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SINGULARITIES OF RP?-VALUED GAUSS MAPS
OF SURFACES IN MINKOWSKI 3-SPACE

DoNGHE PEr* (28 ZE#, dbk3)

1. INTRODUCTION

In [1], D.Bleecker and L.Wilson studied the classification of singularities and the
stability of the Gauss map of a closed surface in Euclidean 3-space. In this paper, we
study the same theme as in [1] for a closed surface in Minkowski 3-space. Classically, for
an oriented surface in Euclidean 3-space, the Gauss map sends each point on the surface
to the unit normal, so the value of Gauss map is in the unit sphere S?. In Minkowski
3-space, there are three kinds of vectors named space-like, time-like and light-like. In
particular, the norm of a light-like vector is zero.

On the other hand, we can always determine the pseudo-normal vector of the surface
associated with Minkowski metric. When the pseudo-normal vector of the surface is
light-like, we can not consider the unit vector along it. Because of this reason, the
notion which is analogous to the Euclidean Gauss map can only be defined at the point
where the pseudo-normal direction is not light-like. In order to avoid the above difficulty,
we consider RP?-valued Gauss maps. We now formulate as follows:

Let R® = {(z1, %2, 23)|21, 72,3 € R} be a 3-dimensional vector space, z = (z1, 72, %3)
and y = (y1,Y2,ys) be two vectors in R3, the pseudo scalar product of z and y is defined
by < z,y >= —z1y1 + 2292 +73y3. (R?, <,>) is called a 3-dimensional pseudo Euclidean
space, or Minkowski $-space. We denote R;® as (R®, <,>). For any z = (z1,z2,73),
y = (y1,¥2,y3) € R1®, the pseudo vector product of z and y is defined by

—€1 €9 €3
TANY=|21 =Ty T3|= (—(wgyg - msyz)7$3y1 — T1Y3,T1Y2 — $2y1)-
Y1 Y2 Y3

We say that z is pseudo perpendicular to y if < z,y >= 0. Clearly, we get

<z Ay, z >=<z Ay,y >=0, so that z Ay is pseudo perpendicular to both of z and y.
Moreover, z in Ry® is called a space-like vector, a light-like vector or a time-like vector
f<z,z2>>0 <z,z>=0o0r<z,z> <0 respectively. Let a = (a1,az,a3) be
a point and n = (ny,n2,n3) a vector in Ry>. Then the equation < n,z —a >= 0
(i.e. —ni(zy — a1) + na2(z2 — a2) + n3(z3 — az) = 0) which passes through the point a
and is pseudo perpendicular to the vector n is called an equation of the plane, where
z = (xy,2q,23) € R;?, and n is called a pseudo normal vector of the plane. We also say

*On leave from Department of Mathematics, North East Normal University, Chang Chun
130024, P.R.China

Typeset by AmS-TEX



116

that the plane is time-like, light-like or space-like if the pseudo normal vector n is space-
like, light-like or time-like respectively. Let M be a compact 2-dimensional manifold and
f+ M — Ry® be an immersion. We now define a map N(f): M — RP? by

M3z (Xu(z) A Xy(2))R-

We call N(f) the RP%-valued Gauss map associated with the immersion f. Here, X =
X (u,v) is a local parametrization of f(M). By the previous argument,

Xu(z) A Xy(z) is the pseudo normal vector of the tangent plane Ty, f(M). We can
separate M into three parts as follows:

M5 ={z € M| X,(z) A X,(z) : time-like};
M = {z e M| X,(z) A X,(z) : light-like};
M/ = {z € M| Xu(z) A X,(z) : space-like}.

We respectively call Msf, MY or My a space-like part, a light-like part or a time-like
part. It is clear that M,¥ M,f are open submanifolds. We now formulate the main result
in this paper as follows: _ .

Let M be a compact 2-dimensional manifold and I(M, R;?) the space of C*° immer-
sions f : M — R;® equipped with the Whitney C'®-topology. For any f € I(M,R;?),
the singular set of RP2-valued Gauss map N(f) is called a parabolic set of f. Moreover,
when g : N — P is a C'* map between two 2-dimensional manifolds, a point z € NV is
called a fold point of g if there exist local coordinates (z1,z2) and (y1, y2) in neighbour-
hoods of z and g(z) respectively, such that y; 0g = z; and y2 0 g = z2%. A point z € N
- is called a cusp point of g if there exist local coordinates (z1,z2) and (yi,y2) such that
y10g =z; and y3 0 g = z2° + £125. Our main theorem is as follows.

Theorem A. There exists a dense set OC [ (M ,R1®) such that the following conditions
hold for any f €0O.

(1) The parabolic set of f consists of regular curves (called a parabolic locus in M ).

(2) The set of cusp points on parabolic locus of f is a finite set and other points are
fold points.

(3) The light-like part My is a union of regular curves (called a light-like locus in

(4) The light-like locus and the parabolic locus in M intersect transversally, the
intersections consist of fold points of N(f).

(5) The set of points in M’ consisting of the points at where the tangent line of
M;* is light-like is a set of isolated points.

(6) The set of points in the parabolic locus consisting of the points at where the
tangent line of the parabolic locus is light-like is a set of isolated points.

Remark. We can show that there exists an open dense set OC I(M,R;*) such that N(f)
is stable for any f €O. Nevertheless, we omit the proof.

In §2 we give the proof of theorem A. The geometric meanings and properties of the
RP?-valued Gauss map will be discussed in §3. Especially, Theorem A will be interpreted
geometrically (cf., Theorem 3.5). Some examples will be given in §4.

All the manifolds and maps we consider in this paper are of class C* unless otherwise
specified.
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2.PROOF OF THEOREM A

In this section we give the proof of Theorem A. The idea of the proof for the assertions
(1),(2),(3) is analogous to that of Theorem 1.1 in Bleecker and Wilson [1].

Let M be a compact 2-dimensional manifold. For any f € I(M,R;®), we have the
RP?-valued Gauss map N(f): M —s RP2. This correspondence induces a map
N : I(M,Ry*) — C*°(M,RP?). Then we have the following lemma.

Lemma 2.1. The map N : I(M, R®) — C’°°(M, RP?) is continuous, where we also
consider the Whitney C'*-topology on C=(M,RP?)

Proof. Define I'(2,3) = {j1f(0) € J1(2,3) : rankJ¢|o = 2}. For an open set U C M,
we also define I'(U,R;%) = {71 f(z) € J(U,R,®) : rankJ s,y = 2}. Let u, denote the
partial derivative of a function v : U — R with respect to a coordinate z. We can
choose (fz, fy)(0) = (us, Vs, W, Uy, Uy, Wy )(0) as coordinates of 51 £(0) € J(2,3), where
f=(u,v,w). If 71 f(0) € I*(2,3), then '

v = (ux,vr,‘wz) A (ty, vy, wy) # 0

and 7 is pseudo normal to the image of f.
We now define a map p : I*(2,3) — RP? by

P77 £(0)) = (1)p.
~ Then we can extend the map to the C* map on INM,R;®). In fact
(M, R’ p,q) = I'(U, V; p, q)

= I'(p(U),%(V);0,0) = I'(R,%, R, %; 0,0).
B 2T, Vipq = f(p)) — I'(p(U),$(V);0,0)
@) =7 (o f o™)0)

1s an isomorphism, where (U, ¢) is a coordinate neighbourhood of M and (V, ) a coor-
dinate neighbourhood of R;%. The map

7t I(M, R ) — C(M, TY(M,R,?))

is continuous by II 3.4 of [3], p, is continuous by II 3.5 of [3]. Thus p o j1(f) = N(f)
1s also continuous. Therefore N(f) is continuous. O

Since f : M — R;® is an immersion, f(M) can be at least locally written as the
graph of a function on a neighbourhood of each point. We can distinguish three cases
for the local representation as the graph of functions.
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Case 1). When f(M) = {(z,4, F(z,9))|(z,y) € R}, we may write
f(z,y) = (z,y,F(z,y)). Let [x;n;¢] denote homogeneous coordinates on RP?, then
N(f)z,y) = [Fz; —Fy;1]. Hence N(f)(z,y) = (Fy,—Fy) in the affine coordinate neigh-

bourhood (U¢,(X,Y)), where Ue = {[x;n;¢]I{ # 0}, X = ¥ and ¥ = Z. If we con-

sider the linear transformation (X,Y) A, (X,-Y), then Ao N(f)(z,y) = (Fz, Fy) =
gradF(z,y).

Case 2). When f(M) = {(z, F(z,2),2)|(z,2) € R?}, we may also write ,

f(z,2) = (z,F(z,z),2), so we have N(f)(z,z) = [—F; —1; F;]. By the same arguments
as that of in the case 1), we have N(f)(z,2z) = (F},F,) = gradF(z,z) in the affine
coordinate neighbourhood (U, (X, Z)). Hence N(f)(z,2) = (F;, F;) = gradF(z, z) by

the linear transformation (X, Z) 4, (X,—-2).

Case 3). When f(M) = {(F(y,z2),y,2)|(y, z) € R?}, we may also write |
f(y,2) = (F(y,2),y,2), then N(f)(y,2) = [-1; —Fy; —F;]. Hence N(f)(y,z) = (Fy, F%)
= gradF(y, z) in the affine coordinate neighbourhood (Uy, (Y, Z)).

For each pair of manifolds M, N and nonincreasing, finite sequence
w = (i1,%2,...,1x) of nonnegative integers there is a fiber subbundle S¥ of J*(M,N)
called a Thom-Boardman singularity. Let S'(f) = {z € M : dim(kerT,f) = u1},
Stiz(fy={z e M: dim(kerTy flgii(p)) = 2} (SU(f) = {z € M : ik f(z) € S¥}), etc.
then J3(R® R?) = SO JS*|JS?. Here, St = SHLOJSH1; 501 = §LLO[JSLLL, Let Iy
denote (1,1,...,1) k-times, then we have codimS? = 4; codimS%* = k (c.f., (3], IL.5.4).

We define a map I' : J4R?%,R) — J3(R%,R?) by I'(j*F(z)) = 7*(grad F)(z). Let
T = I'~1S% for each w. Then we have the following lemma.

Lemma 2.2. (Bleecker-Wilson [1], the proof of Proposition 2.2)
(1) T°, 71, T? are submanifolds of J*(R? R) with codim T® = 0, codim T* = k
and codimT? = 4. B
(2) j*F is transversal to T if and only if j3(grad F) is transversal to S.

We say that a map g € C°(R? R?) is ezcellent (respectively, good) if j3g 52
(respectively, j1g h S?), and j3g h ST+ (respectively, j1g th S7*). Where M denote the
transversal intersection. When g is excellent, it is well-known that S*° is the fold points
set, SH10 is the cusp points set (c.f., [3]). Since codimS»!! > 2 and codimS? > 2,

SHI(f) = S(f) = ¢

Proposition 2.3. Let M be a compact 2-dimensional manifold. We denote that
Q. = {f € I(M,R,*)|N(f) : excellent},

then Q, is an open and dense subset of I(M,R;*).

Proof. Since S1° = (S —S%1) is the set of fold points and S*10 = (S11 — §H11) is the
set of cusp points, Q. is the set of f € I(M,R;*) which satisfies 3 N (f)N(S2USH1) = ¢.
Since $%,SH11 are closed sets and N is continuous by Lemma 2.1, Q. is an open set.
Define

I(M,R,%) = {j*f(z) € J*(M,R,”)|rankdf(z) = 2},
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then it is an open subset of J*(M,R,?). We also define

O1={z= j4(f17f2,f3)($)|H1 = (f2, f3) : nonsingular, at z},

then O; is also an open subset of I*(M, R13), and Oj, 03 are defined analogously. In
this case, the map 7 : 0y — J*(R?,R?) defined by

m1(2) = 7*(fr 0 Hl—l)(y)

is a submersion, where z € O; and y = H;(z). We define a map

Hy: J*(U,R") — J*(U,RY);
by 7 .

Hy(j*g(2)) = j*g 0 Hi 7 (y)
(U is an open subset of R?), then the differential map

dHY : T, JA(R?,RY) — T, J4(R2, RY)

is an isomorphism. And the map P : 0, — J*(R?, R!) defined by
| | PE) =R,
Then the differential map

dP:T.0; — T, J*(R* R")

is onto. Thus dmy is éurjective by the following commutative diagram, so 7 is a sub-
mersion.

T.0, — T,J%R2RY)

dﬂ‘1l ldﬁj"

T, J4(U,RY) T, J4(U,R?)

Similarly
T 0; — JHRYRY) (2 =2,3)

is also a submersion. Moreover, for each w,
(miloino; ) TH(T) = (m5l0in0; ) H(T*) (4,5 = 1,2,3)

holds. In fact, without the loss of generality, we consider the case that ¢ = 2,5 = 3, For
any 7*f(z) € (72]0,n05) 1 T%, we denote that

[ f=(f1,f2,[3)
g:(f17f3af2):(g1)g2ag3)
G2 = (f1,f2) = Hs; Gz = (f1,f3) = Hz .
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Then we have

m2(§* f(2)) = j4(f2 0 Hy ) (y) C ma(my ™2 T%) C TV

for z € M,y = Ha(x). Since j*gs(z) = j*f3(z) € O N O3, we have

m3(74f(2)) = 7*(fs 0 Hs 7 )(y) = j*(g2 0 G2 ")(y) € T*.

It follows that j* f(z) € (m3]0,n0,) " (T%). Hence, we have

(72]02n05) T (T¥) C (73l0,n05) H(TY).
Similarly, we have '
(W2}02ﬁ03)_1(Tw) o (7r3|ozno,a)—1(Tw)'

’By the same arguments as the above, we also have the inclusion of the converse direction.
Then we have (73]0,n0,) " (T*) = (73]0,n05) "*(T%). Therefore we have a submanifold

3
WY = U ’R','_lTw
=1

for each w. Since m; h T, then codimW* =codimT*. For i = 1, the following diagram
1s commutative:

»Ww C Oy _m J4(R2,R1) L) J3(R12,R12) S5 Sw

Tj“f ' L“‘fi Tjasradﬁ

M — M e — M |
where jfi(z) = 7*(f1 o Hi7')(y) and T is the mapping defined by Lemma 2.2. Since
P—l(sw) — Tw, leol — 7!'1_1Tw,

j*f b W if and only if j4f; h T%. When w = Ix, 7*f & T¥ if and only if

73(grad(f1 o H1™")) h S by Lemma 2.2. For ¢ = 2,3 the same assertion as in case
t = 1 holds. By Thom’s Transversality theorem, the set of the immersion f such that
J*f h W« is dense in I (M, Rls). If we choose coordinate neighbourhood at every point
" of M and RP?, N(f) can be written in the form grad( f;oH; ') with respect to i = 1,2, 3.
This means that N(f) is excellent for such f. O

We consider the light-like part as follows.

Proposition 2.4. Let I(M,R,*) > Q, = {f|M* : regular curve}, then Q) is a residual
set .

proof. We define an open subset O; C I*(M, R;?) exactly the same way as O;
in Proposition 2.3. For any p € M;',we consider the local parametrization X (u,v) =

(Xl(ua U)7X2(u’ v),Xg(u,v)) of f(M) around f(p) € f(M)
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Since < Xu(p) A Xy(p), Xu(p) A Xo(p) >= 0, we have

Xou(p) Xzu(p)
X2w(p) Xsu(p) 70

It follows that 52 f(M;') C O;. We also have the submersion 7y : O — J*(R%,RY).
On the other hand, we denote a = (y, z,w, a;,az, a1, a2, as2) the coordinates of

J2(R27R1)' (Where, w = f(yaz)’al = fy7a2 = f27a11 = fyy7a12 - fyzaa22 = fzz)' We
now define maps

pi: P(RELRY) — R (i =1,2,3)
by ‘
pi(a) =as® +as? -1
pa(a) =ay - a1 +az - ay

ps(a) =ay - aiz +az - azz .

The Jacobian matrix of the map (py, ps, p3) 1s calculated as follows:

2a1 2&2 0 0 0
J(p1,p2,03) = | a11 a2 a1 az 0 |.

a2 azpp 0 a3 a

Since (ay, az) # (0,0) on p; ~1(0), rankJ(p1, p2, p3) = 3.
- Therefore, p;~1(0) N p271(0) N p3~1(0) is a submanifold with codimension 3.

On the graph {(g(y, 2), v, 2)|(y, 2) € R?} of function g(y, z), the light-like part is the set
satisfying ¢, + g.% = 1. Thus we have

G2 m ™ e 7H0)) = MY

Since 1 is a submersion, 71 7*(p;71(0)) is an algebraic set of Oy, and singular set of
7171 (p171(0)) is the submanifold m; = (p; 1(0) N p71(0) N p3~1(0)) with codimension
3. Hence, Q; is residual set by Thom’s Transversality theorem. O

Moreover, we have the following proposition.

Proposition 2.5. There exists a residual subset Q;" C I(M, R13) such that the condi-
tion (5) in Theorem A holds for any f € Q;'. '

proof. Here, we use the same notion as those of the proof of Proposition 2.4.
- Since 52 f(M;") C Oy, we may consider that f(M) is the graph of a function. If f(M) is
the graph {(9(y,2),¥,2)|(y,2z) € R?} and M, is a regular curve, then the tangent line

¢
of the light-like locus Ty, M;” is the set of vectors of the form (§ € Ty, R® such that

n
C:gy'§+gz'773'nd

(gy "Gyy + 9z - gzy)g + (gy “Gyz T+ 9z 922)77 =0.
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If the direction of the line Ty, M;” is light-like, then we have

(gy'£+gz'n)2 :§2+772a
so we have ‘
{gy(gy‘ “Gyz+ 9z gzz) - gz(gy “Gyy + 9z gzy)}2

= (gy “Gyzt 9z gzz)2 + (gy “Gyy + 9z gzy)2-

We also denote o = (y, z,w, ay,as,a11, a12, ag) the coordinates of J2(R%, R). Thus we
have the following equations:

a12 -+ (122 —-1=0
and
{a1(a1 - a12 + a3 - age) — ag(ay - a1 + ap 'a12)}2

= (ay - a2 +ag - azz)2 + (a1 - a1 +az- a12)2-

These equations give an algebraic subset V of J%(R%,R) and the codimension of V is
two. By Thom’s Transversality theorem, there exists a residual set Q' C I(M,R;*) such
that (72£)"(m7(V)) is the set of isolated points. If we put Q;' = @;N Q’, it is also a
residual set in I(M, Rls) and the condition (5) in Theorem A holds for any f € Q). O

Similarly, we have the following proposition.

Proposition 2.6. There exists a residual subset Q. C I(M, R13) such that the condi-
tion (6) in Theorem A holds for any f € Q,'. ’

proof. We adopt the residual set Q. which is given in Proposition 2.3. For any f € Q.,
the parabolic set is a union of regular curves. Like as the previous arguments, we may
only consider the case, when f(M) is the graph {(g(y, 2),v, 2)|(y, z) € R%}. In this case
the parabolic locus Py is given by the equation gy, g, — gzz = 0. So the tangent line of

¢ .
the parabolic locus Ty, Py is the set of vectors | ¢ | € Ty R3 such that ( =g, -€+g.7

n
and

(gyyy “ g2zt Gyy * Gzzy — 2gyz ' gyzy)§ + (gyyz “Gzz + Gyy * Gzzz — 2gyz : gyzz)T] = 0.

If the direction of the line T} Py is light-like, then we have

(9y - E+9:- 1)=& +n2

In this case we also denote a = (y, 2, w,ay,az,a1,a12, az2) the coordinates of
J2(R%,R). It follows that the condition of the parabolic locus is light-like is given by the
equations

2
ai - azy —ajz” =0

and

(a1 - (@112 - @22 + @11 - @222 — 2ay19 - G199) — ag - (G111 - Ggp + a1 - G122 — 2015 - G112))°
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_ 2 2
= (@112 - G + Q11 - G222 — 2412 - @199)% + (G222 - @22 + a1 - G122 — 2a12 - A112)”.

This condition gives an algebraic subset of J*(R%,R) with the codimension 2. It also
follows from Thom’s Transversality theorem that there exists a residual set Q.' and the
condition (6) is Theorem A holds for any f € Q.. O

Proof of Theorem A. By Propositions 2.5 and 2.6, O.' and O;' are residual sets, then
the intersection O.' N O;' is also a residual set. By definition of O.' and O/, f €
O.' N O/ satisfies the condition (1),(2),(3) (5),(6) of Theorem A. Thus, we only need to
prove that the immersion f € O.' N O has the property (4). Because have discussed
on points of Mfl, we can consider I?(M, R13) D O; by the similar reason as that of
Proposition 2.3. Since the Gauss map is locally given by N(f)(y,2) = [=1; —gy; —9:]
on graph{(g(y, 2), y,z)l (y,2) € R2 of function ¢(y, z), it’s parabolic locus satlsﬁes the
equation gyy * g2z — gyz> = 0.

On the other hand since the point in M s satisfles the equation g% +9.° =1, the
intersection of M! ¢ and the parabolic locus is given by the equations

{g"’~""g”-’z_9yz2 =0
gy2+gz2=1 .

We define functions- ‘
' oi : JA(RZLR) — R (i=1,2)
‘by o
{ Q'l(a) = a1y - G2 — aiz”
o) =a1? + a2 —1.

The Jacobian matrix of the map (o1, 02) is calculated as follows:

(0 0 a2 —2a12 an
J(”l"”)“<2a1 2¢ 0 0 0)'

Since (a1, az2) # (0, 0) on a1? + ax? = 1, rank J(o1,02) = 2 if and only if
(an,alg,agg) # 0. It follows that the singular set 3 (o1,02) of o1 71(0) N oy 1(O) is
given by the equations
{ a’+ta?=1
aip =aiz =ag =0

and codim Y (01,02) = 3. Since submersion m; : O; — J*(R? R) is a submersion,
the pull-back m; *(g;7*(0) N 0,71(0)) is a submanifold with codimension 2, expect the
singular set w1 73" (01, 02)). And m;7}(3" (01, 02)) is & submanifold with codimension
3. If 52f h w1701 71 (0) Ny 71(0)), then (j2£) "1 (m1 " (o1 72(0)Noz71(0))) is a 1solated
point of M. Which is a both of parabolic point and light-like point of f.

On the other hand, under the above condition, (o, 02) 07 03 f is submersion if and
only if it is a local diffeomorphism. Hence, o4 oy 052 f and o 07 032 f are submersion.
It follows that (o1 o 71 0 52 f)~1(0) is a parabolic locus and
(02 071 032f)71(0) is a light-like locus. If these curve does not intersect transversally,
we have

T(yo,zo)(al o0m O j'zf)_l (0) = T(yo,zo)(UZ 0™y szf)_l(o)'
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Since |
T{yo,20)(71 071 0 52 f)71(0) = kerd(o; 0 71 0 j2f)
and o
Tlyo,z0)(02 0 ™1 0 52 £)71(0) = kerd(o 0 71 0 52 f),
we have

kerd(oy om0 j2f) = kerd(oy 0w 0 52 f).
It follows that the dimension of the space

kerd(oy o w1 0 52 f) Nkerd(oy o my 05°f) = kerd((o1,02) o my 0 2 f)
is equal to one. However, o3 o m; 0 j2f is local- diffeomorphism, so we have
kerd(cs 0wy 032 f) =0

This is a contradiction. ‘

Moreover, we can show that the intersection consists of fold points of the Gauss map.
In fact, if the intersection is a cusp point, then it satisfies Jyy 9zz — gyz2 = 0, and can be
written an algebraic condition of 3rd-order partial derivative of g at (y,2). In this case,
S0 is a submanifold with codimension 2. Since the equations of S1'1:° is described
in terms of 2rd and 3rd order derivatives of 3-jets, these equations and 9,0 +g.2 =1
are linearly independent except at the points which satisfy Gyy = 9zz = gy, = 0. So the
set of 3-jets which corresponds to cusp points of N(f) on M fl is an algebraic set in O,
whose codimension is greater than three . Thus, the set of immersions which satisfies the
condition (1)-(6) in Theorem A is a dense set by Thom’s Transversality Theorem. [

3. GAUSS MAPS ON NON-LIGHT LIKE SURFACES.

In this section we consider the geometric meaning of singularities of the RP2-valued

Gauss map restricted on the space-like part or the time-like part.
Define

H® = {P €R,’® |< p,p >= —1};
Si?={peR|<p,p>=1}.

We respectively call H,%, $;% a hyperbolic-plane, a pseudo sphere. And for z € R;3,
. the norm of z is defined by |z| = \/e(z) < z,z >, and z is called unit vector if lz| =1,
where ¢(z) = sign(z) denotes the signature of £ which is given by

1 =z :space-like
sign(z) =< 0  z:light-like

—1 =z : time-like .

So we can distinguish two cases for the local representation of the Gauss map at a
nonlight-like point on the surface. '

For convenience we identify (at least locally) M and f(M) for any f € I (M,R;®).
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Case 1). When p € M,7, since < Xu(p) A Xy(p), Xu(p) A X,(p) > < 0, we have

Xu(p) A Xo(p)
[ Xu(p) A Xo(p)]

Here, X = X(u,v) ((u,v) E Us) is a local parametrization of f(M) and U, is an open
ne1ghbourhood of pin M,%, and the subscripts u and v indicate partial differentiation.
So N(f)lu, can be considered as a map from U, to H;?. We call N(f Mu, the space-like

Gauss map or S-Gauss map associated with the immersion f, and denoted by N°y,(f).
That is

€ H,?

N°y,(f) : Uy — Hy% N*(F)(p) = éi%:izg%l'

In this case, the derivative of N°y, (f) is denoted by

AN*(f)p : To(MT) — Tve gy 00y (Hi?).

Under the identification of M, = f(M, f) since Tp(M, Y and TNa(f)(p)(Hl ) are parallel

planes at p, the map dN*y,(f)p can be looked upon as a linear map on Tp,(M, .
And K5 := detdN*® (f)p 18 called a space-like Gauss curvature or S-Gauss curvature at
pe M7 on the surface Mt

Case 2). When p € M,”, we also have

Xu(p) A Xv(p)
[ Xu(p) A Xo(p)]

‘Here, X = X(u,v) ((u,v) € Uy) is a local parametrization of f(M) and U, is an open
neighbourhood of p in M;’, and the subscripts v and v indicate partial differentiation.
So N(f)|v, can be considered as a map from U, to S;2. We call N(f)|y, the time-like
Gauss map or T-Gauss map associated with the immersion f, and denoted by Ny, (f).

That is

‘ Xu(p) N Xo(p)
| Xu(p) A Xo(p)]
In this case, the derivative of N*y, (f) is denoted by -

€ 512

N'u,(f): Up — 1% NY(f)(p) =

NtUt(f)p : Tp(Mtf) — TN:(f)(p)(Slz).

Under the identification of M,’ = f(M,”), since T o (M;F) and Tne(fy(p)(S1?) are parallel
planes at p, the map dN*(f), can also be looked upon as a linear map on Tp(M;’). And
Ky = detht(f)p is called a time-like Gauss curvature or T-Gauss curvature of the
surface Mt at p € Mt '

By definition and the above local representation, a non-light like point p is the para-
bolic point if and only if the space-like (or time-like) Gauss curvature vanishes at p. Since
the induced metric on the space-like part M,’ is positive definite, the space-like Gauss
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map has the almost same properties as those of Gauss maps of surfaces in Euclidean
space. So we only discuss the properties on the time-like Gauss map in R;? as follows:

For Yv € TI',(Mtf ), the quadratic form I, defined by
I1,(0) = — < AN*(f),(0),0 >

is called the second fundamental form of M, at p. Let a : I — M;” be a regular curve
(ie. a'(t) # 0, V¢ € I) which passes through the point p € M,/ k a curvature and n a
unit normal vector of the curve a at p, and N a unit normal vector of the surface M,/ at
p. If k # 0 then we call k, = k <n, N > the normal curvature of the curve o C M7 at
p, where I is an open interval of R. In this case, for the T-Gauss map N*(f), associated
with f € I(M,R;®) and v € T,M;?, we have II,(v) = kn(p) by the Frenet-Serret type
formula (cf., [4]).

In order to consider the principal curvature, we consider the elgenvector of dN*(f )p-
Let C? = {(uy,u2)|u1,us € C : complex} be a 2-dimensional complex vector space,
u = (uy,us) and v = (vy,vy) be two vectors in C2, the pseudo Hermitian-scalar product
of u and v is defined by < u,v >= —u;D; + usty. (C%,<,>) is called a 2-dimensional
complez Minkowski space or 2-dimensional pseudo complez Hermitian space. We denote
C;? as (C?,<;>). Then we have the following simple lemma in linear algebra [6].

Lemma 3.1. If N : U, — 5% is a T-Gauss map associated with f € I(M,R;®) at
p € M, then the differential dN*(f), of N(f) at p is a self-adjoint linear map. The

eigenvalue and corresponding eigenvector are real.

Proposition 3.2. Let N* : U, — S, be a T-Gauss map associated with f €
I(M,R;®), the numbers \; and )\ in C with A; # Ao (in this case A1, € R, by the
Lemma 3.1). If the map dN'(f), : T,(M;) — T,(M,!) satisfies AN*(f),(e1) = —A1e1
and dN'(f)p(e2) = —Aze2, then ey and ey are pseudo-orthogonal.

Proof. Since dN*(f), is self-adjoint, we have

< dNY(f)pler), e2 >=< e, dN*(f)p(e2) > -

It follows that )
< Ap- €1,€y >= Ay < €1,€9 >= Ag < e1,€2 >,

thus we have

(Al - /\2) < ep,ep >= 0 ()\1 7£ /\2) d

The assertions of Proposition 3.2 implies that there exist nonlight-like pseudo orthonor-
mal basis associated with pseudo scalar product on M. / induces form R,3.

Proposition 3.3. pr e M’ , and {e1,e2} is a orthogona] basis of the tangent plane
Tp(M,;7), then the vectors e, and e, are nonlight-like.

Proof. We may consider that Tth is R? with the pseudo-inner product < z,y >=
—2Z1 - Y1 + T2 - y2. If one of the pseudo orthogonal basis is given by e; = (1,1) and
e2 = (z,y) is another vector of the pseudo orthogonal basis in R;?. Then we have z = y
by < e1,e; >= 0. This means that e; and e, are linear dependent. O
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Theorem 3.4. Let {e1, ez} be a pseudo-orthonormal basis of the tangent plane T, (Mtf)
at pe M, then for anyv € T (Mt ) which is given by v =z - e; +y - es,

II,(v) = kno(p) = M1 -e(er) -2 + Ag - 5(6?) -y

Here dN'(f)p(ei) = —Xi-e; (1 =1,2; A\ # X\2), and e(e;) = sign (&;)i=1,2-
Proof. |

IL(w)=—<dN"f)p(v),v>=—< =X -z-e1— Xy -y-eq,T-€e1+y-e3 >

:/\1-5(61).3@2+/\2_5(62)_y2 O
Let |
ki=Xi-ele;) =\ < ej, e >,
then ‘
Cka(p) = IL(v) = k1 -2 + kg -y

We say that the numbers kq, k, are principal curvature at p € M,f. The corresponding
- directions that are given by the eigenvectors ej, e, are called pmnczpal directions at
pE M7t follows that K1 = k1 - ko like as the Euclidean case

On the other hand, we consider the case that f € I(M,R;*) has properties in Theo-
‘rem A. Let p € M’ be a parabolic point, {e1,e2} be a pseudo orthonormal basis of the
Tp(M,’) and k; and k; be eigenvalues of dN(f), with eigenvectors e; and e, respec-
tively. Then e; and e, are nonlight-like by Proposition 3.3. Since K1 = 0 and dK7 # 0
at the parabolic point p € M, we have k; = 0 and ky # 0. In this case, both of e;
and e, are not light-like vectors. Moreover, the dimension of kerdN, is one by Theorem
A. The kernel of the derivative of N*(f), is a line corresponds to the zero principal
curvature direction. This line is called a zero principal curvature line. So we have the

following theorem which describe the generic geometric properties of the parabolic set
on the nonlight- 11ke part.

Theorem 3.5. Let f € I(M, Rl ) be an immersion which has propert1es(1) (6) of
Theorem A. Then

(1) p € M,? (respectively, p € M ) is a fold pomt of the T-Gauss map N*(f)
(respectively, S-Gauss map N°(f)) if and only if a zero principal curvature line
of f is transverse to the parabolic locus of f at p. '

(2) p € M (respectively, p € M%) is a cusp point of the T-Gauss map N*(f)
(respectively, S-Gauss map N*(f)) if and only if a zero principal curvature line
of f is tangent to the parabolic locus of f at p. '

proof. We only consider the case that p € M;’. Locally, f(M) can be written as the
graph of a function h € C®°(R?,R!), and N!(f) = grad(h|y) by §2. Let g = grad(h|v),
so the smooth map N¥(f) = g : U — R? is good by Theorem A, where U is open
neighbourhood of p in R?. If p is a singular point of the good map g, then we have

det J4(p) =0, graddet J,(p) # 0.
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In general, if g is a good map, the singular locus C of g is a regular curve in M. Moreover, .
it has been known that a singular point of ¢ is a fold point if and only if the tangent
line of the singular locus C of g is transverse to the direction of kerdg, (cf., §3 in [1]).

On the other hand, if g is the T-Gauss map, K1 =detJy(p). A singular point of g is
a cusp point if and only if the zero principal direction line is tangent to the direction of
kerdg,. This completes the proof. [ ‘

4. EXAMPLE
We now give some examples which are illustrating the main results:

- Example 1. The shoe surface:

X(2,9) = (2,0, £(2,9)) = (2,9, 32° ~ 547).

The local representation of the Gauss mapping is N(f) = (fz, fy) = (2%, —y), and the
parabolic locus is obtained by solving A= f,, - Sy — fgcy2 = —2z = 0. Since grad
A= (=2,0) # 0 on the parabolic locus, N is good. The light-like locus is obtained
by equation —f,% + fy2 + 1 = 0, so the light-like locus is given by —z* + y? — 1 = 0.
The parabolic locus can be parametrized by z(t) = 0,y(t) = t. So the Gauss mapping
restricted to the parabolic locus is N(t) = (0, —t), with N'(t) = (0, —1) # 0, hence N is
excellent. Moreover, N has no cusp points. | '

Example 2. The Menn’s surface:

X(y,2) = (f(y,2),y,2) = (—%y4 +ylz— 2%y, 2).

The local representation of the Gauss mapping is

N(f) = (fy. fz) = (—2¢® + 2yz,y? — 2z), and the parabolic locus is 8y? — 4z = 0.
Since grad A= (16y,—4) # 0 on the parabolic locus, NV is good. The light-like locus is
(—2y® 4 2y2)% + (y® — 22)? —1 = 0. The parabolic locus can be parametrized by y(t) =
t,2(t) = 2t?, so the Gauss mapping restricted to the parabolic locus is N(t) = (2t%, —3t?),
N'(t) = (6t*, —6t), N''(t) = (12t, —6), hence N'(0) = (0,0), N''(0) = (0,—6) # 0. The
Gauss map has a cusp point (0,0), and N is excellent. Clearly (0,0) ¢ M;”.

Example 3. The saddle surface:

X(1.2) = (F4,2),,2) = (36° 92" + (7 + ).

The local representation of the Gauss mapping is N(f) = (y*—2*+y, —2yz+2), and the
parabolic locus is y? + 2% = i. So grad A= 4(—2y, —22) # 0 on the parabolic locus, N
is good. The light-like locus is (y2 — 2% + )2 + (—2yz + 2)2 — 1 = 0. The parabolic locus
can be parametrized by y(t) = 1 cost, 2(t) = 1sint, so the Gauss mapping restricted to
the parabolic locus is

1 1 1 .
N(t) = (Z cos 2t + —;—cost,—z sin 2t + §s1nt»),
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1, . 1
N'(t) = (——2— sin 2t — %smt,——%cos%-{- §cost),

1 1
N''(t) = (—cos2t — 5 cost,sin 2t — 3 sint).

(t) =0. And N'(t) = 0 implies N"'(t) # 0. We have cusp points
4

Hence t = 0, 2%, 4™ by N'
“il, and N is excellent Clearly, cusp points (4,0) (—- l/—_)’
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