goooboooobgon
10410 1998 O 1-8

Planar Topological Inference$

Zhi-Zhong Chen*
Tokyo Denki University

Abstract

We introduce and study a modified notion of planarity, in
which two regions of a map are considered adjacent when
they share any point of their boundaries (not an edge, as
standard planarity requires). We seek to characterize the
abstract graphs realized by such map adjacencies. We prove
some preliminary properties of such graphs, and give a poly-
nomial time algorithm for the following restricted problem:
given an abstract graph, decide whether it is realized by a
map in which at most four regions meet at any point. The
general recognition problem remains open.

1 Introduction

1.1 Motivation: Topological Inference

Suppose that you are told that four planar regions relate in
the following way: A is inside B; B overlaps C; C touches
D on the outside; D overlaps B; D is disjoint from A; and
C overlaps A. All four planar regions are “bubbles” with no
holes (to be rigorous: disc homeomorphs). Is this possible?
If so, we would like a model, a picture of four regions so
related; if not, a proof of impossibility.

This deceptively simple extension of propositional logic
is known as the topological inference problem (5], and its spe-
cial cases, extensions, and variants are studied in the area
of geographic information systems [3, 4, 10, 5, 11]. Despite
much effort (and claims in the literature [12, 4]...), no de-
cision algorithm and finite axiomatization for this problem
is known —although the problem becomes both finitely ax-
iomatizable and polynomial-time decidable in any number
of dimensions other than two. In fact, the following special

*Dept. of Math. Sci.,, Tokyo Denki University, Ha-
toyama, Saitama 350-0394, JAPAN. Work done while visiting
UC Berkeley. Supported in part by International Information
Science Foundation under grant number 98.1.2.639. E-mail:
chen@r.dendai.ac. jp.)

tEmory Dept. of Math. & Computer Sci., Atlanta GA 30322.
E-mail: micOmathcs.emory.edu.

1U.C. Berkeley EECS Dept. Supported by NSF Grant number
CCR-9626361. E-mail: christos@cs.berkeley.edu.

§ To agpeor n Proceedigs of STOC’58 as
“Plavay Mop Grvﬁ?ki".

Michelangelo Grignif
Emory University

Christos H. Papadimitriou?
U.C. Berkeley

case has been open since the 1960’s [2]: We are given the
status of all pairs of regions (we call this the fully conjunc-
tive case) when two regions either overlap or are disjoint
(that is, no two regions contain one another or touch on the
outside). This problem is known as the string graph prob-
lem, because the information can be captured as a graph
with the regions as nodes (overlaps/disjoint corresponds to
adjacent/non-adjacent), and we can assume that the regions
are in fact.one-dimensional planar curves. In other words,
we are seeking a recognition algorithm for the intersection
graphs of planar curves. As we mentioned, it is open whether
this problem is decidable; it is known that there are infinitely
many forbidden subgraphs; that recognition is at least NP-
hard [8]; and that there are string graphs that require expo-
nentially many string intersections for their realization [9].

The difficulty of the string graph problem exposes the
fact that the complexity of topological inference stems to a
large extent from the messy “overlaps” relation. But many
practical applications are so structured that no two regions
in them overlap (think of political maps, for example). What
if we had a fully conjunctive formula in which the only rela-
tions between two regions that are allowed are “touches on
the outside” and “disjoint”? In other words, which graphs
are the intersection graphs of closed disc homeomorphs with
disjoint interiors? This is the problem we study in this
paper. It follows from our results that it is in NP (Corol-
lary 2); however, whether it is in P is a most important and
intriguing open problem, which we solve in an interesting
and natural special case. :

1.2 Motivation: Planarity, Revisited

Planarity is undoubtedly one of the most basic, ancient,
and influential concepts in graph theory. The four color con-
jecture has been arguably the most famous and productive
open problem in the area, recognizing planar graphs moti-
vated the development of such basic methods as depth-first
search and pg-trees, and planarity plays a central role in
the recent work of Robertson and Seymour. Planar graphs
may be defined as the intersection graphs of planar regions
with disjoint interiors such that no four regions meet at a
point. But what if the emphasized condition is removed?
We obtain a very natural, intriguing, -and heretofore little-
studied class of graphs that we call planar map graphs. For
example, the adjacency graph of the United States shown in
Figure 1 is a fine example of a planar map graph (in fact, in
the special category of 4-planar graphs defined and studied
later) which is non-planar (the “corner states” Arizona-New
Mexico-Colorado-Utah form a K4, which, together with

Figure 1: The USA graph.

Montana, creates a Ks minor). Actually, it is trivial to
construct planar map graphs that are non-planar, since a
pizza (Figure 2(a)) yields an arbitrarily large clique.

It takes a little work even to show that the class of pla-
nar map graphs is in NP —but it is (Corollary 2). We want
to establish that it is in P, that is, to find a polynomial-
time recognition algorithm for planar map graphs. As we
point out in Section 2, a naive reduction to ordinary pla-
narity by “decomposing” pizzas does not work, because maz-
tmal cliques in_planar map graphs are not necessarily pizzas.
This complicates tremendously the recognition task, whose
polynomial solution we, unfortunately, can at present only
conjecture. '

But suppose that we restrict our political maps so that
no more than k regions meet at a point; we call the resulting
class k-planar graphs. Thus, 3-planar graphs are precisely
the ordinary planar graphs, and the U.S.A. is a 4-planar
graph. Our main result is a polynomial-time recognition al-
gorithm for 4-planar graphs. The algorithm is very compli-
cated, as it must rely on a detailed case analysis of each
maximal clique and its “immediate environment” (cliques
intersecting it, and connected components in the comple-
ment graph).

It is an interesting philosophical question, why the fore-
fathers of graph theory never bothered to define this class,
despite the fact that it is, in our opinion, equally natural
to ordinary planarity. We can think of three possible expla-
nations: (a) one of those random lucky turns in intellectual
history; (b) the result of deep foresight on the nastiness of
the problem; or (c) the desire to state the four color conjec-
ture —trivially false in the context of planar map graphs.

1.3 The Results of this Paper

In Section 2 we present a characterization of planar map
graphs as the half-squares of planar bipartite graphs (Theo-
rem 1). The half square of a planar bipartite graph is simply
the square of the graph (two nodes are adjacent iff there is
a path of length 2 in the original graph connecting them)
restricted to one of the two sides of the bipartition. With
a little more thought, this implies that planar map graph
recognition is in NP (Corollary 2).

It would appear that planar map graphs can be recog-
nized by the following naive algorithm:

find set C of maximal cliques with four or more nodes
if |C| > 12n then reply ‘‘not a planar map graph’’
omit from G all edges that are in a clique in C
for each maximal clique C € C do

add a vertex vc with edges to all nodes of C
test the graph for planarity, and return result

That is, we identify all points at which more than three
regions meet, and replace each with a fictitious region, con-
nected to all of them (the graph theoretic analog of the
circular piece in the middle of the pizza one sees in some
restaurants). The naive algorithm is based on the following
facts: (1) planar map graphs have O(n) maximal cliques,
and (2) the maximal cliques of any graph can be output
with polynomial delay between consecutive specimens out-
put [7].

The reason why the naive algorithm fails is because a
mazimal clique in a planar map graph can be realized in
ways other than the pizza, namely as a pizza with crust,
a hamantasch, and @ rice ball, see Figure 2. Theorem 3
uses the characterization of Theorem 1 and planar graph
theory techniques to prove that these four are all possible
realizations of a clique.

(a) (®)

© (d

Figure 2: Clique types in planar map graphs.

In Section 3 we prove our main result, that 4-planar
graphs can be recognized in polynomial time (Theorem 5).
Our algorithm builds on the basic structure of the naive algo-
rithm, examining each maximal clique of the graph in some
carefully designed order: First cliques of size 6, then 5, then
4 (it is easy to see that 4-planar graphs have no cliques larger
than six). For each clique, it considers its “environment”
(intersecting cliques, and components of a certain “comple-
ment graph”) and succeeds —often after very sophisticated,
but always linear-time, analysis— to make progress. There
are five basic kinds of progress:

e We identify a maximal clique which must be realized
as a pizza (and eventually treated by the naive algo-
rithm).

e We identify four regions {(as we call the nodes of the
input graph) that must meet at a point in a specific
cyclical order.

e We reduce the problem to one with fewer regions.

e More interestingly (and, it turns out, more often), we
decompose the graph into components, and reduce the
problem to testing whether each component is a 4-
planar graph. The reason such decompositions are
possible is that all realizations of maximal cliques in
Figure 2, except for the pizza, have only triangular
“holes” (unoccupied planar regions within which more
regions can be embedded). Thus each component re-
sulting from its deletion can be separately checked for
4-planarity.

e Finally, in certain more complicated cases we identify
a way of recursing on a similar maximal clique, albeit
in a smaller graph.

The case analysis involved is very tedious (over a hundred
cases must be examined); in Section 3 we include a top-level
summary without detailed proofs; for a draft of the complete
proof see [1]. The objects studied in the case analysis are
partial maps, that is, sets of planar regions corresponding
to the part of the graph being examined, with space left
for embedding the rest. We refine the maps by bringing in
more regions until we réach a final map, one in which all
unoccupied holes have at most three regions around them
(and thus the graph can be decomposed in a lossless way)
—or until we make progress in any one of the other four
ways listed above. It turns out that the methods are very
different for the three clique sizes.

The straight-forward analysis of the running time of the
algorithm yields an O(n®) upper bound. It can be probably
reduce to O(n?) by a more careful analysis, with some hope
of bringing it down to O(nlogn) (the best known running
time for enumerating all maximal cliques, see [7]). -

2 Planar Map Graphs

21 A Characterization

Consider a collection R of n regions in the plane, each home-
omorphic to a disc, so that no two regions overlap except
possibly on their boundaries; these adjacencies define a pla-
nar map graph G. A typical boundary point is shared by
one or two regions, however there may also be exceptional
points where three or more regions touch. Consider the se-
quence of adjacency changes around any one region, ignoring
“empty” stretches. A simple argument shows this sequence
is finite (in fact linear); hence a finite collection P of points
witnesses all adjacencies among the regions of R.

In each region R we choose a representative interior point,
and connect it with arcs through the interior of R to the
points of P bounding R. In this way we construct a bipar-
tite planar graph G' = (R, P, E'), so that any two regions
R, and R; overlap iff they have distance two in G'. Thus G
equals G'*|r, the square of G’ restricted to R.

Conversely, given a bipartite planar graph G', we may re-
verse the construction to find a corresponding arrangement
of regions and bounding points. Hence we have:

Theorem 1 A graph is a planar map graph iff it is the half
square of a planar bipartite graph. W

Corollary 2 The recognition problem for planar map graphs
is in NP.

Proof: We establish that in the Theorem above the right-
hand side of the bipartite graph need only have 3n—6 nodes.
First, we may assume that the right-hand side has no redun-
dant points; then we choose for each node u of the right-hand
side two nodes on the left connected only through u. Delete
all other edges of the graph. The half square is then a pla-
nar graph with as many edges as there were nodes in the
right-hand side.
We also make some simple initial remarks:

o In the bipartite graph representation, bounding points
of degree three may be replaced by points of degree
two.

e If G has no 4-clique, then it is a planar map graph iff
it is a planar graph. !

e A planar map graph may contain cliques of arbitrary
size.

e From the previous two remarks, it is clear that the
“planar map graph” property is not monotone, and
hence cannot be characterized by forbidden subgraphs
or minors.

2.2 Cliques in Planar Map Graphs

Consider a planar map clique of size n, it may be realized
in one of the four following ways:

1. The n regions share a single boundary point. We call
this the pizza (Figure 2(a)).

2. Some n — 1 regions share a single boundary point, and
the one remaining region is arbitrarily connected to
them at other points. We call this the pizza with crust
(Figure 2(b)).

3. If n > 6, there may be three points supporting all
adjacencies in the clique, with at most n — 2 regions
at any one point. In particular, there are at most two
regions adjacent to all three of the points. We call this
the hamantasch (Figure 2(c)).

4. An ordinary planar clique (that is, with no points of
degree more than three), such as the rice ball (the pla-
nar K4, Figure 2(d)).

Theorem 3 A planar map graph cliqgue must be one of the
above four types.

Proof: Let n = |R|. By Theorem 1, we have a bipartite
planar graph G = (R, P, E’) such that G?|r —the restric-
tion of G* to R— is the clique K,. Let d be the maximum
degree of all points p € P.

If n = d, we have a pizza. If n = d + 1, we have a pizza
with crust. So we may assume n > d + 2. If d < 3, we may
replace all degree-three points by three degree-two points,
preserving G {R and establishing its planarity; this forces
n < 4 — the rice ball. So we now assume d > 4.

Pick point p; of maximum degree d, and regions R; and
R; not adjacent to p;. Consider the set P’ of all points
connecting R; or Ry to the regions around p;. We claim
that there is a point p2 € P’ connecting Ri, Rz, and at
least two regions R3 and R4 adjacent to p;. Otherwise, by
drawing arcs through the points of P’, we could get a planar
Kg,2 with the d regions around a common face, which is
impossible.

Since p; has maximum degree, we may also pick two re-
gions R and Re adjacent to p1 but not p2. So the graph G
contains the subgraph in Figure 3(a). Notice that p1 R3pa R4
forms a cycle. All other regions of R must be either con-
nected to both p; and p2 (thus having the same type as Rj
and R4) or they must all be embedded on the same side of
this cycle (say the inside). By this argument and relabel-
ing some regions if necessary, we arrive at Figure 3(b), the
partial embedding of pi, p2, and all their edges to adjacent
regions.

There must exist a third point ps inside the cycle to
connect R; and Re. These edges separate Rs (and all other
regions adjacent to p; but not p;) from R, (and all other
regions adjacent to pz but not p1), so all these regions are
connected to ps, yielding Figure 3(c).

Now pi, p2, and p3 support a hamantasch on the regions
adjacent to p, or p2; we must show there are no other re-
gions. If we try to insert such a region (not adjacent to p;
or p») into Figure 3(c), we see that it cannot be adJacent to
either R3 or R4, so we are done.

By a careful analysis of each kind of clique, we can now
show:

Corollary 4 The number of cliques of size 4 or more in a
planar map graph with n nodes is at most 12n. M

2.3 k-Planar Graphs

Our attempts at a polynomial-time algorithm for recogniz-
ing planar map graphs have failed (see the last section for a
discussion). Consider however the interesting special case in
which the maps are restricted to be such that no more than
k regions share a point. We call the class of graphs that are
realized by such maps k-planar graphs. It is easy to see that
3-planar graphs are the ordinary planar graphs, and that the
USA graph is 4-planar. It is easy to extend Theorem 1, to
characterize k-planar graphs as the half-squares of bipartite
planar graphs whose right-hand side has degrees k or less.

In the next section we focus on 4-planar graphs and
their recognition algorithm. It follows from Theorem 3 that
4-planar graphs have no 7-cliques, that all 6-cliques are
hamantaschen, all 5-cliques are pizzas with crust, and all 4-
cliques are either pizzas, or three regions touching at three
points and enclosing a fourth (variants of the rice ball). Fi-
nally, an eight-node example, omitted in this abstract, shows
that 4-planar graphs are non-monotone (in that deletion of
an edge may turn a 4-planar graph into a graph that is not
4-planar), and hence polynomial-time recognition does not
follow from first principles.

3 Recogpnition of 4-Planar Graphs
In this section we sketch the proof of our main result:

Theorem 5 4-planar graphs can be recognized in polyno-
mial time.

For a draft of the full proof see [1].

3.1 Preliminaries

Let G be a graph. A map L is a finite set of planar regions
that are disc homeomorphs with disjoint interiors. A map is
a realization of G (or a map of G) if its regions are in one-to-
one correspondence to the vertices of GG, and in which two
regions touch each other iff the corresponding vertices are
adjacent in G. A map of G is called a 4-map of G if no five
regions meet each other at a point. To prove the theorem,
we must design a polynomial-time algorithm which given G,
constructs a 4-map of G if one exists, and reports “failure”
otherwise. Since it is trivial to check whether a given map is
a realization of a given graph, we may assume that G has a
4-map and only need to show how to find one. Without loss
of generality, we may further assume that G is biconnected.

We call vertices of G regions. For a region ¢ € V(G),
Ne(c) denotes the set of regions adjacent to ¢ in G. Let
U C V(G) and F C E(G). Ng(U) = UcevNe(c), and
G[U] denotes the subgraph of G induced by U. G-~ U — F
denotes the graph obtained from G by deleting the edges
in F and the regions (together with the edges incident to
them) in U. For a subset W of U, C{ p(W) = {c € V(G) —
U|W = Ng(K)NU, where K is the connected component
of G—U — F containing c}. When U or F is empty, we drop
it from the notations G — U — F and C§ p(W).

An exztensible 4-map of G[U] is a 4-map of G[U] that can
be extended to a 4-map of G. For k = 2, 3, 4, a k-point in a
map is a point at which exactly k regions meet. A maximal
clique of size k is denoted by MC; (recall that G has no
MC;y, with k > 7). Let I be a positive integer. We say that
two maximal cliques C and C’ are [-sharing if |[C N C'| = L.

R; R; R,

D1 D2

Rg Ry R,
(a)

(c) D2

Figure 3: A subgraph of G, and its embedding.

Definition 1 A correct 4 pomt is a cyclicly ordered list
{co,...,cs,co) of four regions in G such that G has a 4-
map in which (1) the four regions co through c3 meet at a
single point (say, p) in this order and (2) whenever co and
ca {or ¢1 and cs, respectively) together with two other re-
gions d' and d” meet at a point q # p, the cyclic order of
the four regxons around q is cq, d', c2, d”’, co (respectively,
ci,d, cs,d’, c1). Removing a correct 4—p01nt entails adding
a new region and replacing the 4-clique by a wheel (in the
indicated cyclic order) centered in the new region.

Lemma 1 Let G' be the graph obtained from G by remov-
ing a correct 4-point P = (co, -, c3,c0). Then, (1) G’ has
a 4-map, (2) if G’ has neither MCs nor MCs G' has fewer
MCy’s, and (3) given an arbitrary 4-map of G’, we can con-
struct a 4-map of G in linear time.

3.2 Outiine of the algorithm

We say that a 4-map £ of G[U] can be tmnsformed to another
4-map L' of G[U] if whenever L is extensible, so is £'. A map
is said to be explicit if all points in it are distinct except that
for one or more holes enclosed between exactly two regions,
the two 2-points on the boundary of each of these holes may
actually be identical; a map that is not explicit is rough.
A explicit map £ is said to be final if there is no 3-point
in it and every hole in it is enclosed by at most 3 regions.
Recall that G is assumed to have a 4-map realization. Our
algorithm starts by enumerating all the maximal cliques of
size > 4 in G —by Corollary 4 there are O(|V (G)|) of them.
We deal with the MCeg’s, MCs’s, and MCy’s in G, in this
order.

MCs’s. Let C = {c1,¢2,...,¢6} be an MCs in G. It is
easy to see that every extensible 4-map of C can be trans-
formed into another of the form shown in Figure 4. As in
all displayed maps of cliques, in this figure the regions 1, 2,
3, 4, 5, and 6, are a permutation of the nodes in the clique.
A typical map that we display during the case analysis is in
fact an equivalence class of maps, in the sense that different
points in it may or may not coincide. However, Figure 4 is
explicit; by this we mean that different points in it represent
distinct points of the map —with a single exception: The
two points delimiting a hole between two regions, such as
p and q in this figure, could coincide. Figures that are not
explicit are called rough. We call an explicit map final if
there is no 3-point in it and every hole in it is enclosed by at
most. 3 regions. Notice that Figure 4 is final. Our treatment
of MCe’s'is based on the following result:

Theorem 6 Let S = {(1,2), (3,4), (
(1,4), (1,6), (4,6)}, and T = {(2,3, 5) (1,4,6)}. Then, for
every permutation m = (1,...,6) of (e1,-- ,cs), the 4-map

6), (,3),(2,5), (3,5),

Figure 4: An MCs.

in Figure 4 is extensible iff the family F = {C§ ({i,5}) | (:,J) €
Syu{c§{i,j,k}) | (i, 4,k) € T} is a partition of V(G) - C.

By Theorem 6, we can compute an extensible 4-map of
C in linear time. Then we recursively ﬁnd a realization of
the subgraph of G induced by {i,5} UC§({i,}) for every
pair (i,j) € S, and one of the subgraph of G induced by
{i,5,k} U CC ({i, 4,k}) for every triple (¢,7,k) € T; each of
the graphs in the recursive calls has fewer MCs¢’s than G,
and the total number of regions in these graphs is larger
than that in G by only a constant.

Once we have eliminated all MCg’s, we consider MCs's.
Unfortunately we are no longer guaranteed a “final” map,
so there are numerous layouts to consider, depending on the
rest of the graph. At the highest level, our cases are guided
by the number of other MCs’s 4-sharing with the current
MCs, with several layouts to consider in each case. After
eliminating all MCs’s, we turn to MCa’s, where there are
even more layouts to consider. Because of space restrictions,
we present only a few illustrative cases in Appendix A. For
the full argument, see [1].

4 Discussion and Open Problems

The time bound O(n?) follows from a very superficial and
generous analysis of the running time. The cubic part comes
from certain isolated cases, in which a less efficient kind of
recursion occurs. This can probably be eliminated, bringing
the time down to O(n?). A further reduction to O(nlogn)

could be possible, by using ideas of dynamic connectivity in
the face of edge deletions, see for example [6].

There is an interesting variant of the problem, in which
we require that the union of the regions be a simply con-
nected region, with no holes —that is to say, we do not allow
“lakes” between the regions. There is a similar characteri-
zation as that of Theorem 1 for this case; the only difference
is that now all internal faces of the planar bipartite graph
must have length four and six. A variant of our algorithm
works in this case as well. If we further insist that we do
not have an infinite face either —that is, the union of the
regions comprises a sphere— then the problem becomes sub-
stantially easier, as the most complex of all top-level cases
(the type-2 non-pizza). becomes straightforward, resulting in
approximately a one-third reduction in the complexity and
length of the proof.

Naturally, we are very interested in a polynomial algo-
rithm for recognizing 5-planar graphs, or even general planar
map graphs. We conjecture that both problems are solvable
in polynomial time. In view of the complexity of the case

analysis for the 4-planar graph problem, however, new in- °

sights seem to be needed in order to make progress in this
direction.

There are two more interesting generalizations of the
problem, motivated by topological inference: What if the re-
lation between certain pairs of regions (touch/do not touch)
is left unspecified —that is, we are given a graph with “don’t
care” edges? And what if we also allow nclusion relation-
ships between regions? We conjecture that the first problem
is NP-complete (for the general problem, and the 4-planar
special case), while the latter polynomial.

Finally, a natural and interesting question in connection
with planar map graphs is, do siz colors suffice for coloring
any 4-planar graph? We conjecture that they do.

References

[1] Z. Chen, M. Grigni. C. H. Papadimitriou “Planar
map graphs,” manuscript, available at
http://www.mathcs.emory.edu/~mic/pmg/, 56 pp.

[2] Ehrlich, G.; Even, S.; Tarjan, R. E. “Intersection
graphs of curves in the plane” J. Combinatorial The-
ory Ser. B 21 (1976), no. 1, 8-20.

[3] M. J. Egenhofer. Reasoning about binary topologi-
cal relations. In Gunther, O. and Schek, H.J. (eds.),
Advances in Spatial Databases, SSD’91 Proceedings,
Springer Verlag. 143-160, 1991.

[4] M. J. Egenhofer and Jayant Sharma. Assessing the
consistency of complete and incomplete topological
information. Geographical Systems, 1:47-68, 1993.

[5] M. Grigni, D. Papadias and C. H. Papadimitriou.
Topological Inference. Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence,
901-906, 1995.

[6] M. Rauch Henzinger and V. King “Randomized dy-
namic graph algorithms with polylogarithmic time
per operation”, Proc. 27th STOC, pp. 519-527, 1995.

[7] D. S. Johnson, M. Yannakakis, C. H. Papadimitriou
“On generating all maximal independent sets,” ILP
27, 3, pp. 119-123, 1988.

[8] J. Kratochvil. String graphs II: Recognizing string
graphs is NP-hard. Journal of Comb. Theory, Series
B, 52(1):67-78, 1991.

[9] J. Kratochvil and J. Matousek. String graphs requir-
ing exponential representations. Journal of Comb.
Theory, Series B, 53(1):1-4, 1991.

[10] D. Papadias and T. Sellis. The Qualitative Repre-
sentation of Spatial Knowledge in Two-Dimensional
Space. Very Large Data Bases Journal, Special Issue
on Spatial Databases, 4:479-516, 1994.

[11] C. H. Papadimitriou, D. Suciu, V. Vianu “Topologi-
cal Queries in Spatial Databases”, Proc. 1996 PODS.
To appear in the special JCSS issue, 1997.

[12] Terence R. Smith and Keith K. Park. Algebraic ap-
proach to spatial reasoning. International Journal
Geographical Information Systems, 6:177-192, 1992.

A Algorithm Sketch for MCs’s and MCy's

In this appendix we sketch some of the cases for eliminated
MCs’s and MCy’s from the graph. We assume that MCg’s
have been eliminated, as described previously.

MCs’s. We have removed all MCsg’s from G. Our algo-
rithm then proceeds to removing MCs’s from G. It is not
difficult to see that the five regions in every MCs must form
a “pizza with crust” in every 4-map of G. (A hamantasch
of five regions is actually a pizza with crust.) Thus, in ev-
ery extensible 4-map of an MCs C, there is a point shared
by exactly four regions in C. This motivates the following
definition:

Definition 2 Let C' be an MCs in G. A correct center of
C is a cyclicly ordered list {co,-..,cs,co) of four regions in
C such that C has an extensible 4-map in which the four
regions co through c3 meet at a single point in this order.
A correct crust of C is a region ¢ € C such that the four
regions in C — {c} constitute a correct center of C (in some

way).

To remove an MCs C from G, the basic idea is to find an
extensible 4-map of C and then remove its center. The fol-
lowing three simple facts are useful in finding an extensible
4-map of C.

Fact 1 Every correct center of C is a correct 4-point in G.
Moreover, after removing it from G, G has fewer MCs’s.

Fact 2 There is at most two other distinct MCs’s 4-sharing
with C.

Fact 3 Let C' be another maximal clique in G. Then, if
|C' N C| > 3, no region in C — C' is a correct crust of C.
Moreover, if |C' N C| = 2, then in every extensible 4-map
of C whose center includes both regions in C' N C, the two
regions must appear around the center consecutively.

To find an extensible 4-map of C, our algorithm con-
structs a rough 4-map £ of C, and then calls the following
procedure with argument § = {£}:

Procedure Make_Final(S)

1. By distinguishing certain cases, from the rough 4-maps
in 8, construct a set of explicit 4-maps (of the same set
of regions as in the 4-maps in &) at least one of which
must be extensible whenever an extensible 4-map (of
the same set of regions) exists. Update S to be the set
of the constructed explicit 4-maps.

2. If some 4-map in § is not final, then perform the following
steps:

2.1. Select a certain set A of regions that has not ap-
peared in the 4-maps in S.

(/

>

7

Figure 5: A rough map of an MCs.

2.2, For each 4-map £ € S, if there is no way to add
the regions in A into £, then delete £ from S;
otherwise, add the regions in A into L.

2.3. If § is empty, then return “failure”; otherwise,
goto step 1.

3. For each final 4-map in &, based on a certain necessary
and sufficient condition (analogous to Theorem 6), de-
cide whether the 4-map is extensible or not.

To examine procedure Make_Final more closely, let C =
{c1,c2,...,c5} be an MCs in G and let us follow it for one
iteration. Figure 5 shows one of the starting rough 4-maps
of C. This figure is rough, because, for example, any two
adjacent points from among the five contact points in the
upper half-perimeter of the circle could coincide. Our al-

gorithm sets S to be the set of this rough 4-map and calls

Make_Final(S). To construct a set of explicit 4-maps from
the rough 4-map in S, procedure Make_Final distinguishes
three cases based on nc,4s, the number of MCs’s 4-sharing
with C in G.

Case 1: ncas = 2. Then, every extensible 4-map of
C can be transformed to one of the last three 4-maps in
Figure 6 each of which is explicit. At the end of step 1
(of the first iteration of procedure Make_Final), S becomes
the set of these three explicit 4-maps. Let the two MCs’s 4-
sharing with C be C1 and Cs. Let €1 ~C = {cs}, C2—C =
{c7}, C — C1 = {a1}, and C — Cz = {cs}. Then, procedure
" Make_Final adds ¢ and c7 to the three 4-maps in S and
gets three larger 4-maps as shown in Figure 7. Figure 7(a) is
final while the other two are rough. With S being the set of
the three rough 4-maps in Figure 7, procedure Make_Final
proceeds to the second iteration. We can prove that after
at most two further iterations, procedure Make_Final will
(1) find an extensible 4-map of C, (2) report “failure”, or
(8) succeed in decomposing G into graphs of fewer vertices
or fewer MCs’s and then recurse on each.

Case 2': ncus = 1. Then, every extensible 4-map of C
can be transformed to one of the last four 4-maps in Figure 6

! Actually, only after removing all the MCs’s 4-sharing with
exactly two MCs’s in G, our algorithm proceeds to removing those
MCs’s 4-sharing with exactly one MCs in G. Thus, during the

. " construction of an extensible 4-map of an MCs 4-sharing with

@ (L)

©)

Figure 7: Adding two 4-sharing cliques.

each of which is explicit. At the end of step 1, S becomes
the set of these four explicit 4-maps. Let the MCs 4-sharing
with C be Ci1. Let C1 — C = {c6} and C — C1 = {esa}.
Then, procedure Make_Final adds ce¢ to the four 4-maps in
S and gets four larger 4-maps shown in Figure 8. All four of
these maps are rough, because several pairs of points could
coincide. With S being the set of the four rough 4-maps
in Figure 8, procedure Make_Final proceeds to the second
iteration. We can prove that after at most two further iter-
ations procedure Make_Final will either find an extensible
4-map of C or report “failure”.

Case & nc,as = 0. This is the last and most involved
case for MCs’s, as we must further distinguish four cases
based on nc,3s, the number of MCjy’s 3-sharing with C in G
(we omit its detailed discussion). :

MC4’s. Once we have removed MCg’s and MCs’s from
G, we proceed to the MCy4’s. Thisis in fact the most complex
and tedious part of the algorithm and the case analysis.
Let C = {c1,...,c4} be an MCy in G. It is easy to see
that every extensible 4-map of C' can be transformed to
another of one of the forms in Figure 9. The second 4-map
in Figure 9 is final and the rest are explicit. We name the six
4-maps in Figure 9 pizza, 0-type non-pizza (or rice ball), 1-
type non-pizza, 2-type non-pizza, (two varieties), and $-type
non-pizza, respectively. For 0 < k < 3, there are exactly k
3-points in every k-type non-pizza.

Definition 3 A candidate non-pizza of C is a non-pizza 4-
map of C which is extensible whenever C has an extensible
non-pizza 4-map. A favorite non-pizza of C is a candidate
non-pizza of C which has the fewest 3-points among all the
candidate non-pizzas of C.

The algorithm for treating MCy’s proceeds as follows:
(1) For every MCy C in the current graph, determine its fa-

vorite non-pizza Lc. Examine all £L¢’s, in the following
order: rice-balls, 3-type, 2-type, 1-type.

(2) If some L¢ is a riceball, then based on a certain neces-
sary and sufficient condition, determine whether Lc¢ is
actually extensible or not. If it is, then use it to either
(a) find and remove a correct 4-point and repeat, or
(b) decompose the graph into smaller ones and then
recurse on each.

(3) If some Lc¢ is a k-type non-pizza, k > 0, then determine
whether L¢ is actually extensible. If it is, then use it
to find and remove k correct 4-points, and repeat.

(4) All remaining MCy’s are now pizzas, and we can use the
naive algorithm to find a 4-map of the current graph,
and therefore of G.

We omit the details of each case. For a draft of the
complete proof see [1].

" (R)

_ F‘ﬁuﬁ’ 7; T‘\Q P@;sSL(g €)(P(FC{"' Qayoutsl

exactly one MCs in G, our algorithm often makes use of the fact ' ‘9{_ on MC
that every MCs in the current graph is 4-sharing with at most ¥.
one MCs.

