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THE ROTATION SETS VERSUS THE MARKOV PARTITIONS

BRHHE A BB (KEICHIRO IWAI)

ABSTRACT. The rotation sets of homologically trivial homeomorphisms are studied. If
a homologically trivial homeomorphism has Markov partitions, we show the relation
between this homeomorphism and the Markov partitions, give the way to calculate
the rotation set from the Markov partition, and show that if a homologically trivial
homeomorphism has Markov partitions, the rotation set is a convex polygon.

81 Introduction

In this paper we show the relation between the rotation set for homeomorphisms
whose associated homomorphism f, on H;(M;Z) is the identity map and the sofic
system of the subshift of finite type associated with the Markov partition. We give
the way to calculate the rotation set from the Markov partition and show that the
rotation set is a convex polygon and explicit representation of every extremal point
of this polygon.

We will define the rotation set for homeomorphisms whose associated homomor-
phism f, on H;(M;Z) is the identity map in Section 2, overview the theory of the shift
automorphisms in Section 3, define the Markov partitions and show some properties
of the Markov partitions in Section 4, and show the relation between the rotation
sets and the Markov partitions in Section 5.

Our main results are :

Theorem 5.2. Let (M, f) be a homeomorphism whose associated homomorphism f
on Hy(M;Z) is the identity map, and suppose (M, f) has a Markov partition R =
{R;} of M. Suppose the itinerary I(z) of r € M is I(x) = --+i_2,i_1,%0,%1,%2, "
and the image of the 2-block map S(Z(x)) of Z(x) is

S(I(:L‘)) = [ai—-Zyi—l][ai—l ,‘io][aio,‘il][aﬁ ;iz] Tt
Then the homological rotation set p(x, f) of f is given by

o, ) = Plasg)lass)

where P(a; ;) is the appearance probability of the subsequence “R;R;” in the itinerary
I(m) = i—27 i—laiﬂvilai2) ce e Ofl' 7'fP(a:,,’J) erists. .

and
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Theorem 5.3. Let (M, f) be a transitive homeomorphism whose associated homo-
morphism f, on Hi(M;Z) is the identity map and suppose (M, f) has a Markov
partition R = {R;} of M. Then the rotation set Rot(f) is a finite polygon and every
extremal point is obtained by the pointwise rotation set of some periodic point.

Bowen|[1] constructed Markov partitions on the basic sets of the Axiom A diffeo-
morphisms, so we conclude that the rotation set of Axiom A diffeomorphisms with
f« =id is a finite polygon if f is restricted on one basic set. Thus we have

Corollary 5.4. For an Aziom A diffeomorphism f with f, = id, the homological
rotation set is a finite union of finite polygons, and the mean rotation set is a ﬁmte _

polygon.

Thurston[3] constructed Markov partitions of the pseudo Anosov diffeomorphisms.
Thus we have . _

Corollary 5.5. For a pseudo Anosov diffeomorphism f with f,,, = id, the homological
rotation set is a finite polygon.

82 The rotation set

Let M be a closed manifold and let f be a homeomorphism of M whose associated
homomorphism f, on H;(M;Z) is the identity map. Here we define the rotation set

for f and show some properties.
Suppose O is a base point of f. Let p: M — M be the maximal Abelian covering

space and F : M — M be alift of f. Let £ € p~'(z) on M be a lift of z on M. y(a,b)
denotes a curve from a to b on M. O(a) denotes the lift of O which is the closest to
aon M. H,(¢, F,0) denotes the curve given by the concatenation of v(O(¢), F™ (¢ )
and y(F™(¢),0(F™(¢))). Since (M, p) is the maximal Abelian, every loop ¢ on M
is mapped to a null homologous loop p(c) on M. Thus for every curve'a on M, the
homology class of p(a) is uniquely determined by the start pomt and the end pomt ,
of a. Let [a] be the homology class of a.

[ Figure 2.1 ]

Proposition 2.1. For £,n € p~1(z), p(H. (&, F,0)) :ip(’ltn(n, F,0))

Let h,(z, f, F,0) denote the loop on M which is the image of p of ‘the curve
Hn (€, F,0) on M and [ha(z, f, F,0)] denote the homology class of h,(z, f, F, ).

Proposition 2.2.

n—1

[h‘n(xaf: F7 O)] = Z[hl(f(m)s f7F7 O)]

=0
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[ Figure 2.2 |

Proposition 2.3. Let F and G be lifts of f. Then the difference between the element
[hnl(z, f, F,0)] and [hn(z, f, G, O)] is na(h) for some element a(h) of H;(M;Z), and
a(h) does not depend on z.

Proposition 2.4. Let A and B are the different base points on M. Then [hnlz, f, F, A)|—B
[ (z, f,F B)] is bounded element of H1(M;Z). ,

Definition 2 5. The (homological) poznthse rotation set p(z, f, F) of z with respect
to f and F is defined as

oo [a(@, £, F,O)
n

n—>00

p(.’l),f,F) =

if limit exists.

Note that p(z, f, F) is an element of Hy(M;R).

Suppose F’ and G are lifts of f then there is an element  of the covering transfor-
mation D(M p, M) which satisfies G = hoF. Let a(F,G) be an element of H,(M;Z)
which is defined by h. Then the difference between p(z, f, F) and p(z, f,G) is equal
to a(F,G) and o(F,G) is not depend on z.

The set Rot(f, F') = {p(z, f, F) | = € M and p(z, f, F) exists} of the homological
pomtw1se rotation set p(z, f, F') is called the rotation set of f.

Remark. When f is homotopic to the 1dent1ty map, this deﬁmtxon agrees with that
of Franks [6].

Proposition 2.6. p(z, f¥,FN)= N -p(z, f,F)

Let us consider the mean rotation set with respect to the measure p on M. Firstly -
let us recall the following theorem. :

Theorem (Birkhoff’s ergodic theorem). Let p be a measure on M and suppbse
f: (M, ) — (M, ) is p-preserving and h € L'(p). Then

—ZMH@
=0 -

converges a.e. to a function h* € L!(p).

If f preserves the measure p on M, from the Birkhoff’s ergodic theorem, the limit

nly

lim [hn(x,f,F, O)] — Lm ;z[hl(f (.’E) f,F O)]

n—oo n n—oo
=0
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emsts for almost every z with respect to p.
In the following arguments, ;1 denotes an f-invariant measure on M. Let pu(f, F)

be the mean rotation set defined as

pul(f, F) = /Mp(w,f; F)dp

Proposition 2.7 (The ergodic theorem). The mean rotation set satisfies the
following equality.

pulf, F) = A (b (z, f, F, O)]dps

Lemma 2.8. Let M be a compact manifold and let f and g be homeomorphisms of
M whose associated homomorphism f. on Hi(M;Z) is the identity map. We also
suppose f and g have the common invariant measure j1 on M Let go f be a lift of
the composition go f to M. Then the rotation set pu(go f,go f) of the composition
go f of f and g is equal to the sum p,(f, F) + pu(g,G) of the rotation set p,(f, F)

" of f and that p,(g,G) of g with H1(M;Z) translation ambiguity.

§3 Shift Automorphisms

Let k be a positive integer and [k] e the set of numbers {1,2,--- ,k} with the
discrete topology. [k] is called the alphabet set. Let Z(k) be the product space [k]Z.
Then an element of ¥(k) is an infinite sequence a = - --a_2,a_1,agp, a1, a2, - -, where .
every a, is contained in [k] = {1,2,--- ,k}. The product topology on Z(k) induces

the metric d(a,b) = Y 272"~1§,(a,b), where 6,(a,b) = 0 if a,, = b,, otherwise

6n(a,b) = 1. Then Z(k) is compact, totally d1sconnected and has no isolated points,
thus X(k) is homeomorphic to the Cantor set.

Let the shift o be the homeomorphism on ¥(k) defined as (o(a)) = @Gp41 Where
(0(a)). denotes the n-th digit of the infinite sequence o(a). The shift moves the

sequence one place to the left.
Next we define the subshift of finite type

Definition 3.1. Let A = (As;) be a k x k matrix of 0-1 entries. We define the
subspace X4 of £(k) as

Ya={ac€ Z(k) | Aaiasy, =1 for every i}

Then X4 is a closed o-invariant subspace of ¥(k). The restriction of o on ¥4 is also
written as 0. We call the pair ($a,0) a subshift of finite type and the matrix A is
called the transition matriz. Every member of ¥4 is called an admissible sequence.
If for every i and j, there is a positive integer n(ij) such that A"(” ) £ 0 then the
matrix A is called tmnsztwe .
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FOI_. {Ci7 Cit1,""" 1Ci+j} - [k]a the set
C(c'iac‘i—l—l)"' )cz—l—]):{a’ezA ‘l'ak:cka iSkSz’*‘j}

is called a cylinder.

The subshift of finite type defines the oriented graph I" whose vertices are [k] and
whose oriented edges are given by the matrix A as follows:

For a cylinder C(co, c1, - - - ,¢;), we attach the oriented path y(C(co,c1,- -+ ,¢;)) =
g — ¢1 — ¢g — --- — ¢j of I' to this sequence. Inversely, we can determine the
cylinder C from the finite path on I'. '

- An oriented path ay — a; — az — --- — a,, on I is called a simple loop when

the path satisfies ag = a,, and a; # aj forevery 0 <i<j<m—1.

Let V be the vector space hulled by [k] and for a in (X4, 0), we define elements
vn(a) and v(a) of V as follows:

ag+---+ay
n—+1
v(a) = lim v,(a) if limit exists
n—0o0

vn(a) =

Suppose @ = - --ag,ay, - - ) Gp—1,00,81," ", Gp—1, " - € X4 is periodic with period

p. Let I; be a ﬁmte loop on I‘ given by [, = (ao — @y — -+ — ap_1 — ag). Then

Gotat o oy corresponds to this

we define the barycenter g; = v(a) =

periodic point, and G C V denotes the set of these barycenters. Note that every
periodic point of (X 4,0) corresponds to some loop of I.

Lemma 3.2. Let £, be a subshift of finite type of the transitive transition matriz A
with alphabet set [k] = {1,2,--- ,k} and T be the graph given by the transition matric
A. Let V be the vector space hulled by {1,2,--- ,k}. g; denotes the barycenter in V
corresponding to the simple loop I; of I ,

For every admassible sequence @ = ---a_18001 """ of ¥4, we define the vector
v} vp, vt andv inV as ‘ '

(a0+a1—_{~---+an-—1 +an)

1
+ =
@) = —

vt(a) = Jim vi(a)  if limit exists

(a~n+a_n+1+ -+a_1+ap+a;+-- +an1+an)

(@) = 5011
v(a) = lim v,(a) if limit exists

Then the set Pt = {vt(a)la € T4} agrees with P = {v(a)la € L4}, and each of
them is equal to the closure of the convez hull Conv(G) of G. Moreover, Conv(G) is
a convez finite polygon.
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§4 Markov partitions
In this section, we define a Markov partiﬁion and show some properties.
- Let M be a compact manifold and f : M — M be a homeomorphism of M.

Definition 4.1. Let My be a subset of M. An (at most countable) partition a of
M is called a topological generator for My if the following conditions are satisfied:

(1) The union U IntA of the interior IntA is dense in M and IntA # @ for every

A€o
A€ a.

(2) if z € My and every sequence A;, € « satisfies that

ze ) (n] f¥(IntA;,)

n€Zk=-n

then

3= () fntd,)

n€EZ k=—n
where A is the closure of A.

Definition 4.2. A finite topological generator o = (A1, Az,--- , An) for M sat-
isfying A; c IntA; for every i is called a Markov partition for M if the follawmg

conditions are satisfied:

(1) (Local product structure) For every A;, there exist compact spaces E; and E,
and a topological isomorphism

@i : A = E; X F;
such that for every = € IntA; with f(z) € IntA; for some 1 < j < N,
F(Ei(z) NIntA;) D E;(f(z)) N IntA,
F7U(Fi(f(z)) NIntA;) D Fi(z) N IntA;

where E,(:c) = {y € E; ‘| <p,(y) € E,x {112}} and F;(z) = {y € F; | vi(y) €
{z:1} x Fi} . '

(2) (Boundary condition) There exists a decomposition .
.
M\ | JInt4; = B* UB~
=1

(not necessarily disjoint union) such that

f(BY)c BY, fY(B)cB
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When (M f) has a Markov partition, this defines the transition matrix 7' = (tij)
of I x I matrix which is defined as ‘
t___{1 if f(IntR;)NR; #£0
Y10 otherwise

This transition matrix T defines the subshift of finite type (Zr,0).

The itinerary I(z) = ---i_1igi1%2--- of = is an element of ¥4 defined as ¢ =1
if f¥(x) € R; for every z in M. When f*(z) is on 8R; and OR,,, define 7 = [ or
ix = m properly.

Let M be a manifold and f be a homeomorphxsm on M. Suppose f on M has
Markov partitions and let R = {R;,--- , R;} be a Markov partition of M. Then we
can define the semiconjugacy of ¢ on the subshift of finite type (Xr,0) and f on M
as follows; '

For every a in ZT, we can find = in M whose itinerary Z(z) is @ = - - -¢_1igi1i2 - - -,
- where i, = j if f*(z) € R;. 0 denotes this map. Since every = in M has its itinerary,
0 is clearly surjective. We have the two representation of a rational decimal which
makes 6 finite to 1. The continuity of 0 is given from the dlrect calculations [16].

Thus we have the following semiconjugacy

Sr —— Zr

el la’
M M

where 0 is at most k2 to 1.

§5 The rotation set v.s. the Markov partltlon

Here we show the relation between the rotation set p(x f ) and the Markov parti-
tions.

In this section we suppose (M, f) has a Markov partition R = {Ry, Rz,--- , Ri}
of M. (M, f,R) induces a subshlft of finite type and (X4, 0) denotes this subshlft of
finite type.

Let O be a base point on M and (M, p, M ) be the maximal Abehan covering space.
We attach the itinerary Z(z) € £ 4 to every = in M. For the Markov partition, take a
point z; in the interior IntR; of R; and let this point. denote the representative point
" of the rectangle R;. Let & € p~!(z;) be a lifted point of z; € IntR; and let R; be
the lifted rectangle of R; which contains &;. Suppose Intf(R;) NIntR; # @, there is a
lift R; of R; such that Int (R;) NIntR; # 0. Let &:; be a point in IntF(RL) N IntR;
and ¢; € p~!(z;) be the representative point of R We connect F'(§;) and §; by a
simple curve and g;; denotes this simple curve. Then we have the curve A;; on M
by the concatenation of y(0(&), F(&)), gi; and ~(¢;, O(¢;)) which defines the loop
a;j on M. Let [a;;] € Hy (M;Z) denote the homology class of the Ioop a;j.

[ﬁgure 5.1]
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Definition 5.1. 2-block map S : £, — (H;(M;Z))” of the subshift of finite type
T4 to (H1(M;Z))* is a homomorphism defined as follows.

~ Suppose @ = ---a_z,a_1,a9,a1,a2,--- is an element of ¥,. For every pair
(ai,aiy1), @ € Z of @ € T4, there is an element [ag, q;,,] of Hi(M;Z). Then
S(a) is defined by

S(a) =---[da_y,a_,][®%_, ,a0)[a0,01][@¥ay,a2] - -

Note that (S(X4),0) is a typical example of the sofic system.[21]

Theorem 5.2. Let (M, f) be a homeomorphism whose associated homomorphism f,
on Hi(M;Z) is the identity map, and suppose (M, f) has a Markov partition R =
- {R;} of M. Suppose the itinerary Z(z) of t € M is I(x) = ---i_3,i_1,%,%1,%2, "
and the image of the 2-block map S(Z(z)) of Z(x) is :

SZ(z)) = - [i_5,i )0, ,igl [ i ][y in] - -

Then the homological rotation set p(:z:, f) of f is given by

p(z, )= Plaij)les)

i

where P(a; ;) is the appearance probability of the subsequence “R;R;” in the itinerary
I(z) = --+i_2,5_1,80,1,82, -~ of T if P(a;;) emists.

Noting that a homomorphic image of the convex finite polygon is also the convex
finite polygon, from the Lemma 3.2, we have

Theorem 5.3. Let (M, f) be a transitive homeomorphism whose associated homo-
morphism f, on Hi(M;Z) is the identity map and suppose (M, f) has a Markov
partition R = {R;} of M. Then the rotation set Rot(f) is a finite polygon and every
extremal point is obtained by the pointwise rotation set of some periodic point.

Bowen|[1] constructed Markov partitions on the basic sets of the Axiom A diffeo-
morphisms, so we conclude that the rotation set of Axiom A diffeomorphisms with .
f« = id is a finite polygon if f is restricted on one basic set. Thus we have

-Corollary 5.4. For an Aziom A diffeomorphism f with f. = id, the homological
rotation set is a finite union of finite polygons, and the mean rotation set is a finite

polygon.

Thurston|[3] constructed Markov partitions of the pseudo Anosov diffeomorphisms.
Thus we have ' ’
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Corollary 5.5. For a pseudo Anosov diffeomorphism f with f, = id, the homological
rotation set is a finite polygon. ’
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