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1. Introduction.
Let  be a bounded open set in R™, n > 2, with smooth boundary I'. We con-

sider the initial boundary value problem for the system of linear partial differential
equations of first order

Z Ajaj'u + Apriu=F in [0, T] x

3=0
(L1) Qu=0 on [0,T]xT
uw(0) = f on €,

where 7o is the time variable, sometimes written as ¢, 0; = 0/0z;, 0 < j < n,
and the coefficients A;, 0 < j <n 41, and Q are [y x [y complex matrix-valued
functions on [0, 7] x £ and T respectively.

We assume that (1.1) is a symmetric system with a maximal nonnegative
boundary condition in the sense of Friedrichs [5] and Lax—Phillips [8]. The matrix
> 7=1VjA; defined on [0,T] x T, where v = ¥(v1, ..., vy) is the unit outward nor-
mal to I, is called the boundary matrix. When the boundary matrix is regular
everywhere on [0, 7] x I, the problem (1.1) is called non—characteristic and in the
other cases characteristic. There are many studies on the strong solution in the
sense of Friedrichs in both the non—characteristic and characteristic cases ([5], 8]
and [8], [16], [17], etc. respectively). In this paper we are interested in the higher
order regularity of the strong solution to the characteristic problem.

The strong solution to the non—characteristic problem evolves continuously in
the usual Sobolev space just like the solution to the Cauchy problem ([18], [27]).
Some characteristic equations enjoy the same property thanks to their special struc-
ture ([7], [10], [11]). This is not always true of all the characteristic problems, as
illustrated by several equations including the one of ideal magneto—hydrodynamics
([10], [13], [26]). Hence, we are forced to introduce some other function spaces than
the usual Sobolev spaces in handling the higher order regularity of solutlons to the
characteristic problem of a general form.



A few spaces have been proposed when the boundary matrix is of constant rank.
Rauch [16] proved that the strong solution and its derivatives in ¢ evolve continu-
ously in the function spaces in which only the regularity of tangential derivatives
in the L2-sense is taken into account. This result, referred to as the tangential
regularity, is not available for solving quasilinear problems because the function
space lacks several properties indispensable to nonlinear analysis. Yanagisawa—
Matsumura [29] introduced some weighted Sobolev spaces in which the regularity
of normal derivatives is appropriately considered and succeeded in solving the
equation of ideal ‘magneto—hydrodynamics. Ohno-Shizuta—Yanagisawa [15] han-
dled the equation of a general form using the same function spaces. We note that
the weighted Sobolev space, denoted by H*(Q?), was first introduced by Chen
Shuxing [4] in the study of a class of quasilinear hyperbolic systems.

The continuation of solutions in the weighted spaces needs further improve-
ments on the known results. Shizuta—Yabuta [22] presented a compatibility condi-
tion for the solution to lie in H7*(Q2) but failed to find the solution in this class. A
proof of this part was given by Secchi [20], [21]. His idea is raising the regularity
of the strong solution one by one up to the desired order. To obtain the tangential
regularity, for instance, he considered the equations for the tangential derivatives of
the solution. With some equations added they form a system of first order. Secchi
expected the derivatives as smooth as the solution of the system and tried to solve
it. The claim is that the solution is the fixed point of a contraction map sending
an element of a certain metric space to the solution of the equation in which the
unknown function of the system is partially replaced by the element. His plan,
however, seems not to work well here, for some other hypotheses on the structure
of the coefficient matrices are required than the assumptions to solve this equation
for all the elements of the metric space. '

In fact, the conclusion itself is true and the proof is straightforward as we
will show in this paper. Unlike [20], [21] we pick up the system of equations for
the tangential derivatives. By taking the degeneracy of the boundary matrix into
account carefully the system is just of the same form as (1.1). Hence, we have only
to concentrate on the study of the first order regularity of strong solutions. The
energy method suffices for our argument. It is also used to obtain the regularity
of the normal derivatives of the solution. No space with negative norm is involved
as compared with [20], [21].

We plan this paper as follows. In section 2 the definitions of several function
spaces and their basic properties are given. In section 3 we present the assumptions
and the statement of the main results. Section 4 is devoted to the proof of the
existence of solutions of first order regularity. The next two sections treat the higher
order regularity of solutions. All the technicalities are collected in Appendix.



2. Notation and function spaces.

R and C denote the fields of real and complex numbers respectively. N is the
set of natural numbers and Z, the set of nonnegative integers. :

Let E be a Banach space, m € Z4, and 1 < ¢ < 0o. We set several function
spaces with values in E as follows. For a compact interval I we denote the space of
~ m times continuously differentiable functions on I by C™(I; E). C7}(I; E) is the
'space of m times weakly continuously differentiable functions on I. Let I be an
open interval. LY(I; F) is the Li-space with respect to the Lebesgue measure on
I. WM(I; E) is the Sobolev space in I of order m:

{u € L4(I; E); distributional derivatives #u € LY(I; E), 0 < j < m}.

These spaces are equipped with the natural norms and are Banach spaces.

Let Q be a bounded open set in R", n > 2, with smooth boundary I'. H™(Q2),
m € Z,, is the usual Sobolev space in Q of order m. We see HO(Q) = L2(Q).
We introduce the subspaces HT*(Q) and H() of L?(2) which play crucial roles
in this paper. Also the space H{Z () is given. We begin with the notion of
tangential vector fields. Let A be a C®-vector field on Q. A is said tangential if
- for any C®—function u on §) vanishing on I' we have Au =0 on T..

Definition 1. Let m € N. H™(Q) is the set of a function in L?(Q) such that
all the distributions which result from operating j tangential vector fields and k
vector fields to the function lie in L?(Q) provided

(2.1) - 0<j+2%k<m.
The spaces H2(Y) and H{7}, () are defined by putting the conditions

(2.2) 0<j+2%<m+1, 0<j+k<m,
(23) 0<j<m, k=0,

in place of (2 1) respectzvely We deﬁne HY(Q) = HO,(Q) = HY,(Q) = L3(Q).

In a region apart from the boundary I elements of these spaces behave like
functions in H™(Q2). For describing the behavior of the elements near I' it is
convenient to introduce some standard function spaces. Let R} = {z;z, > 0}.
For a = (o4,...,0n) € ZT} we put

tan 601 aan-1 (:L‘n )an .

Definition 2. Let m € N. H*(R") is the set of u € L%(R%) satisfying 8%,,05u €
L2(R%), |a| + 2k < m. HZ(R®) is the set of u € L2(R%) satisfying 02,,0%u €



L%( 1), le|+2k < m+1, lo|+k < m. HZ (R}) isthe set of u € L*(R7) sat1sfy1ng
fanlh € L2( 1); le| < m. We define HO(R ) = HS*( 1) = tan(Rn) = ( 1)-

H™R"), H(RY}) and H{; (RY}) are H11bert spaces w1th,respect1ve norms

1/2
{ > lafanafzu&m}

|a|+2k<m

1/2

— a ok, 12
HL(RY) — Z Iatananule(R';)
o] +2k<m+1
la|+k<m

1/2
|u|H n(R." { Z |atanu|L2(R")} :

|a|<m

|u

It is noticed that we may replace the operator oy, with
o0 = gl ... o0 1 o5

to obtain the same definitions of the spaces as Definition 2 and the equivalent
norms to the original ones. We often make use of this observation.

Returning to the case of the domain 2, we choose a finite open covering {Vk; 0 <
k < N} of Q with the properties

(1) Vp is a relatively compact and open subset of ;
(2) Vi, 1 <k < N, is diffeomorphic to an open ball Bg.in R™ with center
at the origin by a C*°—diffeomorphism ® satisfying

O (Vi NQ) = BN Rﬂ_, O, (Vi NT) = BN BR?_;

and then a partition of unity {(x;0 < k < N} subordinate to the covering. We cut
off a function on Q by ¢, and carry out the change of variables. Since any tangential
vector field is represented in the local chart in By N"R”. by a linear combination of
the operators 04, ...,0h—1 and 2,0, with coefficients in C’°°—funct10ns u € L3(Q)
belongs to H*(Q) 1f and only if pou € H™(Q) and (pxu) o ®;' € HP(RTD),
1 < k < N. H(Q) and H{Z, () are characterized similarly by means of H{}(R})
H (R") respectively. Thus, H*(Q), H}(Q) and H{},(€?) are Hilbert spaces

Wlth respective norms
1/2
N

N
|u| gm () = {ISOOUI%{'"(Q) + > l(pru)
k=1



| N . 1/2
[ulgm () = {I(Poug{m(a) + > (oru) o B lﬁm(m)}
k=1

N 1/2
[ulgm () = {I%M%m(a) + 3 |(oru) 0 D5 HEm m )} -
| =

tan

Let C™(Q), m € Zy, be the space of m times continuously differentiable func-
tions on . Using C°(Q) in place of L?(Q), we define the spaces CT*(Q), CT2(Q)
and C*,(Q) as in Definition 1. The spaces CT*(R%), C™(R%) and C[%,(R%) are
given as in Definition 2. These spaces are normed in the same way as above and
become Banach spaces.

It is well-known that a function in H™(Q2) has the trace on the boundary.
The trace belongs to H™1/2(I"). This is also true of a function in H(Q). Let
u € H(Q). Writing z = (2, z,,), ' € R* !, 2, € R}, we rega.rd (pru)o®; ! as an
element of W3(RL ; H™ 1(RZ™1) N L2(R;n+, H m(R 1)) and apply the trace
theorem of Lions (Lions-Magenes [9]). Then, the boundary value (pxu) o @ |z, =0
exists and lies in

[Hm 1(Rn—1) Hm( )] =Hm_1/2(RZ‘71).

=

Thus, the trace operator vo : w — ulr is defined as a linear continuous map
from HTY(S) to H™ /(). Similarly, when m > 2, u € H*(Q) has the trace’
which belongs to H™ Y(T"). For several results on the higher order traces and
the characterization of the ranges of the trace operators we refer the reader to
Ohno-Shizuta—Yanagisawa [14] and Shizuta—Yabuta [22].

We are concerned with solutions of the problem (1.1) some components of
which lie in H(2) while the others in H*(f2) after certain transformation of
unknown functions. Such a structure of solutions is known as the extra regularity
in the literature [15], [20], [21], [22] and realized in the following function space. If
L € C*®(Q) vanishes on I, we have Lu € HT(Q) for any v € H*(Q). Moreover,
vo[Lz] = 0 holds since C°°(Q) is dense in H*(2). From this observation the
subspace of H™(Q) determined from P € C®(Q2) by

{u € H(Q); Pu € H(Q)}

depends only on the boundary value P = ~o[P]. We denote this space by HE(2).
This is a Hilbert space with the norm

1/2

by = {luldm@ + Pufma} -

For u € HB(R) the trace yo[Pu] € H™~ 1/2(I") depends only on P, which is denoted
by (Pfyo)[u] The boundary condition of the problem (1.1) is described by using



the closed subspace of HE(§2) given by
HE(Q) = {u € HE(Q); (P0)[4] = 0}.

Finally, we introduce several function spaces on intervals. All the spaces are
Banach spaces. Let I be a finite open interval. We define

X™(T;9) = () C™ (T B (@)

=0
Y™(1,0) = () WL H(Q)
i=0
W I,Q) = () W (I H Q).
j=0

- In this definition we replace HY(Q) with HL($), Hi.(Q) and tan(Q) and obtain
. the spaces X;*(I;Q), Y™(I;Q), W(I;Q); XTI, Q), YIHI;Q), Wik (I;Q) and
- XE.(1Q), Yo (L;Q), Wit (I;Q) respectively. Corresponding function spaces
in the half space % are defined in the same way. For a = (ap,01,...,0n) €
Z™1 we denote the differential operator 85°8y*---8."1' (zn0n)% by 62, and
xg"ag‘%f‘l 901109 by 82. For P € C*°(T) we put

m

XB(TQ) = | C™ (I Hp(Q).
j=0

3. Assumptions and main results.

We state the main results in two theorems. One deals with the existence of
solutions of first order regularity. The other is concerned with the higher order
regularity of solutions. We make use of the first theorem to show the latter. The
statements are given in such a way as they are applied to the problem in which
the coefficient matrices lie in the same type of function space as that of solutions,
the linearized problem of quasilinear equations kept in mind.

Let Q be a bounded open set in R", n > 2, with smooth boundary I'. v(z) =
*(i(z), ..., vn(z)) denotes the unit outward normal to I'. Supposing that A;(t, ),
0<j<n+1, and Q(z) are ly X lp matrix—valued functions on [0,T] x Q and T
respectively, we list the conditions imposed on (1.1).

(H.1). Aj(t,z), 0 < j < n, are hermitian and Ao(t, z) is positive definite at each
point (t,z) € [0,T] x Q. There exists a positive constant Ko such that

Ao(t,z) > Kol, (t,z)€[0,T] % Q.

(H.2). The subspace ker Q(z) is maximal nonnegative at each point (t,z) € [0,T] X
I, that is, the boundary matrix A,(t,x) = 37— vj(z)A;(t,) is nonnegative on



the subspace ker Q(z) and any subspace which enjoys this property and contains
ker Q(z) must coincide with ker Q(z).

(H.3). There exists a function P on T' with values in ly x ly matrices such that
ker A,(t, z) = ker P(z) holds at each point (t,z) € [0,T] x I'. The rank of P(z) is
a constant l1 € (0,lp) everywhere on T

(H.4). The rank of Q(x) is a constant ly everywhere on I'.
Remark 3.1. As was proved in (8], (H.2) implies

(3.1) ker A, (t,r) C ker Q(z), (t,z) €[0,T] x .

Remark 3.2. In the treatment of the equation of ideal magneto-hydrodynamics
with a perfectly conducting wall condition under a certain constraint on the ini-
“tial data the boundary matrix of the linearized equation is determined from the
shape of Q only, and dose not depend on a particular choice of functions about
which the quasilinear equation is linearized (Yanagisawa-Matsumura [29]). Hence,
the hypothesis (H.3) and the assumption on the smoothness of P in the theorems
below are not too restrictive in application, though the other types of hypothe-
ses are possible if we confine ourselves to the linear equation (1.1) with smooth
coefficients.

Theorem 1. Assume that

(32) {Aj € W (0,T;CH () N L®(0, T; C4(), 0<j<n,
' Ant1 € W(0,T;CO(Q)) N L=(0, T; C, ()

 and P,Q € C°(T"). Then, the problem (1.1) has a unique solution in X5([0, T}; Q)
for (£, F) € (Hb(®) NFL(@)) x WH(0,T; D)

Theorem 2. Let m > 2 and put r = max{m, 2[n/2] + 6}. We assume that
(3.3) A eY](0,T5Q), 0<j<n+],

and P,Q € C®(T"). Suppose that u € XZ~1([0,T); Q) satisfies (1.1). Then, if F
belongs to W{%(0,T; Q) and 3 ‘

(3.4) fo=u(0) e HEP(QNHGP(Q), 0<p<m~1,

we have u € XIS"([O,T]; ).

It is worthwhile to mention the meaning of the boundary condition in (1.1).
Let P(z) and Q(z) be the orthogonal projections to (ker P(z))* and (ker Q(z))*
respectively. Since P(z) and Q(z) are of constant ranks on I' and dependent on z



smoothly, so are P(z) and Q(z). By (3.1) we have ker P(z) C ker Q(z) and hence
Q(z) = Q(z)P(z). Therefore,

B(Q) = HP(Q) € Hgp(Q) = HG(Q) = HG()-

This implies AF([0,7];Q) C AZ([0,T];€?). Thus, the condition “Qu = 0 on
[0,T] x T for u € XB([0, T); Q) makes sense by saying u(t) € 7‘?8(9), 0<t<T.
By the continuity of the trace operator @ it is also proved that a function u €
X0, T); ©2) with the boundary condition must satisfy (3.4).

We may express fp in Theorem 2 as a linear combination of the derivatives
of f and the values at t = 0 of the derivatives of F with coefficients in Iy x I
matrix—valued functions on . The relations between f and F' given by (3.4) is
called the compatibility condition of order m — 1. When m = 1, the compatibility
condition is stated that f belongs to H: (1) D’HQ(Q) Shizuta—Yabuta [22] showed
that if a function u € X7([0, T); 2) satisfies the first equation in (1.1) with F' €

™(0,T;Q), it necessarily belongs to AB*([0,T];2). Hence to solve the problem
(1.1) in the class X7*([0, T; ©2) we must impose the compatibility condition on the
data. The above theorems say that we can solve the problem (1.1) in the class
X7([0,T); 2) for any data satisfying the compatibility condition.

In this paper, instead of proving the theorems themselves, we will present the
ideas of the proofs using an equation with smooth coefficients in the half space.
Let us consider the problem (1.1) in the half space R". All the hypotheses (H.1)
to (H.4) are meaningful also in the case {2 = R"}. We write

A11 A12
Aj= ( A21 A22>
with A}l and A?z, square matrices of order [; and [y — [; respectively and A}-z =

(A?l)*, an [ X (Ip — 1) matrix. In addition to the hypotheses above the boundary
matrix — A, is assumed to have the properties :

(1) AL is not singular on [0,7] x OR";
(2) A12 (A2* and A2 vanish on [0 T] x ORT.

We further assume that there exists a positive constant ¢y such that
(3.5) (ALY Al > &1, [0,7] x R
The matrices P and ) are assumed to be of the forms
_. E, O _(Ey O
P=(% ) o= (% 0)

where Ej is the identity matrix of order I. The relation (3.1) implies l; > ls.



As for the smoothness of the coefficients we put

.(3.6) Aj € B*([0,T]xR}), 0<j<n+]1,
in place of (3.2) and (3.3), where B™([0,T] x R7) is the space of functions on
[0, T] x R whose derivatives with respect to the operators O, .. ., 0 and z,0, of

order up to m are bounded and continuous on [0,T] x R%. We set
HERL) = {v e H(R}); Pu e HL(RY)}
HB(RY) = {u € HP(RL); Qu € HIH(RE), v0lQu] = 0}

m : -
XE([0, T, RY) = () C™7([0, T); Hp(RT))-
J=0
Then, all the statements in the theorems on the equation in 2 = R’} make sense.
In the sequel we write u € CP as *(uy, uyr) with uy € Ch and uyr € Clo—h, For the
sake of simplicity we assume that the support of the data (f, F') is compact, and
so is the support of the solution by the finiteness of the speed of the propagation.

4. Existence of solutions of first order regularity.
We solve the problem (1.1) by the method of non—characteristic regularization.
Let n be a positive parameter. We consider the approximating problem to (1.1):

ZA Oju — Ot + Apyru=F in [0,T] x R}

\ Jj=0
(1.15) Qu = | ’ on [0,T] x OR™
u(0) = f . on RY.

The boundary matrix to the problem (1.15) is Al(t,z) = —An(t,z) +nl. As was
proved by Schochet [19], A7(¢,z) is regular and the subspace ker @ is maximal
nonnegative at each point (¢,z) € [0,T] x ORY if n is small enough. Hence the
problem (1.1,) satisfies all the hypotheses in Theorem 1 but (H.3), which is replaced
by the hypothesis that the boundary matrix has full rank everywhere on the lateral
boundary. For such a problem the existence of solutions in the class X ([0, T]; R})
is known. See Rauch-Massey III [18]. Making use of this fact,-and the data (f, F)
fixed in the space H!(R%) x WL, (0,T;R"), we first prove that the sequence of
solutions to (1.1,) remains bounded in XP([O T];R%) as n tends to 0. Next, by
a sort of weak compactness method we find a solution to (1.1) in xL([0, T); R2).

Finally, by approximating the data the existence theorem in the general case is
established. The uniqueness of solutions in the class X5([0,7]; R%) follows from
the standard energy estimate.

The first step. Suppose that the data (f, F) € H 1(R ) x W (0, T Rﬁ) satisfies
Q7o[f] = 0. If > 0 is small enough, (1.1;) has a unique solution in X*([0, T}; R%).
Let us derive some uniform estimates of d%u, o € Z"Jr1 la| < 1, and Bnul with
respect to the parameter 7.



10

We first consider the case a = 0. By the hypothesis (H.1) the energy equality
A CHOTORTO) .
+ ((Anta () + Anpa (8)° 2 03 A5(1))u(t), u(t)) g

~ (Anltruld) u(t))m(m) ¥ n(u(t), u®) aom)
- Zm(u(t), F(t))L2(R1)
holds. Since —A,, is nonnegative on ker @), we have
. _ t L
e Ao ()" 2u(t)| r2(my) < |40(0)Y 2“(0)|L2(R1) + /0 €| Ag(s) T2 F(s)| p2(my ds

with a éonstant Ao satisfying
1 -1y *
540(t) "2 (An41(t) + Ansa(2) Z 8i4(8)) Ao(t) /2 > Aol

Henceforth we often make use of similar arguments to estimate solutions of various
symmetric systems.

In order to estimate 93u, |o| = 1, we use the mollifier M in Appendix A.
Choose €9 € (0,T). For a € Z"+1 la| <1, 0 < € < g9, we put

? = Oy (Meu).
uZ, |a| =1, belongs to X([0,T — eg]; R?) and satisfies the equation
. |

J=0
Qud =0 ' ~on [0,T —gp] x BR?,_

The forcing term J is expressed as J* = J%(ul, F.), where

J*(,G) = apAnByv — Z BaA 0 — Of Apy1v + 02G

Fe = Z[AjajaMs]U - ﬂ[an,Me]U + [An+1a Me]u + M.F.
7=0

We derive the estimate of ug as above and let ¢ — 0. Since u € X1([0,T]; R%),
we have M.u — u in° X1([0,T — go];R%). By Lemma A.1 the commutators
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[A;0;, MeJu, 0 < j < n, and [0, Mc]u tend to 0 in WL(0,T — o; R?). Hence,
{F:} converges to F' in W{,(0,T — €o; R ). Consequently, we obtain

et Ag(t)/202u(t) | p2(mrs) |
< 140(0)/282u(0) | 2ry) + /Ot &% Ag(s) 2T (u, F)(5)| 2(ry ) ds.
We have |
41)  |Ao(s) V2T (u, F)(s)|ama)
< KoM (102 AR = + 105 A2 1) O (5) 12ce

+ om (| AR oo + |AZ 1o ) 1B (5)| 2Ry
+ (Jon 08 AR L + |$5133A7212|L°°) |[ZnOnurr(s)|L2Ry)

+ o (|27 AR |1 + |2t AR Lo ) 10 urr (5) Lara)

n—1
+ D 107 Ajl = |05u(s) | 2(rny + IafAn+1lL°°lU(3)|L2(R1)}
Jj=0

+ | Ao(s) THPOTF ()| 2wy

To estimate the norm of d,us on the right-hand side of (4.1) we use the equation

Allan’u,[ = nﬁnul — Z Alla UL — Z A128 JUIT — Ak{}-luf - A}E}_IUU -+ FI.
=0

‘together with (3.5)_ to obtain
(co— 77)|8nUI(3)IL2(R")

Zo | A] |L°°I3JUI 3)|L2(R”)

Z A ?| Lo |B5urr(5) | 2(Rz) + |0t ARZ | Low |TnBrurr(5) L2 (ry)

+ lAn+1|L°°'|uI(3)iL2(R1) + AR L lurr ()| 2wy + |F1(s) 2y
Combining these estimates, then summing up those of 02u for |a| < 1, we get

e 3" |Ao(t)20¢u(t) r2my)

|o|<1

< 3 140(0)208u(0) 2wy
la|<1
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+ MKG! / Y08 S | Ag(s)/20%u(s) | parn) ds

le|<1

+M'/ Y5 5™ | Ao(s)TM282 F(s) | a(rayds

lal<1
with constants M and M’ independent of 7. Putting

Et) = Y [Ao(®)?05u(t)|2my), F(t) = Y |Ao(t) 1/ 207F(t)| 2(ry)»

lal<1 . |e]<1

we obtain by Gronwall’s inequality that

4 ¢
(4.2) E(t) < E(0) exp(=Ait) + M’ /O exp(=i(t — s))F(s)ds
with \; = Mg — M/Kp. We have also |

(4.3) |8nUI(t)|L2 ®Rz) < M"{ > l0%u(t)| 2 (mny + IF(t)!Lﬂ(Rn)}

|al<1

with a constant M” independent of 7.
The second step. Let u, be the solution of (1.1,) in X([0,T]; R%). Since

Byun(0) = Ao(0)H{ F(0) — f: Aj(0)0;f +10nf — Any1(0)f},
j=1

{8¢un(0)} converges in L?(R%) as 1 tends to 0. Hence, from the estimates (4.2),
gl\l.3) the sequence {uy} is bounded in W (0,T; L3(R%)) N L0, T; Hp(R%) N
HL(R%)). We apply Lemma B in Appendix to {u,} and find a subsequence {u,, }
Q\ nJ Uy
and u € W, (0, T; LA(R%)) N L=(0, T; Hp(R%) N'H(RY)) such that

Jim. (t) = u(t) weaklyin Hb(RT)NHH(RY).
The convergence is uniform with respect to t € [0,T] and w(0) = f holds.

u is a solution of (1.1) in X5([0,T); R%). To show this we rely on some basic
facts in functional analysis. Let F and F' be normed spaces. L(E, F') denotes the
space of bounded linear operators from E to F. We write L(E,E) = L(E). We
define the linear operators Ap(t) and L(t), 0 <t < T, by

(Ao(t)g)(z) —Ao(t z)9(z)

(£(t)g) zl Aj(t,2)99(2) + Anta(t, 2)g(a).
Z
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Obviously, Ag(t) belongs to £(L?(R7%)) with bounded inverse and .Ao( ), Ao(-)t €
CO([O T); L(L2(R%))). We express L(t)g as

n—1

Z A;jBig + An(I = P)Ong + AnOn(Pg) + Ant19

j=1

and notice that the operator 37~ 1 A;0; + Ap(I — P)8, is tangential. Then we
have L(t) € L(Hp(R}), L2(R")) and L(-) € C°([0, T}; L(Hp(RY), LA(R}))).
We shall prove u € CL([0, T}; LA(R%)) N C3([0, T}; Hp(R%:) N'HE(RY)) and

(4.4) Ao(t)Bu(t) + L(t)u(t) = F(t) in L*RY), 0<t<T

Proof: Let 1 be a relatively ‘compact and open subset of R’} . For a function gon
R” the restriction of g onto Q) is denoted by Rg. Wehave R € L(LAR2), L2(Q))N
LI(’HP(RQ'_) HY()). We define the operators Ay(t) € L(L2(Q)),0<t < T, by

(Ao(t)9)(a) = Aolt,2)g(@)

Ao(t) is invertible and Ao(), Ao(-)™1 € CO([0, T]; L(L3(£2))). We see
On € L(HY(Q), L3(Q)). From the equation (1.1,) we have

Ry, (t) = RAG(E) T (F(£) = L(E)un; (1)) + njAg™ (£)0n Rt (¢)-

The right-hand side converges to R.Ag(t) "1 (F(¢) — L(t)u(t)) weakly in L2()) uni-
formly on [0, T]. Taking the weak limits of the both sides of

t
Rty (£) = f) = /0 Ry, (7)dr,

we obtain ,
R(ut) - £) = | RAo(r) ™ (F(r) = L(r)u(r))dr

and immediately
R{u(t) - f - /0  Ao(r) " (F(r) — £(r)u(r))dr} = 0.
Since § is arbitrary, we get
u(t) ~ f = [ Aolr) M (F(r) = £lr)u(r))dr =

This shows that u € CL([0, T]; L2(R})) and (4.4) holds. K
We can prove that u lies in X5([0,T]; R™) by using the mollifier Me. The
detail of the proof will be given in [23].
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The third step. (1.1) has a unique solution v € X3([0,T];R%) for (f,F) €
CHY(RZ) x WL (0, T; RT) with Qyo[f] = 0. The estimates (4.2) and (4.3) are valid.
Since d:u(0) = Ao(0)~(F(0) — L(0)f), the existence theorem in the general case
is proved by approximating f € Hh(R%) N 7{\}9(1{1) by a sequence {f¢;€ > 0} in
HY(R%) with Qyo[fe] = 0. Let S. be the shift operator: u(z’, zn) — u(z’, zn +¢).
It is easy to see that fo = Pf + (I — P)Sf gives a desired sequence in H LRn).

5. Tangential regularity.

We proceed with the proof of Theorem 2. In this section we show the tangential
regularity of order m of solutions. Let m > 2. Suppose that u € X3 ~1([0, T}; R%)
is a solution of (1.1) with ' € W[3(0,T;R%} ) and (3.4). Fora € Z ol < m—1,
we put

u® = O%u
By the assumption it is clear that u* € C°([0, T]; L2(R":)). We will show that u?,
la| = m — 1, belongs to X5(0, T]; R%).
We first prove that u® is the strong solution to the equation

n
Z Ajoju® + Appu® =J* in [0, T) x R}

=0
(5.1) 7

Qu® =0 on [0,T]x OR%

u*(0) = u*(0) on R}

with the forcing term J* given below in (5.3). Next, choosing suitable functions
B8 3¢ Z'IH, |6 = m—1, and G* on [0, T] x RY} with values in square matrices
of order ly and Cl respectively, we show that J¢ is of the form

J= Y B¥Sige
1Bl=m-1

By Theorem 1 the first order system for the unknown (v%; |a| =m — 1)

) |
S AP 4+ Apiv®* = Y. B**P+G* in [0,T] xR}

(5.2) =0 Bl=m-1 i
Qu* =0 on [0,T]xORY
v*(0) = u%(0) on R}

has a unique solution in the class X5([0,T); R%). This together with the energy
estimate for the difference u® — v® leads to the conclusion u® € Xp([0, T]; R%). In
the sequel we let e; = (6;%) € 77+ where d;x is Kronecker’s symbol.

The first step. Let M, be the mollifier in Appendix A. Choosing eg € (0,7"), we
define for a € ZT‘I, la| <m—1,0< e < e,

- ud = 0g(Meu).
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Then, u2, |a| = m—1, belongs to XZ1([0, T — &g); R”) and satisfies the equation

n
Z Ajaju? + An+1u? = Jea in [0, T — 80] X RT_*L_
=0

Qug =0 on [0,T —¢o] x ORY}

with the forcing term given by J& = J"‘(ug, Fe), where

n
J*(v,G) = anAn0y ™" 0pv + Y _[A;, 0510 + [Ant1, 8Jv + 83G
j=0

and

Fe :b Z[Aj8jaMs]u + [An—i-l:Me]u + MF.
i=0

It is clear that u2 converges to u® in C%([0, T — eq); R%) as e — 0. Putting
(5.3) J* = J%u, F),
we shall prove that u® satisfies the equation (5.1) in the strong sense:

(5.4) lim J&* = J* in LY0,T — eo; L2(R™)).
E—

Proof For (v,G) € Wl*"l(O,T — go; RY) x m=10,T — eo; R}) with vy €
W0, T — eo; R2) Wefhave

|J%(v, @) 0,7—e0:22(R1))
< an (A = + |42 1) 197 81| 13 (0.7 —e0i2(RY)
+ an(|$_1A12|L°° + |z, AZ |'L°°) |05 v1r| L30T —e0;L2(R™))
-1

+CZ%IA |Bm 1([0,T—eo]xRT) |‘9 ”|W;;'-2(0T—60, R%)

+C (147 gm0, T—eo] X RT) + 142! | Bm1(j0.7—<0]xRE)) 1)) |Onvr lwr=2(0.7-cor2)

+ C(lA lB(m—l)VZ([o T—eo]xR7) + |A |]§(m—1)v2([0 T—eo]xRT) )leIlw'l*'l(O T—eo;R%)

+ C|An+1|Bm-1([oT —eo]xRT )IU|W;;=~2(0T_EO,Rn + 108 GlL1(0,7—e0;L2(RE))-
We see Mcur — uyin W{:;l(O,T—eg;RS‘r), Murr — uprin W{Z"I(O, T—eo; RY)
as € — 0. The commutators [4;0;, MJu, 0 < j < n—1, [ALd,, M Jur, 1 = 1,2,
and [A28,, Mc]urr, I = 1,2, tend to 0 in Wi 1(0,T — eo,R") by Lemma A.1

(1), (2) and Lemma A.2 respectively. Hence, F. — F in W%, 1(0,T — €o; R%).
Combining these with the estimate of J*(v, @), we obtain (5.4). i
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The second step. We shall derive the following expression of J<:

(5.5) J= Y B*f 4o

|Bl=m-1 -
where B®? are functions in B*([0,7] x RT) taking the values in square matrices
of order lp and determined from A;, 0 < j < n, and G is a Cl°-valued function

in Wi,(0, T; R%) determined from u and F.
To begin with we recall the definition (5.3) of J*:

J* = anAnc')a e"c’)nu + Z i1 0510w + [Ant1,0%Ju + OF
=0

In the first term of J* we rewrite the normal derivative O,us by using the equation

n—1 n .
(56) Aldyur = - Ao — Y APojurr — Al yur — Adyurr + Fr.
. g=0 j=0
Then, An,0¢ ¢ 0nu is written as |
All A2\ o _ 0 0\ . I«
(5.7) —Z ( 07 )u "+e‘7+$n1 (A%l A?LQ)'U: +( 0 )
with
n—1 1 n | '
1= 3 AL[(AY) AL, gamenlgur 4+ 3 AL (AR LA, 92 Bjurr
§=0 §=0

+ Allge- en{( Ally- ( A,111+1u1 A}BHUII)}

[(ALH)~ 1A11 0y~ |0jur and [(ALH)~ 1Al2 o%~er0jurr, 0 < j < n — 1, belong
to X1([0, T] "), and so dose [(AL!)~ 1A12 82~en]8,urr because AL? vanishes on
0,T] x ORY. Since (AL~ (Fy — ALY ur — A2 urr) € XP~([0,T);RY), w
have I¢ € X,,{([O, T);RE).

We express the next terms [A;, 07|0;u, 0 < j < n, as

n
(5.8;) ' - Z 03 A;05 % 0ju + G7.
=0

Furthermore, by virtue of (5.6) the term 0% A,0¢ % 0,u can be rewritten as

s - (T A

=0
n :c'l 0 3f‘A12 ae;All (All) lAnz . ez+en-+ Ia
n | 0uAZ o AZ2 Lo
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with

n—1 '
= X oA A AT 020
J= .

n
+ 3 B ALH(AR) AL, 02 By
J=0

+ ot AR 0~ { (AR ™ (Fr — ARdyur — Afqur) b

*,0 <1 < n, are shown to belong to X1([0,T);R%), as I* is. G 0<j<n-1,
lie in X1([0, T]; R?). We have also G € X1([0, T); R;) because [AL}, 02]8ur +
S0 0y 3% ALGa— By, [AZL, 2] Bpus + S 02 A2 8,ur € X1(0,T; RY)
by virtue of uy € X7271([0, T}; R:), and [AL2, 8%]0nurr +X 1o 0t A2 034 Opur,
[A22, 52)8ury + Y 008 A2200~40,urr € X1([0,T]; R}) by the fact that both
A2 and A2 vanish on [0,T) x OR%. [An+1,02u also belongs to X, ([0, T]; RY).

All the matrices in (5.7), (5.8;), 0 < j < n—1, (5.9) operating to the tangential
derivatives v?, |8] = m — 1, lie in B®([0, T] x R%) because the matrices A%, A2!
and A22 vanish on [0, T] x 6R".. Thus we can express J* like (5.5) with the function
G* € Wi,(0,T; R™) given by |

Ia n Q n
G* =an( 0 ) Y o (I(l) ) + Y G5+ [An+1,05]u+ OFF.
I=0 7=0

The third step. It is easy to see that the system (5.2) satisfies all the hypotheses
in section 3. By (3.4), u*(0), la| = m — 1, belong to Hb(R?) N HLH(RL). We
apply Theorem 1 to obtain the solution (v%;|a| = m — 1) of (5.2) in the class
X}([0,T]; R?). By the energy estimate we have

e | Ao(t) /2 (u(t) — v*(t))| 2y

< e ao () = 5 B e) - 6)

|Bl=m~1
Substituting (5.5) into this, we obtain
e Ag(t) /2 (u(t) — v* () L2(me)

< Y 1A B AT e [ €0 A0()! AW (5) v () aqryy ds.
|Bj=m—1 |

ds.

L2(Rr)

Summing up the both sides for |a| = m — 1, we get by Gronwall’s inequality
|Ao()! 2 (u*(t) — v*(®) |2y = 0, lo| =m—1,

that is, u®(t) = v*(t), 0 <t < T. This proves u® € XL([0,T); RL). -
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6. Regularity of normal derivatives.

In the previous section we proved the tangential regularity of solutions, that
is, w € X ([0, T); R%). Since ur € X721([0,T]; R%) by the assumption, we have
ur € X2 ([0, T); R%) N X7-1([0, T); R%) = X™([0, T}; R%). From these facts we
derive the regularity of the normal derivatives of u.

In this paper we only prove that

(6.1) 07 08ur € L®(0,T; L*(R}))

for |a| = min{m +1—2p,m —p}, 0 <p<[(m+1)/2] and

(6.2) 828Buyr € L°(0,T; LA(R%))

for |a] =m- 2p, 0 < p < [m/2], which imply ur € Y;2(0,T;R%) and urr €
Y™(0,T; RT) respectively. The strong continuity in L? of the derivatives will be
shown in [23]. The following lemmata are crucial.

Lemma 6.1. Suppose that 1 <p <|[(m+1)/2]. If
O tury € L*(0,T; LARY)), |8l =m —2(p—1),

we have
8y0kur € L°(0, T; L*(RY})), lal=m+1—2p.

Lemma 6.2. Suppose that 1 < p < [m/2]. If
8)6kur € L0, T; L*(RY})), 6] =m+1-2p,

we have
8208y € L(0,T; LA(RY)), o] =m— 2p.

We postpone the proofs of the lemmata and start the pro:)f of (6.1) and (6.2).
We proceed by induction with respect to the number p. When p = 0, (6.1) and
(6.2) are nothing but the tangential regularity of u. Suppose that (6.1) and (6.2)
are valid for p = ¢ — 1 with 1 < ¢ < [m/2]. By the hypothesis of induction the
assumption in Lemma 6.1 is satisfied with p = q. Hence (6.1) holds for p = q. This
in turn implies the assumption in Lemma 6.2 with p = ¢ and we have (6.2) for
p = q. When m is even, the proof is completed. When m is odd, it follows from

Lemma 6.1 that o™ 1/ ]’UJ € L*(0,T; L%(R™)) and this completes the proof.

Proof of Lemma 6.1.  We operate 0262~ to (5.6) and express ALl0%8Pu; as the
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sum of the following terms:

(6.3) - Aorr T 9u, 0<j<n-—1,
(6.4) — APOSE 0uy;, 0<j<nm,
(6.5) | (A7, 8208 Y our, 0<j<n,

- (6.6) (A2, 0208 9jur;, 0<j<n—1,
(6.7) [Ar2, 0208 Onurr,
(6.8) 0RO~ (Fy — ATk yup — A% yury).

Since ur € X7([0, T]; R%), (6.3) and (6.5) belong to C°([0, T]; L2(R%)). The fact
z;1AL2 € B*((0,T] x RT) and the assumption imply (6.4) € L®(0,T; L2(R%)).
The term (6.6) lies in CO([0, T]; L2(R™)), and so dose (6.7) because AL% vanishes
~on [0,T] x OR%. It is easy to see that Fy — ALL juy — A2 ju;r € X™=1([0, T); R2).
Thus we conclude 8288uy € L*®(0,T; L*(R%)). B

Proof of Lemma 6.2. Abbreviating w* = 080%usr, || = m — 2p, we prove
w® € L*®(0,T; L2(R")) by three steps. Noting that |a| +p < m — 1, and hence
the function w® is once differentiable, we first derive the equation

n
6.9 Y AZju+ AR w*= Y C*w’+H* in [0,T]xRY,
=0 |B|=m—2p -

where C? are elements of B®([0,7] x R) with values in (lp — I1) x (lo — l1)
matrices, and H® is a Clo~hivalued function in L}(0,T; L>(R%)). We remark
that the matrix A22 vanishes on [0,7] x R%. Next, multiplying the equation
(6.9) by such a weight pP*! as the function pP*lw® is sufficiently smooth up to
the boundary, we derive the energy estimate for pP*lw?®. Finally, taking the limit
along an appropriate sequence of p, we remove the weight from the estimate and
then arrive at the conclusion w® € L*°(0, T; L2(R%)).

Th¢ first step. It is easily verified that w® satisfies the equation
- |

(6.10) 3> AZojuw® + A2 jw*=K* in [0,T] xR}
j=0 -

with
,. n

K% = 0y, A2027en g0 1y + Z[A?Z, 05 08|05urr
. §=0

+[AZ |, 6208 urr — 3355(2 A2 0ju; +'A?L1+1u1) + 826P Fyy.
| part
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K*“ is expressed as

n-1n

- (6.11) anz, Zza,aﬂA” a-erte;
§=01=0

_ zam lae¢A22 a—ej+en pa A22wa+Ha
=0

where H?® is the sum of the following terms:

(6.12) [AZ, 63 68)0jur; |
+ 3 ot ARk, 0<j<n—1,
=0
(6.13) (A2 aaap]anun
+ Z alée‘A228“ 08 Onurr + pOnAn 07 ORurr,
=0
(6.14) — AP 020R0ur, 0<j<n,
6.15) (AP, 80B)0ur, 0<j<n-1,
(6.16) [AZ}, 8288 Onur,
(6.17) — Aﬁglaaapu,, | |
(6'18) [ n+1a aaap]ul’ [An+1v Bfaﬁ]uu,
(6.19) OFoP Fry.

All the matrices in (6.11) operating to w?, |8| = m — 2p, belong to B®([0, T] X
RT) since the matrix A2? vanishes on [0,T] x dR’}. The terms (6.12) to (6.18)
belong to L®(0,T; L2(R’}r)) As for (6.12) and (6 13) it follows from the fact
that uyr € X, m—l([O T); R%) and A2? vanishes on [0, 7] x BR" Since z;1A2! €

B>([0,T] x R%), (6.14) belongs to L>(0,T; L*(R%)) by the assumption. Since
ur € X™([0,T]; R%), (6.15) belongs to CO([0, TY; L?(R7%)), so dose (6.16) because
A2l vanishes on [0, T] x OR™. Also (6.17) belongs to CO([0, T); L2(R™)). Both the
~ terms in (6.18) lie in C([0, T] L?(R%)). Thus w* satisfies the equation like (6.9).

The second step. Let p be a smooth function from [0, o) to [0, co0) satisfying
(6.20) 0<p(r) <1, r>0, p(0) =0, 0 <rp'(r) < p(r).
Multiplying the both sides of (6.9) by the function p(z,)P*!, we have
n
- AP0 (pPH ") + AT (PP )
§=0

(P+1) A22(pp+1 SFEDY Ca,B(pp+1 wP) + pPHLH,
P |B|=m—2p
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The tangential regularity of u implies pP*lw® € X1([0,T]; R%). Hence we are led
to the energy estimate

e P AZ(6) 2w (2) | Lara)
< [P ATH(0) 2w (0)] Lacry)
+(p+ 1)|$;1A32—1/2A%2A(2)2-1/2|Lw /Ot GAOSIPP+1A(2)2(S)1/2'LUQ(S)IL2(R1)ds
_I_wl 5 2 B2 e g21/2 /Ot 298] P+ A2 (5) 120 (5) | g s
=m—2p

t
+ [ ol AR )2 (5) ey ds

with a constant A\ satisfying

LAV (A1) + A 0" - ZBA” (0)AB(0)2 > Dol

Here we use the fact that the matrix A22 vanishes on [0, 7] X R} and so dose the
integration on the boundary. Summing up the above estimates for |a| = m — 2p
and putting

Eot)= X 1P AP0t (0w

la|=m—2p

Fot)= Y |pPMAR ) 2HY () 2wy,
lo|=m—2p

we have
E,(t) < E,(0) + NKg / O E (5)ds + / 0T (s)ds

with a constant N independent of p. By Gronwall’s inequality we get

‘(6.21) | E,(t) < E,(0) exp(—A1t) + /Ot exp(—=M1(t — 8))F,(s)ds

with A1 = Ao — N/Kp.

The third step. We choose a sequence of functions with the properties (6.20)

monotone increasing and converging to 1 at each point r > 0. Since w*(0) €

L?(R%) by (3.4), passing to the limit along the sequence of p in (6.21), we have
w*(t) € L*(R%) and

E(t) < E(0) exp(—X1t) + /Ot exp(—M1(t — 8))F(s)ds, 0<t<T,
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with

E)= 3 1480) "0 ()l ary)

la|=m—2p

Fi)= X 14RO 2HOloms).

|oj=m—2p

This shows w* € L*(0,T; L2(R%)). I
7. Appendix.

A. Mollifier. Let ¢ be areal valued C®°~function on R**! with support contained
in {(zo,2);0 < zo < 1, |z| < 1,2z, > 0} and

/Rn+1 é(yo,y)dyody =1, ¢ > 0.

Let a, b and €9 be constants with 0 < €d <b-—a. Let 1 < p < o0o0. We define the
linear operator M,, 0 < € < €, from LP(a,b; L*(R7%)) to LP(a,b— eo; L2(R™)) by

1
Meu(zo, z', 2n) = /0 - (0, Y, yn)u(zo + €yo, &’ + €y, Tne¥™)dyody dyy,.
+ _

The operator M, was introduced by Rauch [16] in the study of first order systems
with boundary characteristics. The operation of the mollifier has smoothing effects
in the following sense.

Lemma A.O.

(1) Let u € W*(a,b;RY) (resp. Wii(a,b;RY), Wil (a,5RY) ), 1 < p < oo,
m € Zy. Then, Of Mcu € X™([a,b — eo);RY) (resp. X7*([a,b — eof; RY),
X™([a,b—eg); R:) ) for any o € Z¥. We have

gi_r_)rg)./\/leu =u in Wp'(e,b—ep;RY)

(resp. W;;Z(% b— €0, Rtll-)’ Wzl)’;l*(a'y b— €0, RT-IL-)) .

The assertions are valid when we replace Wy(I; R} ), Wi (I; RT) and WL, (I; RY)
with X™(I; R%), X™(I;R%) and X72(I; R) respectively.

(2) Let u € Wi*(a,b; RY) (resp. Wi (a,b;RY) ), 1 < p < oo, m € N. We assume
that yo[u] = 0 holds in LP(a,b; H™1/2(8R™)). Then, we have yo[0%,M:u] = 0
in C®([a,b — &o] x ORL) for any o € Z".

We list several properties of commutators between first order differential op-
erators and the mollifier. For the proofs see [23]. In what follows we assume
1<p<o0
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Lemma A.1. Let A € B®([a;b] x RT). : ‘
(1) Let @ = 0o, ...,0n-1 and u € Wi(a,b;R%), m € N.  Then, [A0, Mc]u €
‘ ;’éah(a, b—eo;R%), 0 < € < ¢eg. There exists a constant C' independent of A, u
and € such that : ' :
148, M.Ju

Wi (ap—corr) = ClAl B8 MWz imy)

ptan

Moreover, we have

;ir%[Aﬁ, McJu=0 in Wyi.n(a,b—eo; RY).

(2) Let u € Wi (a,b;R%), m € N. Then, [Ad,, McJu € Wit,u(a,b — eg; RY),
0 < € < gg. There exists a constant C independent of A, u and € such that

(485, McJu

< ( ! 4 ~ m .
Wan(a,b—eoRY) = l |B’"([a,,b]xR1) I L‘tlppp**(a,b,Rq_)
Moreover, we have '

(7.1) E_I,%[Aam MeJu=0 in Wytan(a,b—eo; RY).

Lemma A.2. Let.A € B®([a,b|xR%) and u € W% (a, b; R"), m € N. We assume
that Algpxomrr = 0. Then, [Ad, MJu € Wit (a,b—e0; RY), 0 < < eo. There
exists a constant C' independent of A, v and € such that

(A8, McJu

Wi an(@b—eo;RE) < ClAleV?([a,b}xﬁf)IUlW,;':(a,b;R;;)-

ptan
The assertion in (7.1) is valid also in this case.

B. Weak convergence of functions. Let X;, 0 < 7 < m, be Hilbert spaces with
X; continuously embedded to X;-1, 1 < j < m. We assume that X;, 1 < j < m,
are dense in Xj.

Lemma B. Let bg a finite open interval and m € N.

(1) Ifu e Mo WE™(I; X;), then o Iue CY(T; X;), 1 < j <m.

(2) Let {ux} be a.bounded sequence in (Yoo Wi~ (I; X;). There exists a subse-
quence {ug,} and u € Ny WD=I(I; X;) such that

pli)rgo oI ug, (t) = 0™ Ju(t) weakly in X; uniformly on T, 1 5 j<m.
Proof: By using the mollifier an element of M} W2=I(I; X;) is approximated by
a sequence in C*°(T; X;,) which is bounded in N}Lg WTI—I(I; X;) and converges
to the element in NJ2o W1 7(I; X;). Therefore it suffices to show (2) under the
additional condition

™Iy, € CO(T; X;), 1<j<m.
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Since the dual space of Xy is dense in that of X; ([24], Chapter 2), it is proved
that the sequences {0™ Ju;}, 1 < j < m, are equicontinuous in the weak topology
- of X;. Thanks to the local weak compactness and the weak completeness of Hilbert
spaces we can choose, by Ascoli-Arzéla argument, a subsequence {ug,} so that
{0™ I (t)}, 1 < j < m, converge weakly in X; uniformly on I. The limits v;(t)
define functions in C3(T; X;). v; are uniformly Lipschitz continuous functions on I
with values in X;_; and hence lie in WL (I; X;_1). We put u = vy, € CO(T; Xpn).
It is verified that O™ Iy = vj, 1 < j < m. Since ™ lu € Wgo(I Xo), we have
u € NZo WD=J(I; X;). This completes the proof. §
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