
Overview on Solvers for Linear Equations

R\"udiger Weiss, Hartmut H\"affier, Willi Sch\"onauer
Numerikforschung fiir Supercomputer, Rechenzentrum

Postfach 6980, 76128 Karlsruhe, Germany
-mail: weiss@rz.uni-karlsruhe.de

Abstract

The numerical simulation of many technical and scientific problems leads to the solution
of $\alpha\dot{\mathrm{t}}$rremely $1\pi \mathrm{g}\mathrm{e}$ and $\mathrm{s}\mathrm{p}$use lineae systems. Advgoed computer $\pi \mathrm{c}\mathrm{h}\mathrm{i}\mathrm{t}\propto \mathrm{t}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{e}$ –vector and
parallel computers–and state-of-th -art algorithms have to be used in order to solve these
system with a sufficient accuracy in a reasonable time. Importantly, the simulation of many
problems is only possible by the combination of technical and algorithmic proyaes.

Classical solvers for symmetric and positive definite matrices will be reviewed. Rom this
starting point it will be shom that modern solvaes rely on the same $\mathrm{p}\dot{\mathrm{m}}$ciples. With this
knowledge the methods can be easily classified despite of their confusing vaeiety. Moreover, it
$\mathrm{w}\mathrm{i}\mathrm{U}$ be shown how to $\mathrm{p}\mathrm{a}\mathrm{e}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{l}\mathrm{i}_{\mathrm{Z}}\mathrm{e}$ modern solvers. Thus, the efficient use of advanced computer
$u\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{e}\alpha \mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}$ is combined with modern algorithms to achieve a high perfomance.

1 Introduction

Many technical and scientific problems can be described by systems of partial differential equa
tions. These equations are usually linearized and discretized by finite differences, finite elements or
boundary elements. For au these methods a linear system has to be solved as an inner kernel. The
solution of linear systems is also required for applications that do not arise from partial differential
equations, for example for the simulation of electric networks or for the design of computer chips.

Direct iterative solvers applied to sparse matrices, resulting from the finite difference and finite
element method, produce fill-in, so that even the memory capabilities of supercomputers are insuf-
ficient. Therefore, iterative solvers have to be applied. For full matrices, resulting for example from
the boundary element method, iterative techniques may be much faster than direct methods if a
few digits of accuracy are sufflcient–ae typical for engineering applications. The dimension of the
systems may be extremely large for fine discretizations.

For the numerical solution of these equations with a sufficient accuracy, both extremely fast
computers and the most $\mathrm{u}\mathrm{p}- \mathrm{t}\infty \mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}$ methods from numerical mathematics are necessary, i . e . it is
only their combination which makes the computation of complex processes possible.

The perfo,rmance of computers has increased from 1960 until today by a ictor of $\mathrm{c}\mathrm{a}$. 10^{6} . This was
achieved in the last 10 years by the use of advanced computer architectures like vector and parallel
computers. In the mathematical methods we have an increase of $\mathrm{c}\mathrm{a}$. 10^{4} from 1800 until today. Here
conjugate gradient and multi-grid methods have played an important part during the last years. In
the combinaation of computers and algorithms we thus have a performance improvement by a factor
of 10^{10} , and only this makes the simulation of many technical and scientific problems possible. The
use of the fastest computers without efflcient methods as $\mathrm{w}\mathrm{e}\mathrm{U}$ as the application of the most modern

数理解析研究所講究録
1040巻 1998年 154-161 154

algorithms without modern computers would not lead to results within an acceptable time. Just
imagine that instead of an hour, a computation on the fastest computers would take 10^{4} hours, i . e .
more than a year, without modern algorithms. For such a long time nobody could even guarantee
the uninterrupted operation of a computer.

2 Classical Methods

Our problem is to solve the linear system

$Ax=b$. (1)

The matrix $A\in R^{n\mathrm{x}n}$ is a real, square matrix of dimension n and $x,$ $b\in R^{n}$. Though many of
the $\mathrm{p}\mathrm{r}\mathrm{a}\mathrm{e}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}$ methods work also for singular matrices we assume that A is not singular in order to
get a unique solution and unique error estimates.

Starting from an imitial guess x_{0} an iterative solution method constructs a sequence of apprni-
mations $x_{0}arrow x_{1}arrow x_{2}arrow x_{3}arrow x_{4}arrow\ldots$ so that $x_{k}arrow x$ for $karrow\infty$. The recurrence can be very
sophisticated and non-linear. The residuals are defined by

$\mathrm{r}k=Ax_{k}-b$, (2)

and the errors by

$e_{k}=x_{k}-X$. (3)

Methods for symmetric and positive definite systems are discussed in this section. The method
of steepest descent is fundamental for many modern iterative techniques. The idea of the method
of steepest descent, proposed by Temple [8], is to $\min \mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}_{\mathrm{Z}\mathrm{e}}$ the quadratic fom

$F(z)= \frac{1}{2}(A_{Z-}b)^{T1}A^{-}$ (Az–b). (4)

If A is symmetric and positive definite, then A^{-1} is symmetric and positive definite. Therefore,
$F(z)\geq 0$ for all z and $F(z)=0$ if and only if $Az– b=0$. Therefore, the mimimum of (4.) is the
solution of (1).

The gradient of (4) is precisely Az–b. The gradient is orthogonal to the isolines of (4) and,
therefore, in the direction of the steepest descent. The gradient at the iteration step $k-1$ is
$Ax_{k-1}-b=r_{k-1}$. It is quite natural to choose

$X_{k}=xk-1+\delta_{\mathrm{k}^{\Gamma_{k-1}}}$ (5)

and to determine δ_{k} by a one-dimensional minimization so that

$F(x_{k})= \min_{\delta_{\mathrm{k}}}F(x_{k}-1+\delta_{k^{f}k-1})$. (6)

Equation (6) is equivalent to $\delta_{k}=-\frac{r_{\mathrm{k}-1}^{T}rh-1}{r_{\mathrm{k}-1}^{T}Ar\mathrm{k}-1}$. The update vector $\delta_{\mathrm{k}’k-1}=\delta_{\mathrm{k}}(Ax\iota_{-}1-b)$ is
a multiple of the gradient of the functional (4) in the point x_{k-1} and, therefore, orthogonal to
the isoline $F(z)=F(X_{k-1})$. Thus the method proceeds in the direction of the steepest descent.
Moreover, the update direction is parauel to the isoline $F(z)=F(x_{k})$ because of the minimization
Property (6); see in figure 1 how the method procaeds from the old to the new iterates. The method
converges, if A is positive definite.

155

Figure 1: Proceeding of the steepest descent (left) and the dassical CG method (right)

Note that the square root of

$2F(x_{k})=\mathrm{r}_{kk}^{\tau_{A^{-1}}}f=e_{k}^{T}Ae_{k}=||e_{k}||_{A}^{2}$ (7)

is called energy norm of the error because for systems arising from structural analysis this quantity is
equivalent to the potential energy of the discretized problem. It would be meamingful to minimize
the Euclidean norm of the error $||e_{k}||$. But for this choice the coefflcient δ_{k} in (5) cannot be
determined because the unknown error of the previous step is needed. Another feasible possibility
is to minlimize the residual norm $||r_{k}||$.

The conjugate gradient $(\mathrm{C}\mathrm{G})$ method was developed by Hestenes and Stiefel [4] in the early
19508 for the solution of linear systems with a symmetric, positive definite matrix. The method
can be considered as a direct method because the exact solution is obtained at least in the step n

in the absence of roundoff errors. Until the early $1970\mathrm{s}$ the method was not widely used. With the
increasing use of computers and the consideration as an iterative method by Reid [5] the method
recovered importance.

The idea of the classical conjugate gradient method is to minimize the quadratic form (4) by using
a multi-dimensional minlimization improving the steepest descent method. For the CG method
choose

$x_{k}=x_{k-1}+ \sum_{:=1}^{\mathrm{k}}\delta|.,k’:-1$. (8)

The $\delta_{:,k}$ are determined from

$F(x_{k})$ $=$ $\min_{\delta_{1.\mathrm{k}},|\delta_{\mathrm{k}},\mathrm{k}}\ldots F(X_{k-}1+\sum_{:=1}^{k}\delta:,k^{t}i-1)$ (9)

If the ellipses of the isolines of $F(z)=con\epsilon tant$ have very different semi-axes the convergence
of the steepest descent method may be poor, while the more sophisticated update direction in (8)
improves the convergence. In figure 1 the proceeding of classical CG is depicted in comparison with
the steepest descent method. For this two-dimensional example the exact solution is achieved in
the second iteration step for classical CG because of the two-dimensional minlimization (9).

We get in the absence of rounding errors the exact solution in the iteration step n . However, a
considerable reduction of the residuals and errors is generally obtained in far less iteration steps.

We $\mathrm{o}\mathrm{b}\mathrm{t}\dot{\mathrm{m}}$ from (9) the orthogonality of the residuals

$\Gamma_{k}^{T_{\Gamma}}\mathrm{j}-1=0$ (10)

for $j=1,$ $\ldots,$
k . Thus, the mininization condition (9) is equivalent to the orthogonality conditions

(10). Instead of using the minlimization property for the definition of CG the orthogonalization

156

conditions can be used. The orthogonahties can be considered as weak formulation for the condition
that the residual $\prime k$ vanishes for the true solution.

Equation (8) suggests that the length of the recurrence increases with the iteration but the new
iterate of dassical CG can be calculated by a short recurrence, i . e . two -term recurrences.

3 Modern Methods

The method of steepest descent and the classical CG method are the basis for modern methods.
These two methods are suited for matrices that are diagonally dominant or symmetric and positive
definite. Of course the methods can also be applied to other systems, but the convergence is
not guaranteed or may be very slow. Starting from the $1970\mathrm{s}$ the dassical CG method has been
generalized in order to obtain convergent techniques for non-symmetric and non-positive deflnite
systems. All these methods can be described by the definition of orthogonalization methods [9].

An orthogonalization method is defined to be an iterative method satisfying the following relations.
For $k\geq 1$

$x_{k}\in\tilde{x}_{k}+\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}(q_{k-}\sigma_{\mathrm{k}},k, \ldots, q_{k-}1,k)$, (11)

where $\sigma_{k}\leq k,\tilde{x}_{k}\in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}(X_{k-\sigma}k’\ldots , x_{k-1})$. The vectors $q_{k-i,k}\in R^{n}$ are called search directions.
The orthogonality condition

$f_{kkqk*,k}^{T}z-\cdot=0$ (12)

is satisfied for $i=1,$ \ldots,σ_{k} . Z_{k} are auxiliary, non-singular orthogonalization matrioes.
Different methods result from different choices of the search directions $q_{k-:,\mathrm{t}}$, of the orthogonal-

ization matrices Z_{k} , of the number of search directions σ_{k} and of \tilde{x}_{k} . In general $\tilde{x}_{k}=x_{k-\sigma_{\mathrm{k}}}$ or
$\tilde{x}_{k}=x_{k-1}$ is valid.

Equation (12) can be considered as weak formulation for the condition that the residual is van-
ishing for the true solution. Equation (12) is a generalization of (10) for classical $\mathrm{C}\mathrm{G}$, where $Z_{k}=I$

and $q_{k-:,k}=\gamma \mathrm{k}$ -:. For classical CG this orthogonalization condition is equivalent to a mininization
property. We will see later that under certain conditions a mininization $\mathrm{P}^{\mathrm{r}\mathrm{o}}\mathrm{P}^{\mathrm{e}\mathrm{r}}\mathrm{t}.\mathrm{y}$ follows from (12)
as well. However, such a minimization condition does not follow always. On the other hand from a
minimization property orthogonalization properties can be always derived. Thus the orthogonality
condition is more general.

Despite the generality of the orthogonalization method defimition some distinct convergence prop-
erties can be derived. The next theorem (see [9]) is a fundamental convergence estimate that can
be used for all methods. It can be further specialized for special methods $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{o}1_{\mathrm{V}\dot{\mathrm{m}}\mathrm{g}}$ the particular
search directions and norms.

Theorem 3.1 If $Z_{k}A^{-1}$ is positive real, $|$. e . the symmetric part of $Z_{k}A^{-1}\dot{u}$ positive definite,
then

$||rk$
.

$||_{Z}\mathrm{k}A-1$ \leq $\sqrt{1+\frac{\rho^{2}(R)}{\mu_{m}^{2}(M)}}\eta_{1_{||}}\ldots\min_{\mathrm{k}}\eta_{\sigma}||.\sum_{\subset 1}^{\sigma \mathrm{k}}\eta_{i}Aq\mathrm{k}-:,k+\tilde{\mathrm{f}}\mathrm{k}||_{Z_{\mathrm{k}}A^{-1}}$ (13)

$||e_{k}||_{A^{\tau}z}h$ \leq $\sqrt{1+\frac{\rho^{2}(R)}{\mu_{m}^{2}(M)}}|\min_{\eta_{1}\ldots 1\eta_{g}\iota}||:=\sum_{1}^{\mathrm{k}}\eta_{1}qk-:,k+\tilde{e}k|\sigma.|_{AZ_{h}}\mathrm{r}$ (14)

holds for orthogonalization methods, where $\tilde{t}k=A\tilde{x}_{k}-b$ and $\tilde{e}_{k}=\tilde{x}_{k}-x$. $\rho(R)\dot{u}$ the spectral radius
of the $Skew-_{Sy}mmet\dot{n}c$ part R of $Z_{k}A^{-1}$. $\mu_{m}(M)$ is the minimum eigenvdue of M , the symmetric

157

part of $Z_{k}A^{-1}$. In particudar if $Z_{k}A^{-1}$ is symmelric, $\# en$

$||r_{k}||z_{\mathrm{k}}A-1$ $=$ $\ldots\min_{\pi 1,|\eta\sigma_{h}}||_{:=}\sum_{1}^{\sigma_{\mathrm{k}}}\eta:Aq_{k:}-,k+\tilde{f}k||_{Z_{\mathrm{k}}A^{-1}}$, (15)

$||e_{k}||_{A^{T}Z\iota}$ $=$ $\min_{\eta 1_{1}\cdots,\eta_{\sigma}\mathrm{k}}||.\sum_{\subset 1}^{\sigma b}\eta:qk-:,k+\tilde{e}_{\mathrm{k}}||_{A^{\tau}}z_{\mathrm{k}}$ (16)

Theorem 3.1 states a quantitative and a qualitative convergence estimate. The speed of conver-
gence is mainly determined by the size of the norm expression in (14) if the factor of the square
root is not too large. This means that the search directions $q_{k-:,k}$ detemine the quantitative speed
of convergence. The quality of the convergence is given by the norm induced by Z_{k} . The norm
may force a smooth or an oscillating error or residual reduction; see the investigation of special
Krylov subspace methods. Moreover, the norm can cause a monotone decrease of the errors or
of the residuals as discussed hereafter. A reasonable norm may not force a faster convergence if
the true solution is not in the shffied space spanned by the search directions. On the other hand,
a badly chosen norm may deteriorate a careful choice of search directions. Thus the quantity of
convergence given by the search directions and the quahty given by the matrices Z_{k} are equally
important.

A very $\mathrm{i}\mathrm{m}\mathrm{p}_{\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{n}}\mathrm{a}\mathrm{t}$. result of Theorem 3.1 is that the methods mimimize certain quantities if $Z_{k}A^{-1}$

is positive real. If the search directions are in the Krylov space, $Z_{k}=I$ and A is symmetric and
positive definite, then classical CG is recovered and the energy nom is minimized; see (7). If
$Z_{k}=A$, then the residuals are minimized in the Euclidean nom. The choice $Z_{\mathrm{k}}=A^{-T}$ leads to
minimum error methods. These methods can be implemented without knowin$\mathrm{g}A^{-\tau}$ by a trick (see
[9] $)$.

4 Parallelization

The ffitest mathematic$\mathrm{a}1$

-

algorithm may waste so much CPU-time of the fastest and most ad-
vanced available computer that it performs worse than on an ordinary “slow” machine–if it is not
implemented properly for the special computer architecture. Most of the here described methods
use as basic operations matrix-vector multiplications $(\mathrm{m}\mathrm{v}\mathrm{m})$, reduce operations like dot products,
triadic vector operations of the form vector $=ve\iota tof+scalat*vect_{\mathit{0}}\mathrm{r}$. For an efflcient implemen-
tation of the methods on supercomputers it is sufficient to care about these three operations.

The efficient implementation of these operations is standard for vector computers [6]. Therefore,
we will focus on parallel systems with distributed memory. For parallel computers there are rules
that should be followed to get efficient codes based on the hardware design [7]. We will describe
a concept. for the message passing programming style. This technique was chosen because it is
available for all massively parallel computers and because the distribution of data and operations
can be controlled quite efficiently. It may be quite easier to use High Performance Fortran or to
transfer dusty decks into it, but usually the only way to achieve acceptable efficiency is to use
message pas.sing.

The main principle for communication between two independent processes is to hide the commu-
nication behind the calculation. This technique is called latency hiding . It only can be achieved if
asynchronous communication is supported by the computer manufacturer. The amount of commu-
nication that can be hidden depends first on the $\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\triangleright \mathrm{t}\triangleright \mathrm{S}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}$ratio of the algorithm and second
on the balancing factor of the computer system. The $\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{e}-\mathrm{t}\triangleright \mathrm{S}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{e}$ ratio is the ratio between
the computation units and the communication units, which can be overlapped, and depends on the

158

Processor 1

Processor 2

Processor 3

Processor 4

Figure 2: The physical (left) and logical (right) distribution of a matrix to 4 processors

chosen algorithm. The balancing factor is the ratio between the speed of the communication net-
work and the arithmetic performance on a single processor and depends on the manufficturer. Thus
a software engineer can enhance the amount of communication that can be hidden by the choice of
an algorithm with a better volumeto-surface ratio-if possible-and by the optimal exploitation of
the inherent asynchronity in the chosen algorithm.

For parallel computers it is a desirable property that a progrm should consume the same CPU-
time per processor if the computational amount is increased in the same way as the number of
processors. This property is called scalability regarding to the computation time and it guarantees
that arbitrarily large problems could be processed in reasonable time if enough processors were
available.

It should be mentioned that most of the iterative methods considered as complete algorithm are
not scalable regarding to the computation time because usually the number of iterations needed to
achieve a certain accuracy increases with the dimension of the system. But the goal is to achieve
scalability of the basic operations of iterative methods: matrix-vector multiplication, the reduce
operations and the triadic operations.

Note that in this definition the number of unknowns (operations) increases with the number of
processors following an approach of $\mathrm{G}_{\mathrm{U}8}\mathrm{t}\mathrm{a}\ \mathrm{o}\mathrm{n}[2]$. We think that this definition is meaningful from
a scientific and a practical viewpoint. There is no reason to increase the number of processors if the
problem can be solved with a snldler number of processors. The reason to increase the number of
processors is that the problem size becomes so large that the execution time exceeds some bound.

There is also a different definition for scalability regarding to the computation time where the
problem size is constant, but the number of processors increases. This definition becomes meaning-
ful if a series of problems should be solved in less time, for example to get a reasonable turn-around.
However, in this case the ratio between communication with start-up times and computation in-
creases and, thus from a particular number of processors, the speed-up decreases. Moreover, a limit
for speed-up is given by Amdahl’s law [1].

There is an additional desirable property for parallel computers that a program should consume
the same amount of memory per processor if the total memory requirement is increased in the same
way as the number of processors. This property is called scalability regarding to the memory and
it guarantees that problems which are mmory bound could be processed by enlarging the number
of processors.

The program padage LINSOL [3] achieves scalability regarding the memory by a block-wise
distribution of $\mathrm{a}\mathrm{U}$ vectors and a $\mathrm{r}\mathrm{o}\mathrm{w}-\mathrm{b}1_{\mathrm{o}\mathrm{C}}\mathrm{k}-\mathrm{W}\mathrm{i}_{8}\mathrm{e}$ distribution of the matrix onto the p processors.
Figure 2 gives an example of a sparse matrix distributed to 4 processors. The matrix A is split
row-wise into matrix stripes $A^{:}$ of length $n:,$ $|=1,$ \ldots,p (note that generally $n_{\mathrm{j}}\neq n$: for $j\neq i$).
The $n:\mathrm{x}n$ matin $A^{:}$ is stored in the memory of processor i .

Additionally to this physical subdivision a logical subdivision of each stripe $A^{:},$ $i=1,$ \ldots,p into
p column blocks $A^{*,1},$ $\ldots,A^{i_{\mathrm{P}}},\mathrm{f}\mathrm{o}\mathrm{u}_{0}\mathrm{w}\dot{\mathrm{m}}\mathrm{g}$ the subdivision scheme for the rows is done; see Figure 2.

159

c_{1}

c_{1}
c_{1}

c_{2}

c_{3}

c. c_{4}

c.
Figure 3: The three computation steps of the matin-vector multiplication on 4 processors

If the matin A is $\mathrm{s}\mathrm{p}\mathrm{a}\Gamma 8\mathrm{e}$, the block matrioes $A^{1j},\mathrm{w}\mathrm{i}\mathrm{U}$ be sparse matrices in general, too. Some will
contain only zero entries, $\mathrm{c}\mathrm{a}\mathrm{u}_{\mathrm{e}}\mathrm{d}$ a zero block. Apart ffom that holds that the (block) matrix-vector
multiplication is independent of the special storage format of the matrix. It can be applied to any
storage fomat, e. g . for diagonally stored finite difference matricae, for row-wise stored matrices
with colum index, for column-wise stored matrices with row-index, etc. It is sufficient to define
for each storage pattem the corraeponding block matrix-vector multiplication.

For the matrix-vector multiplication $c=Ay$ the input vector y and the output vector c are
$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}_{\mathrm{U}}\mathrm{t}\mathrm{e}\mathrm{d}$ like the rows of the matrix, i.e. processor i hae the sub-vectors $y^{:}$ and $c^{:}$ of lengh $n:$.
The problem is that procaesor i needs for the processing of the block matricae $A^{:,j},j\neq i$ the entriae
of sub-vector y^{j} , which are not available on procaesor i withoul communication.

The matrix-vector multiplication $c=$ Ay.is computed on each procaesor $i,i=1,$ \ldots,p with a
logical subdivision of the matrix A^{1} and a physical subdivision of the vector y in p blocks:

$c^{\dot{*}}=C^{\dot{\iota}}+ \sum j=1\mathrm{P}A:,jjy$ (17)

In the Figure 3 the matrix-vector multiplication is depicted on 4 $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{S}8\mathrm{o}\mathrm{r}\mathrm{s}$. Diagonal matrix
blocks (e.g. $A^{1,2},A^{2,\epsilon},A^{3},4,$ $A^{4}’ 1$) are computed concurrently, if at leaet one of these blocks contains
non-zero matrix elements. If all diagonal matin blo&s contain no non-zero matrix elements, the
computation of all these diagond matrix $\mathrm{b}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}8$ can be skipped, i.e. the number of communication
cycles is reduced by one. h the aample of Figure 3 one diagonal matrix block can be skipped.
Using this optimization strategy for the communication the matrix-vector multiplication runs more
efficient, if the number of communication steps is ae $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$ ae possible. h finite element applications
this can be realized by a bandwidth optimized numbering of the global nodes.

We use two buffer\S $buf\theta$ and $h_{k}ff:b\mathrm{u}f\epsilon$ for the part of the input vector, which is used to perfom
the block multiplication A^{1j},y^{j} for $\mathrm{a}\mathrm{U}$ steps j , and $bufr$, in which the input vector for the next step
is reoeived.

Befooe starting the matrix-vector multiplication processor i copies his input vector y^{i} into the
send buffer $bufs$. Then it triggers the sending of this buffer to the procaesor, which needs this
vector part in the $\mathrm{n}\alpha \mathrm{t}$ computation cycle, and triggers the receiving of the vector part of y , which
is needed by itself in the next computation cycle. While the communication runs, the multiplication
of the current input vector stored in buffer $b\mathrm{u}fs$ with the sub-matrix $A^{1\mathrm{j}}$, is $\alpha \mathrm{e}\mathrm{c}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{d}$. After the
synchronization the pointers to the send and the receive buffers are $\alpha \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{d}$ and the next cycle
starts. h figure 4 the elapsed time per iteration i\S depicted in dependence of the number of
procaesors or of the problem size, raepectively. The linear $\mathrm{s}\mathrm{y}8\mathrm{t}\mathrm{e}\mathrm{m}$ raeults ffom a $3-\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{a}}1$

160

Figure 4: Elapsed time per iteration in ms on th.e IBM SP

finite element calculation of
$\nabla k\nabla u=f$,

where u are displacments and k is the modulus of elasticity. About 2000 unknowns are calculated
on each processor. It can be seen that scalability is achieved. However, there is a slight increase of
the elapsed time with respect to the number of processors. This increase is caused, among other
things, by the dot products that do not scale.

References
[1] G. M. Amdahl. Validity of the single-processor approach to achieving large scale computing

capabilities. In AFIPS Conference Proceedings, volume 30, pages 483-485. AFIP Press, Reston,
Va., 1967.

[2] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, $31(5):532-533$,
1988.

[3] H. Hffier. The program package LINSOL-basic concepts and realization. In A. Sydow, editor,
15th IMACS World Congress on Computation and Applied $Mathem\ovalbox{\tt\small REJECT} Cs,$ $.Be\mathrm{r}l|n$, Prvceedings,
vol. 2, Numerical Methods, pages 563-568. Verlag Wissenschaft und Techmik, 1997.

[4] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Res. Nat. Bu\prime . Standards, 49:409-435, 1952.

[5] J. K. Reid. On the method of conjugate gradients for the solution of large sparse systems of
linear equations. h J. K. Reid, editor, Large Sparse Sets of Linear Equations, pages 231-254.
Academic Press, New York, 1971.

[6] W. Sch\"onauer. Scienufic Computing on Vector Computers. North-Holland, Amsterdam, New
York, Odord, Tokyo, 1987.

[7] W. $\mathrm{s}_{\mathrm{c}\mathrm{h}_{\ddot{\mathrm{O}}\mathrm{n}\mathrm{a}\mathrm{u}\mathrm{e}}}\mathrm{r}$ and H. Hffier. Explaining the gap between theoretical peak perfomance and
real performance for supercomputer architectures. Scientific $Pf\eta[] \mathrm{u}mming$, 3:157-168, 1994.

[8] G. Temple. The general theory of relaxation methods applied to linear system. Proc. Roy. Soc.
(London), $\mathrm{A}169(\mathrm{A}939):476-500$, 1939.

[9] R. Weiss. $Pa\mathrm{r}ameter-f[] te$ Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie
Verlag, Berlin, 1996.

161

