P[k,j]\cross S[h,$ $l1(h\neq k\in R_{Q}, l\in R_{Q})\}$;

For all $(i_{Q},j_{Q})\in L\cap B^{+}$ (in the order from S^{+} to $S^{-}\mathrm{a}1_{\mathrm{o}\mathrm{n}\mathrm{g}}L$)
do the following:
{Find h such that $i=base1^{h}$]; $\mathrm{U}\in C$ corresponds to $j_{Q}\in C_{Q}$]

$base[h1:=j;w:=1/P[h,j]$;
$P[k, l]:=P[k, l]-w\cross P[k,j]\cross P[h, l](h\neq k\in R_{Q}, l\in C)$;
$S[k, l]:=S[k, l]-w\cross P[k,j]\cross S[h, l](h\neq k\in R_{Q}, l\in R_{Q})\}$;

Go to Step 2}. .

Step 4: Let $V_{\infty}(\subseteq V)$ be the set of vertices reachable from S^{+} by a directed. path in
G ;
Let $V_{0}(\subseteq V)$ be the set of vertices reachable to S^{-} by a directed path in G ;
$C0:=C\cap V_{0};C_{\infty}:=C\cap V_{\infty}$; .

Let $G’$ denote the graph obtained from G by deleting the vertices $V_{0}\cup V_{\infty}$

(and arcs incident thereto);
Decompose $G’$ into strongly connected components $\{V_{\lambda}|\lambda\in\Lambda\}(V_{\lambda}\subseteq V)$;
Let $\{C_{k}|k=1, \ldots, b\}$ be the subcolection of $\{C\cap V_{\lambda}|\lambda\in\Lambda\}$ consisting
of all the nonempty sets $C\cap V_{\lambda}$, where $C_{k\mathrm{S}}$

’ are indexed in such a way that

126

for $l<k$ there does not exist a direct path in $G’$ from C_{k} to $c_{\iota;}$

$R0:=(R\tau\cap V\mathrm{o})\cup\{h\in R_{Q}|base[h1\in c_{0}\}$;
$R_{\infty}:=(R\tau\cap V_{\infty})\cup\{h\in R_{Q}|base[h]\in c_{\infty}\cup\{0\}\}$;
$R_{k}:=(R\tau\cap Vk)\cup\{h\in R_{Q}|base1h1\in C_{k}\}(k=1, \ldots,b)$;

$\overline{A}:=P_{r}P_{c}$, where the permutation matrices P_{r} and P_{c} are determined
so that the rows and the columns of \overline{A} are ordered as $(R0;R_{1}, \ldots, R_{b_{1\infty}}\cdot R)$ and
$(C\mathit{0};c_{1}, \ldots, cb;C_{\infty})$, respectively.

The above algorithm can be best understood by means of matroid-theoretic concepts.
Let $\mathrm{M}(Q)$ denote the matroid defined on C by Q , namely, $I\subseteq C$ is independent in $\mathrm{M}(Q)$

if rankQ$1RQ,I$] $=|I|$. Similarly, we associate matroids $\mathrm{M}(T)$ and $\mathrm{M}(A)$ with T and A ,
respectively. Then it is known that $\mathrm{M}(A)$ is the union of $\mathrm{M}(Q)$ and $\mathrm{M}(T)$, i.e., $\mathrm{M}(A)=$

$\mathrm{M}(Q)\vee \mathrm{M}(T)$. Throughout the algorithm, I is an independent set in $\mathrm{M}(Q)$, whereas $J\cup I$

is the closure of I in $\mathrm{M}(Q)$. On the other hand, $(\partial M\cap c)-I$ is an independent set in $\mathrm{M}(T)$.
Since $\partial M\cap C$ is independent in $\mathrm{M}(Q)\vee \mathrm{M}(\tau)=\mathrm{M}(A)$, it holds that $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}[A, \partial M\mathrm{n}o]=|M|$.
At each execution of Step 3 the size of $|M|$ increases by one, and at the termination of the
algorithm, we have the relation: rank $A=|M|$. The updates of P in Step 3 are the usual
pivoting operations on P .

For the $4\cross 5$ LM-matrix A in Example 1, we label Co1$(A)=C=\{x_{1,2,3}XX,X_{4},x_{5}\}$ and
Row$(\tau)=R\tau=\{fi, f_{2}\}$. The copy of C is denoted by $C_{Q}=\{x_{1Q}, x_{2}Q,x3Q, x4Q, x_{5Q}\}$.
Figure 1 (a) shows the corresponding network. In (b), the final network after executing Step
1 to Step 3 is given (bold arcs indicate arcs in M). Since x_{4} remains an exit vertex, there
is a rank deficiency and the CCF, \tilde{A} , has a nonempty horizontal tail.

B_{T}
B_{C}

B_{7} B_{C}

(a) (b)

FIG. 1. Applying the $CCFal_{\mathit{9}^{O\dot{n}\iota}}hm$ to the matfix of Example 1

3. The improved CCF-Algorithm. This section presents the improved algorithm
for computing the CCF. The $\mathrm{b}\mathrm{a}s$ic algorithm is retained, but a practically faster algorithm
is employed in order to improve solving the independent assignment subproblem.

We will present this algorithm in two improving steps. In Section 3.1, a revised version
of the $\mathrm{b}\mathrm{a}s$ic algorithm is introduced which incorporates two precalculation phases called
Step A and Step B , where Step A computes an assignment in the subgraph induced by
B_{T} and where Step B works on B_{C} . For a second improvement Step B is refined so that it
runs with higher efficiency (see Section 3.2).

3.1. A revised CCF-algorithm. Recall that the $\mathrm{b}\mathrm{a}s$ic components for computing
an independent assignment are path searching and matching update. Due to extensive
updating processes the latter tends to be time critical especially, as up until now it has been
performed independently of structural properties of the augmenting paths. The clue to a

127

$\mathrm{f}\mathrm{a}s$ter algorithm lies in carrying out the update processes more carefully than the original
algorithm does. This is reasonable, since there are three types of augmenting paths, namely

(1) those which only contain arcs $e\in B_{T}$,
(2) those with arcs $e\in B_{T}\cup B_{Q}$ (which initiate pivoting),
(3) those with arcs $e\in B_{T}\cup B_{Q}\cup B^{+}$ (which initiate pivoting and exchanges in the

base set and in B^{+}).
The strategy is to separate augmentings for the generic matrix T (paths of the form (1))
from those ones for the elimination (pivoting) operations on Q (paths of the form (2) and
(3) $)$ and to apply sophisticated routines in the respective augmenting processes. For the
algorithm it is also appropriate to start with a large assignment instead of the empty one.
Then certain augmenting steps can be unemployed until the final phase of the algorithm
where an optimal assignment has to be reached. We can apply this technique, since the
structure of the underlying network makes it easy to compute a large initial assignment.

To be more concrete, the algorithm proposed here consists of the two preprocedures,
Step A and Step B , followed by the procedures of the original algorithm. In Step A , a
maximal (not necessarily maximum) matching $M_{B_{T}}$ in the subgraph induced on the vertex
set $R_{T}\cup C$ is computed using a simple greedy strategy. Each arc $e\in M_{B_{T}}$ gives a shortest
path of length one whose augmenting will involve no pivoting. Step A adds the reversal
of the arcs $e\in M_{B_{T}}$ to the assignment M and updates the sets S^{+} and S^{-} . The task of
Step B is to compute an initial set I of independent columns whose size is possibly large.
For I , it chooses a maximal (not necessarily maximum) set of diagonal arcs $B_{C}’\subseteq B_{C}$ such
that each arc $(j_{Q},j)\in B_{C}$ connects an entrance with an exit vertex and such that the
set of corresponding matrix columns enjoys linear independency. In the revised algorithm,
procedure Step B traverses the set B_{C} of diagonal arcs one by one. Exactly those arcs
$(j_{Q},j)\in B_{C}$ with $j_{Q}\in S^{+}$ and $j\in S^{-}$ at the time of the traversal are selected for inclusion
in I . Before visiting the next arc, the corresponding pivotings are executed, so that the list
of dependent columns as well as the set of entrance vertices can be updated accordingly.

It is important to note that arcs of B^{+} , expressing exchangeability among columns of
I and J , are not needed in Step A and Step B and that their computation is therefore
omitted in either procedure. In the following step, however, B^{+} will be computed for the
first time, since exchanges in the base set may become unavoidable for augmenting the
current assignment to optimality. Subsequently, the entire network will be submitted to
the standard processes of path searching and matching update (Step 2 and Step 3) of the
original algorithm, before the ${\rm Min}-\mathrm{C}\mathrm{u}\mathrm{t}$-decomposition into strongly connected components
is called.

R_{-} $\Gamma^{\backslash }$. r_{-}

B_{T} B_{C} B_{T} B_{C}

\langle $\mathrm{a})$ (b)

FIG. 2. Step A and Step B of the revised $al_{\mathit{9}^{O\dot{n}}}thm$

Example 3. We illustrate the revised algorithm on the matrix given in Example 1. In
Figure 2 (a), we see the matching computed by Step A of the algorithm (bold lines). The

128

assignment after executing Step B which covers arcs of B_{C} is displayed in (b). There, the
only arc contained in B^{+} is shown as well. The initial assignment computed by Step A
and Step B is not optimal yet. The network will be submitted to the original algorithm
which augments the assignment along the path $x_{1Q}arrow x_{1}arrow fiarrow x_{5}$, which yields the final
optimal assignment as depicted in Figure 1 (b).

The revised algorithm for computing the CCF may now be stated as follows:

[Revised algorithm for the CCF of a layered mixed matrix A]

Step 1: $M:=\emptyset;I:=0;$ base 1^{i}] $:=0(i\in R_{Q});P[i,j]:=Q_{j}|(i\in R_{Q}, j\in C)$

$S:=\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{t}$ matrix of order m_{Q} ;
$J:=$ {$j\in C|P[i,j]=0$ for all $i\in R_{Q}$ }.

Step $\mathrm{A}:$ Let \overline{M} be the set of arcs of a maximal matching in the subgraph induced
by the vertex set $R\tau\cup C$;
$M:=\{(j, i)|(i,j)\in\overline{M}\}$;
$S^{-}:=C-\partial M;S_{T}^{+}:=R\tau-\partial M;S_{Q}^{+}:=\{j_{Q}\in C_{Q}|j\in C-J\};S^{+}:=S_{T}^{+}\cup S_{Q}^{+}$.

Step B : For all $(j_{Q},j)\in B_{C}$ do the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$:
{If $j_{Q}\in S_{Q}^{+}$ and $j\in S^{-}$ do the following:

{ $M:=M\cup(j,j_{Q});S_{Q}^{+}:=S_{Q}^{+}-\{j_{Q}\};S^{-}:=S^{-}-\{j\};I:=I\cup\{j\}$;
Find h such that $base[h]=0$ and $P[h,j]\neq 0$;
$base[h]:=j;w:=1/P[h,j]$;
$P[k, l]:=P[k, l]-w\cross P[k,j]\cross P[h, l](h\neq k\in R_{Q}, l\in C)$;
$S[k, l]:=S[k, l]-w\cross P[k,j]\cross S[h, l](h\neq k\in R_{Q}, l\in R_{Q})$

$J:=\{j\in C-I|\forall i:base[i]=0\Rightarrow P[i,j]=0\}$

$S_{Q}^{+}:=\{j_{Q}\in C_{Q}|j\in C-(I\cup J)\}\}\}$;
$S^{+}:=S_{T}^{+}\cup s_{Q}^{+};$

$B^{+}:=\{(i_{Q},j_{Q})|h\in R_{Q}, j\in J, P[h,j]\neq 0, i=base[h]\}$.

Step $\mathit{2}’$: Go to Step 3 of the original algorithm.

Improvements through the revised algorithm are based on the following facts: Firstly,
all shortest paths which have a length of 1 are detected in a single run. As for the original
algorithm, these paths are detected in almost the same way, but Step A and Step B are
more straightforward, since they visit all arcs of B_{T} (resp. B_{C}) only once. Secondly, as
already mentioned, a considerable amount of computation time is saved by postponing
the computation and update of B^{+} to the final augmenting phases, rather than repeatedly
computing B^{+} already at the beginning. Thirdly, the separation of augmentings for B_{T} from
those for B_{C} makes it easier for each case, to decide whi.ch update steps become necessary
during the respective augmentings.

3.2. Irnproving Step B. While it is easy to compute an initial assignment in B_{T}

in Step A , Step B is a rather slow procedure. For each augmenting in B_{C} , the corre-
sponding row elimination operations have to be carried out and accordingly the new de-
$\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}/\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}$structure has to be identified, i.e., J has to be computed. As a
consequence the amount of computation as well as the computation time for J increases
drastically with the matrix size.

One possible strategy for speeding up Step B is in a combinatorial relaxation for com-
puting an initial set I . That approach ignores the concrete values of the matrix entries in
favour of the combinatorial structure when it chooses an initial set of (yet not matched)
diagonal arcs for the set I . This procedure can work without J .

A starting set I is computed by a bipartite matching algorithm as follows. Let M be

129

the initial matching computed by Step A on the network G of the independent assignment
subproblem. We define $R_{Q}=\mathrm{R}\mathrm{o}\mathrm{w}(Q)$ and, as usual, $C=\mathrm{C}\mathrm{o}1(A)$, and consider a directed
graph $G_{Q}=(V_{Q}, B_{Q})$ with the vertex set $V_{Q}=(C-\partial M)\cup R_{Q}$ and the arc set $B_{Q}=$

$\{(i,j)|i\in R_{Q},j\in C-\partial M, Q_{ij}\neq 0\}$. We then compute a maximum matching \overline{M} in G_{Q} .
The set of columns of Q (vertices in $C-\partial M$) covered by \overline{M} is a good candidate for the base
set I , though there remains the possibility of accidental numerical cancellation that causes
linear dependency in I . In the latter case, the dependent columns will be excluded from I .

To be concrete, each arc (i,j) included in \overline{M}, where $i\in R_{Q}$ and $j\in C-\partial M$, is used as
a pivoting position, if the value of the entry is distinct from zero at the time of pivoting (if
the entry equals zero, the column is not independent). Hence the $\mathrm{b}\mathrm{a}s\mathrm{e}$ set I is composed of
all the columns $j\in C$ which are covered by the matching and whose corresponding pivoting
element does not vanish during previous row eliminations. We will refer to this algorithm,
which uses a combinatorial relaxation technique, as the relaxation algorithm. For nota-
tional convenience, we do not distinguish vertices in $V_{Q}-R_{Q}$ and columns of Q .

[Step B for the relaxation algorithm]

Step $\mathrm{B}:$ Let \overline{M} be a maximum bipartite matching on $G_{Q;}$

For all $j\in V_{Q}-R_{Q}$ do the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$:
{If $j\in\partial\overline{M}$, find i such that $(i,j)\in\overline{M}$;

If $P[i,j]\neq 0$, then do the following:
{$baSe[i]:=j;I:=I\cup\{i\};w:=1/P[i,j]$;

$P[k, l]:=P[k, l]-w\cross P[k,j1\cross P[i, l](i\neq k\in R_{Q}, l\in C)_{1}$

$S[k, l]:=S[k, l]-w\cross P[k,j1\cross S[i, l](i\neq k\in R_{Q}, l\in R_{Q})$ $\}\}$;
$J:=$ {$j\in C-I|$ Vi : $base[i]=0\Rightarrow P[i,j]=0$ };
$S_{Q}^{+}:=\{j_{Q}\in CQ|j\in C-(I\cup j)\}$;
$S^{+}:=^{s^{+}}\tau\cup S_{Q}+$;
$B^{+}:=\{(i_{Q},j_{Q})|h\in R_{Q}, j\in J, P[h,j]\neq 0, i=base[h]\}$.

We will finally introduce a third version of Step B , which is simple and fast, and installed
for our new algorithm. It gains its good performance by the fact that we can dispense with
the graph G_{Q} as well as the bipartite matching algorithm. This algorithm works as follows,
with row eliminations on the matrix Q . For each row i of Q (after elimination), the first
entry Q_{ij} with $Q_{ij}\neq 0$ is chosen for pivoting, where j is not matched already. The base is
then enlarged by column j and the row eliminations are carried out, using Q_{ij} as the pivot-
ing element. This quickly gives an initial assignment in B_{C} , which is, as the $\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{u}\mathrm{t}}\mathrm{a}1}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

experiments given in the next section will show, already close to an optimal one.

[Step.B for the new algorithm]

Step B : For $\mathrm{a}\mathrm{U}i\in R_{Q}$ do the following:
{Find $j\in C$ such $j\not\in\partial M$ and $P[i,j1\neq 0$;

If such j exists, do the following:
{$base[i]:=j;I:=I\cup\{i\};w:=1/P[i,j]$;

$P[k, l]:=P[k, l]-w\cross P[k,j]\cross P[i, l](i\neq k\in R_{Q}, l\in C)$;
$S1k,$ $l1:=S[k, l]-w\cross P[k,j1\cross s1^{i,l]}(i\neq k\in R_{Q}, l\in R_{\mathrm{Q}})\}\}$;

$J:=$ {$j\in C-I|\forall i:$ base $1i]=0\Rightarrow P[i,j]=0$};
$S_{Q}^{+}:=\{jQ\in C_{Q}|j\in C-(I\cup J)\}$;
$S^{+}:=s^{+}T\cup S_{Q}+$;
$B^{+}:=\{(iQ,jQ)|h\in R_{Q}, j\in J, P[h,j]\neq 0, i=base[h]\}$.

This version has also the advantage that the pivoting elements can be determined quickly,
since for each row the first suitable entry is chosen for pivoting.

130

4. Computational Experiments. In the literature we could find only a few examples
where results on the combinatorial canonical fom have been reported. Murota [Mu87]
considered matrices coming from chemical models and small matrices for the analysis of
electronic networks. The latter includes a problem (Problem na18) with 6 resistors and 3
voltage controlled sources, where the coefficient matrix A of the system of equations to be
solved was a layered mixed matrix of order 18. Emms [E94] also presented some results
for the chemical model (reactor separator model EV-6). The system of $\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\Gamma/\mathrm{n}\mathrm{o}\mathrm{n}$-linear
equations to be solved involves 120 equations in 120 unknowns and also a singular matrix
(Problem p119) was formed out of EV-6 by deleting row 107 and column 109 from the
corresponding mixed matrix. For our test series we additionally ran the algorithms on a
collection of matrices taken from the Harwell-Boeing databases (Problems IMPCOL and
$\mathrm{W}\mathrm{E}\mathrm{S}\mathrm{T})$ [$\mathrm{D}\mathrm{G}\mathrm{L}89$, DGL92]. In these examples, we regarded all integer coefficients whose
modulus is less than or equal to 10 as constant numbers and the others as indeterminates.

Our computational experiments were carried out on a SUN SPARCstation 10 $(125\mathrm{M}\mathrm{H}\mathrm{Z})$

using Mathematica, Version 2.2 for SPARC. We used Mathematica for its ability in symbolic
computation and in order to provide an elegant code which is easy to follow for interested
readers. Note, however, that the overhead in computation time is quite enormous. Moreover,
computation time is slightly influenced by Mathematica’s internal data handling, where for
instance the time needed for operating on the network ($\mathrm{s}\mathrm{u}\acute{\mathrm{c}}\mathrm{h}$ as traversing) is relatively high
compared to the time needed for pivoting.

TABLE 1
$st_{\Gamma u}\mathrm{C}ture$ of the problem instances

Table 1 summarizes properties of the input matrices. The size of the matrices ranges
from 18 to 483 and the number of nonzero coefficients from 47 to 1581. Table 2 describes
the CCF for those matrices. From left to right it displays the rank of each matrix instance,
the size of the horizontal and vertical tail, the total number of nonsingular square blocks,
the number of those blocks of size one and finally the size of the largest square block.

In our tests, we ran the original, the revised, the relaxation and the new algorithm on
the above test matrices. In order to $\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{t}^{\backslash }\mathrm{e}$ the behavior of the algorithms, we investigated
three criteria: the number of pivoting operations, the number of base exchanges (both
Table 3) and the computation time (Table 4).

Since the original and the revised algorithm augment the assignment along the same
paths, the resulting numbers of pivotings and base exchanges are identical. On the other
hand, one can observe that the improved versions of Step B need less pivotings as they make
use of the combinatorial structure of Q .

Table 4 displays the computation time consumed by the algorithms. While already the
revised algorithm constantly outperforms the original one, a significant speed up is obtained
under the $\mathrm{f}\mathrm{a}s$ter procedure for Step B , both in the relaxed and the new algorithm. Especially
for large instances, one can observe a significant gain. We can also see that usually the
new algorithm processes faster than the relaxation algorithm, except for IMPCOL D and
IMPCOL E , where the number of rows in T is very small compared to the number of rows

131

TABLE 2
CCF for test matrices

TABLE 3
$N\mathrm{u}$mber of Pivots and Base Exchanges

in Q . The results are confirmed in Table 5 which shows the effect for the variants of Step B

TABLE 4
Computation Time

in terms of computation time.
From our experiments, we can conclude that there are two winners, namely the relaxed

algorithm and the new algorithm, where in general, the new algorithm seems to behave
better. Both versions provide a powerful algorithm for computing the CCF of a layered
mixed matrix and improve the original version significantly. We further expect the running
time to decrease considerably when implementing our code in a programming language
like C and using sophisticated pointer structures rather than exclusively working on data
structures $\mathrm{b}\mathrm{a}s$ed on Mathematica lists.

In order to further exploit what really happens when executing the algorithm on the
above problems, we compiled some additional computational details. Table 6 describes,

132

TABLE 5
Computation Time for Step B

how Step A and Step B (combined with the new algorithm) behave on the given problems.
The table lists the number of arcs of the assignment initially computed on columns of Q

($\# B_{C}$-Assignment) and rows of $T.$ ($\# B_{T}$-Assignment) and the final distribution of the
assignment on Q and T . Column Augm. calls gives the number of augmentings along
shortest paths which are needed in order to yield the final independent assignment. We
also calculated the change in the number of nonvanishing coefficients during the matrix
transformation (Entries). The $1\mathrm{a}s\mathrm{t}$ three columns list the computational time consumed by
Step A and Step B and the time needed for the augmenting phase and the decomposition.

TABLE 6
Applying the new algorithm

From our computational experiments we can draw the conclusion that the procedures
Step A and Step B produce good starting assignments such that the number of calls of Step 2
and Step 3 (which are rather time consuming procedures) could remain small. The findings
of the test further indicate that the computation of an initial assignment is dominated by the
elimination operations, so that the algorithm still spends much of the computation time for
Step B. On the other hand, a comparable amount of computation time is consumed in the few
augmenting steps from the initial assignment to the optimal one. Also, the decomposition
phase is still relatively slow, since we did not put much effort in its implementation and the
data structures.

A. Appendix: Implementation Manual. The program code of our implementation
for computing the CCF is available via anonymous ftp from $\mathrm{w}\mathrm{w}\mathrm{w}$. kurims. kyoto-u. $\mathrm{a}\mathrm{c}$. jp.
Please change to the directory $\mathrm{p}\mathrm{u}\mathrm{b}/\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}/\mathrm{m}\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}/\mathrm{m}\mathrm{u}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}$ and read the README file. Alter-
natively you can check the homepage under http: $//\mathrm{w}\mathrm{w}\mathrm{w}$. kurims. kyoto-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{m}\mathrm{u}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}$.

The given directories include the new algorithm which–as a mathematica package–is
named $\mathrm{c}\mathrm{c}\mathrm{f}.\mathrm{m}$. Also, we provide a file ccfstat. m which creates, in addition to computing the

133

CCF, a file stat. \log of computation statistics. For demonstrating purposes, all matrices
used in the computational experiments are given in a subdirectory data.

When running a mathematica session, include the package ccf.m (or ccfstat.m) by
simply typing $”<<\mathrm{c}\mathrm{c}\mathrm{f}.\mathrm{m}$ ” in the Mathematica prompt. The variables used in the code are
protected such that we do not worry about conflicting variable setting caused by previous
computations. Typing “

$\mathrm{C}\mathrm{C}\mathrm{F}\lceil filename$]” will execute the algorithm on the input matrix
given in filename. The resulting decomposition will be displayed on the screen and in a file
$\mathrm{c}\mathrm{c}\mathrm{f}$. out in a sparse matrix format.

The sparse matrix format used for the input matrices as well as for the file $\mathrm{c}\mathrm{c}\mathrm{f}$. out is as
follows: The first line gives the number of columns. The second and the third line contain
the number of rows in $Q\mathrm{a}\mathrm{n}\dot{\mathrm{d}}$ in T , respectively. Separated by a line with a zero, the matrix
coefficients are described. Each line contains, from left to the right, the number of the row,
the number of nonvanishing entries in that row and a pair (j, m_{j}) consisting of the column
number for each such entry as well as the value of that coefficient. For the submatrix T for
simplicity, the $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{b}_{\mathrm{o}\mathrm{I}}$ entries all get the value zero.

REFERENCES

[BR91] R. A. BRUALDI AND H. J. RYSER, $Combinaio\dot{-}al$ Matrix Theory, Cambridge University Press,
London, 1991.

[DER86] I. S. DUFF, A. M. ERISMAN AND J. K. REID, Discrete Methods for Sparse Matrices, Clarendon
Press, Oxford, 1986.

[DGL89] I. S. DUFF, R. G. GRIMES AND J. G. LBWIS, Sparse matrix test problems, ACM
Trans. Math. Software, 15 (1989), pp. 1-14.

[DGL92] I. S. DUFF, R. G. GRIMES AND J. G. LEWIS, Users’ Guide for the Harwell-Boeing Sparse
Matrix Collection (Release I), $\mathrm{T}\mathrm{R}/\mathrm{P}\mathrm{A}/92/86$, CERFACS, Toulouse Cedex, France, 1992.

[DR78] I. S. DUFF AND J. K. REID, An implementation of $\tau_{a\dot{\eta}a}n^{r}S$ algorithm for the block triangular-
ization of a matrix, ACM Trans. Math. Software, 4 (1978), pp. 137-147.

[DM59] A. L. DULMAGE AND N. S. MENDELSOHN, A structure theory of bipartite graphs offinite exterior
dimension, Trans. Roy. Soc. Canada, Section III, 53 (1959), pp. 1-13.

[E94] N. R. E. EMMS, An Implementation of the Combinatorial Canonical Fom Decomposition Al-
gonthm for Layered Mixed Matfices, Dissertation for Master Thesis, Kyoto Univ., 1994.

[EGLPS87] A. M. ERISMAN, R. G. GRIMES, J. G. LEWIS, W. G. POOLE, JR. AND H. D. SIMON, Evalu-
ation of orderings for unsymmetric sparse matrices, SIAM J. Sci. Stat. Comput., 8 (1987),
pp. 600-624.

[Gu76] F. GUSTAVSON, Finding the Block Lower Triangular Form of a Sparse Matrix, in Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, 1976, pp. 275-289.

[Ho76] T. D. HOWELL, Partitioning using PAQ, in Sparse Matrix Computations, J. R. Bunch and
D. J. Rose, eds., Academic Press, 1976, pp. 23-37.

[Mu87] K. MUROTA, Systems Analysis by Graphs and Matroids –Stfuctural Solvability and Controlla-
bility, Springer-Verlag, 1987.

[Mu93] K. MUROTA, Mixed Matrices –Irreducibility and Decomposition, in Combinatorial and Graph
Theoretic Problems in Linear Algebra, R. A. Brualdi, S. Friedland and V. Klee, eds., The
IMA Volumes in Mathematics and Its Applications, Vol. 50, Springer-Verlag 1993, pp. 39-71.

[Mu96] K. MUROTA, Structural approach in systems analysis by mixed $mat\dot{\cap}ces-An$ exposition for index
of DAE, in ICIAM 95 (Proc. Third Intern. Congr. Indust. Appl. Math., Hamburg, Germany,
July 3-7, 1995), K. Kirchg\"assner, O. Mahrenholtz and R. Mennicken, eds., Mathematical
Research, Vol. 87, Akademie Verlag, 1996, pp. 257-279.

[MI85] K. MUROTA AND M. IRI, Structural solvability of systems of equations –A mathematical formu-
lation for distinguishing accurate and inaccurate numbers in structural analysis of systems,
Japan J. Appl. Math., 2 (1985), pp. 247-271.

[MIN87] K. MUROTA, M. IRI AND M. NAKAMURA, Combinatorial canonical form of layered mixed matri-
ces and its application to block-triangularization of systems of equations, SIAM J. Algebraic
Discrete Methods, 8 (1987), pp. 123-149.

[PF90] A. POTHEN AND C. J. FAN, Computing the block triangular fom of a sparse matrix, ACM
Trans. Math. Software, 16 (1990), pp. 303-324.

[YTK81] K. YAJIMA, J. TSUNEKAWA AND S. KOBAYASHI, On equation-based dynamic simulation,
Proc. World Congr. Chem. Eng., Montreal, V (1981).

134

