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The Limiting Behavior of Fuzzy States
in Dynamic Fuzzy Systems

FAMAFREEEER  HEME  (Yuji YOSHIDA)

1. Introduction and notations

The limiting behavior of fuzzy states in dynamic fuzzy systems has been studied by
Kurano et al. [4] and Yoshida et al. [7]. Under a contractive condition for the fuzzy
relation, [4] showed that the limiting fuzzy state is a unique solution of a fuzzy relational
equation. Also, [7] discussed the limit theorem in a monotone case. In this paper, we
consider the limit theorem when fuzzy relations satisfy the transitive property. We show
that, in this case, the limiting fuzzy state is a solution of the fuzzy relational equation.
But the equation does not necessarily have a unique solution similarly to the monotone
case, therefore we need to investigate the space of the solutions of the equation.

The existence and the uniqueness of the solutions of the fuzzy relational equation has
been studied by Kurano et al. [5] under some assumptions. In the transitive case, this
paper makes clear the structure of the space of the solutions of the fuzzy relational equa-
tion, and we give a simple characterization of the limiting fuzzy state by the fundamental
solutions for the numerical calculation of the limiting fuzzy state.

We use some notations in [5]. Let E be a compact metric space. Let C(E) be the
collection of all non-empty closed subsets of E, and let p be the Hausdorff metric on
C(E). Then it is well-known ([3]) that (C(E),p) is a compact metric space. Let F(E)
be the set of all fuzzy sets § : E — [0,1] which are upper semi-continuous and satisfy -
sup,cp 8(¢) = 1. For § € F(E), the a-cut 3,, a € [0,1], is defined by

Sa:={z€E|3)>a} (a#0) and 3 :=c{ze€ E|3(z)> 0]},

where cl means the closure of a set. Let § : E x E — [0,1] be a fuzzy relation on E
satisfying ¢(z,-) € F(E) for z € E. A fuzzy relation § is called “transitive” (see Klir and
Yuan [2]) if it satisfies

C}(x,y) > Slelg{‘i(xaz) A q(zay)}7 z,y € E.

Throughout this paper, we assume § is transitive. In Sections 1 and 2, we consider the
space of solutions p € F(E) of the following fuzzy relational equation (see [5]) :

Bly) = sup {p(z) A g(z,y)}, y€E, (1)

where a A b := min{a, b} for real numbers a and b. By the solutions of (1) (see [4, 7] for
contractive/monotone fuzzy relations), in Section 3 we discuss the limiting behavior of
the sequence of fuzzy states {3,}52o C F(E) with an initial fuzzy state § € F(E) which
is defined by

S0:=3, and 3n41(y):=sup{8.(z)A§(z,y)}, y€E forn=0,1,2,---. (2)
z€E
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Crisp sets §,(z) (z € E, o € [0,1]) are defined by~

() = {y€€ E|§(z,y) >a} fora#0
Qo) {y € E|¢(z,y) >0} fora=0.

In this paper, we assume the map §,(-) : E — C(FE) is continuous for all a € [0,1]. We
also define §o(D) := Uzep dalz) for D € C(E), and then we note that ¢, : C(E) — C(E).
For z € E and a € [0,1], a sequence {GZ(z)}:2, C C(FE) is defined iteratively by

qg(x) = {SC}, and §Z+l(w) = 60:(62(1"))7 n= 03 172, T
Then we have the following lemma for a sequence of fuzzy relations {¢"}22, defined by

i :=¢, and §*(z,y):= sgg {i"(z,2) N §(z,y)}, z,y€E forn=12,---. (3)

Lemma 1.1. The following (i) and (ii) hold:
(i) For alln =1,2,---,
"(z,y) 2 ¢ (z,y), 2,y €K, (4)
and

@t(z) C @i(z), z€E, ac|0,1]. (5)

(ii) ¢*(z,z) = §(z,z) forallz € Eandn=1,2,---.

Let -
Ra:={weE|wquz<w)}, o e [0,1].

n=1

Each state of R, is called “a-recurrent” (see [8]). From Lemma 1.1(i), we have
Ry={z € E|j(z,z) >a}, ac(0,1] (6)

Let z € E. The following crisp sets are used in [5] to analyze the solutions of (1):

Fu(2) = | (),

n=0

and

Fy(z):= () H{Fu(z)} (@#0) and Fy(z) = c{F(z)}.

a'<a

In the transitive case, by Lemma 1.1(i) they are reduced to the following (7):

Fo(@) = {2} Udu(z), c€E, ac[0,1]. (7)
Espécially we have ) |
Fo(2) = Ga(z), 2€ Ry, a€[0,1]. (8)

Therefore, we obtain the following lemma.

Lemma 1.2 (Kurano et al. [5, Lemma 1.2(i) and Theorem 2.1(ii)]).
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(i) For p € F(E), p satisfies (1) if and only if

Ga(Pa) = Pay @ € [0,1]. (9)
(ii) Let z € R;. Define a fuzzy state

p(z) := s€1[10p1] {a A lpa(z)(.’ll)} =§(z,z), z€E. (10)

Then p* € F(FE) satisfies (1).

2. The space of the solutions

We put P := {p V€ F(E) | p is a solution of (1)}. Then the space P has the following
property:

Lemma 2.1  (Kurano et al. [5, Theorem 2.2(ii)]). Let p* € P (k=1,2,---,1), and let
{a* €[0,1]| k=1,2,---,1} satisfy Supy_; 5. " = 1. Put

plz) = max {a*Ap(2)}, we L. -y

Then p € P.

The purpose of this section is to prove an inverse of the statement of Lemma 2.1.
Namely, we represent general solutions p € P of (1) by the fundamental solutions $* of
(10). From now on, we assume R; # (. We identify the states of R; with respect to the
following equivalent relation ~ on R; (see [5] and (8)): For 2,2, € Ry,

z1 ~ 2z, means that 2z; € §;(2;) and 2, € §,(21).
Then we put Ry := Ry/ ~.
Assumption A. Let a #0 and A € C(E). If §,(A) = A holds, then

R.NAC | dal2)
z€RT'NA
From now on, we suppose that Assumption A holds (c.f. [5, Assumption A3]).

Theorem 2.1. Let § be a solution of (1). Then, there exists a family of coefficients
{o” €[0,1] | z € R’} satisfying sup,epv o = 1 and

#(e) = sup {a* A5*(2)} = sup {0 A d(z,2)}, 2 € E. (12)
z€RY 2€RY
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3. A Limit Theorem

We uses the convergency of fuzzy states in following sense.
Definition (see [7]). Let §,,p € F(E). Then

JLH‘}O S, =p means p(Spa,Pa) =0 (n— o0) forall a€[0,1],

where 3, , are the a-cuts of 5, and p is the given Hausdorff metric.

Fix an initial fuzzy state 3 € F(FE). In this section, first we discuss the convergence
of the sequence of fuzzy states {5,}52, defined by (2), and we prove the limiting fuzzy
state is a solution of the fuzzy relational equation (1). Next, we give a representation of
the limiting fuzzy state for the numerical calculation, by using the characterization (12).

Lemma 3.1. Let a € [0,1]. Then
fim = U @@= U N &) W
n>1 z€3q T€S5q n2>1
We use the following lemma to construct the limiting fuzzy state.

Lemma 3.2 ([4, 6]). Let a family of subsets {D, | a € [0,1]} C C(E) satisfies the
following conditions (a) and (b):

() Do CDy for0 <o <a<l.
(b) limyrjq Do = Do for a € (0,1].

Then 3(z) := sup,ep e A lp,(2)}, = € E, satisfies § € F(E) and 3, = D, for all
a € [0,1], where 1p denotes the characteristic function of a set D € C(E).

From Lemma 3.1, we define

p(z) := sup {a Alp,(z)}, z€E, (14)
a€lo,1] .

where

Dai=liména= U @@= U N, acpl] (15)

n—ee n21 r€5q : T€5an2l -
Theorem 3.1. p has the following property (i) and (1'1'»):7
(i) p = limpoco 6, € F(E).
(i) p is a solution of (1). "
Finally, by using the limit theorem (Theorem 3.1) and the characterization of the

solutions of the fuzzy relational equation (Theorem 2.1), we give a simple representation
of the limiting fuzzy state p for the numerical calculation (Section 4).
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Theorem 3.2. The coefficients in Theorem 2.1 are given by

(16)
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Figure 2. The a-cut of the fuzzy relation g.

We can easily check q is transitive (c.f. (5)) since the trnasitivity is equivalent to
Galz) C qa( ), z€E, a€l0,l] (20)

It is trivial that the map G,(-) : £ — C(E) is continuous for all & € [0,1]. Then, we have
Ry = Ry = {-1,0,1} and R, = {-1,0,1} (a € [0,1]). If A € C(E) satisfies §,(A) = A
for some « € (0, 1], then A = {0} or [—1,0] or [0,1] or [—1,1]. Therefore, we can easily
check that ¢ satisfies Assumption A. From Theorem 3.2, we have the coefficients

1 iftz=0
= §(5)(2) = sup{3(2) A d(2,2)} = { Supse_r 3(e) if 2= —1 (21)
ek sup,>; S(z) ifz=1

since we get G(z,0) = 1, §(z,—1) = 1j_9-1)(z) and §(z,1) = 1} 9(z) from (18). From
(18) and (10), we get the fundamental solutions of (1):

ligy(z) ifz=0

P () =4(z,2) = { l-g(z) ifz2=-1 (22)
, 1[0’1](3:) if z=1.

For example, we put an initial fuzzy state § by

5o(z) = 3(z) = max{l — |z — 1/2|,0}, =z € E.
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Then, from (21), we have a® = 1, ™! = 0 and ! = 1/2. By Theorem 3.1, the sequence
of fuzzy states {3,}72, converges to the the limiting fuzzy state p. Therefore, from (21),
(22) and Theorem 3.2, we obtain the the limiting fuzzy state

1 fz=0

p(z) = ,max 1{az Ap*(z)} = 1{0}(:1,‘) VA{l/2 A 1[011](3:)} =< 1/2 f0<z<1"
- 0  otherwise.
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