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~ Abstract

Two-dimensional turbulent flows are known to have organized structures.
There are some theories to explain the organized structures (Robert and
Sommeéria [4], Joyce and Montgemery [3] ). They employ a theory of equilib-
rium statistical mechanics.

The subject of this paper is the application of these theories to three-
dimensional decaying turbulent flows. From the structure of Clebsch variables,
the suggestion is given that the ‘entropy * S is pointwise defined and that it
is a function of the norm of the vorticity field w(z) at each point.

1 Introduction

One of the most striking features of two-dimensional turbulence is that it has coher-
ent structures. Direct numerical simulations of the two-dimensional Navier-Stokes
Equation show that a disordered initial state relax to a long-time state with coher-
ent structures [2]. This feature has been explained by using theories of equilibrium
. statistical mechanics. . '
Unlike two-dimensional case, there are no global structures in three-dimensional
Navier-Stokes turbulent flows as far as numerical simulations show. But it is known
- that the flows have structures which are local with respect to space and time. Re-
gions in a turbulent flow with strong vorticity often have tube-like structures and
are called vortex tubes. We will formally apply the method of equilibrium statistical
mechanics to three-dimensional turbulent flows as in two-dimensional case and try
to explain their local structures.
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2 Basic Equations

In this paper, we will work with the Navier-Stokes equations for a incompressible
fluid in a domain M with dimension 2 or 3:

%+(u-V)u+Vp=uV2u

V-u=0 v :
u € X(NN), dimQ=2,3,

~where u is the velocity field of the fluid. The boundary condition is
| u-non 0, n normal to 09,

when v = 0 (the Euler equation) and otherwise
u=0 on ON.

The equivalent equation for the vorticity field is

a

% + (u-Vw - (w- V)u=rvVw.

If Q) is two-dimensional, the vorticity field is a scalar field and the third term in the
left hand side of the equation vanishes. This is the significant difference between the
two-dimensional flow and the three-dimensional flow. This equation for the vorticity
field can be reformulated in terms of differential geometry:

% + Lyw=—-vAw
d*u’ = 0,w = du

w’ € AY(Q),w € A2(Q)

u’ is the 1-form correspond to the velocity field u and the vorticity field w is a 2-
form. L, denotes the Lie derivative with respect to u. d* is the adjoint operator
of the exterior derivative d and A = dd* + d*d is the Laplace-de Rham operator.
In absence of the viscosity v, the time derivative d/dt and the Lie derivative L,
cancel each other out for the 2-form w, which means that the vorticity 2-form w is
advected by the velocity field . The 2-form is a one-dimensional vector (scalar)
field when the domain M is two-dimensional, as is three-dimensional when M is
three-dimensional. We introduce the vector potential ¥» € A?(M) which is defined
by
d*Y = u, Ay = w.

The vector potential v is not defined uniquely and we may add an arbitrary 2-form
¢ satisfying d*¢ = 0(rot{ = 0). In two-dimensional case, % is a scalar field and often
called the flow function. :
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3 Two-dimensional turbulent flow

This section provides a brief review of the two theories on the coherent structure
in two-dimensional turbulent flow. Both of them employ the method of equilibrium
statistical mechanics. The vorticity field is regarded as a macroscopic state in some
way and the entropy S is defined. The organized structure appears as a state of
maximal entropy, with the constraints E = const., Q); = const.(: = 1,2,...), where
E is the energy of the system and @); are the other constants of the motion. Then,
with Lagrange multipliers 3, ¢;, the maximal entropy state satisfies the equation for
the variations: '

§S = BSE + 3 ;6Q;.

Joyce and Montgomery [3] approximated the Euler system by N¥, N~ -point
vorticities system. N1 point vorticities have positive charge a and N~ point vor-
ticities have negative charge —a. Each point vorticity moves along the flow in-
duced by the other vorticities. The two-dimensional domain  is divided into M
cells with same areas. The macroscopic state is determined by a set of numbers
{(NF,N7)|i=1... M}, where N;', N7 are numbers of positive and negative vor-
ticities in i-th cell. The probability W of the state is given by

- 'M 1 'M 1
W:{N.E_MN?NZ*!}{N.izl..__MN‘__Ni_!}.

The entropy S is defined by
S =logW.

The energy of the state is given by
1Y,
E = 3 ga (N - N7)(NF - N7 )G(ri,rj).
i#j

r; denotes the position of the center of cell and G(r;,r;) = —{(V?)~18(r:)}(r;) is
the Green function. Condition of the extremum entropy state is

6S = at6Nt + a7 6N~ + BSE.
After taking a continuum limit (M — o), one obtain the sinh-Poisson equation:
w = —V?y) = Casinh(aBy), C is a constant. (1)

In Robert and Sommeria [4], the initial vorticity field is approximated by the
field made of n patches (; of value a;. Each patches §2; preserves its area |{2;|and
its vorticity a; during the fluid motion but they in general become more and more
intricate. Let e;(z) denote the probability of finding the value a; at the point z,
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then the macroscopic state is defined by e(z) = (e1(z),... ,eq(x)). The entropy S
is defined by the Shannon classical entropy integrated over the domain :

§ =~ [ ¥ (o) logei(z)da.
The Energy F is determined from fhe macroscopic vorticity field
w(:l:) = Za,-e,-(a:),
namely

— — _(u2)-1
E—/ngbwd:v, where ¢ =—(V*) w.

The other constraints are that the areas:
F.= /Q ei(z)dz = ||

are constant. Then the entropy extremum condition is the equation for the varia-
tions: ' '

’ n-1
68 =Y ci6F, + PSdE.
i=1

The solution must satisfy the flowing equation:

- 1d
w= -V = r 1_.08 Z(y), (2)
where Z(y) =Y exp(—a — Baip). (3)
=1

The general case of an initial vorticity field w belonging to the space L=(Q) is also
studied in [4].

The maximum entropy state is a solution of (1) or (2). The equations (1) and
(2) are known to have solutions with global coherent structures [5]. Direct nu-
merical simulations of the two-dimensional Navier-Stokes turbulences [2] have good
agreements with the equations (1).

4 Clebsch variables

When the domain () is three dimensional, we cannot adopt the methods in section
3 straightforwardly. Since the vorticity 2-form w is not a scalar field but a vector
field, point vortices or vortex patches do not make sense any more. Advected by the
velocity field u, the vorticity 2-form w is ‘stretched’ and the value is changed. In
this section, we introduce Clebsch variables as the substitute for the vorticity field.
Clebsch variables are 2-scalar field which is advected by the velocity field u. Then
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we will try to apply the methods in section 3 using the Clebsch variables in section
The classical Clebsch variables (A, 1) are the 2-scalar field which describe the

vorticity field:

(A p): 9 — R,
vw—d)\/\dp,

du
Z d—mzdx, dz. d.’L']

Clebsch variables are not determined uniquely from the vorticity 2-form w and can
be chosen to satisfy the following time evolution equation :

2 (0m) =~ V), )

The equation means that each classical Clebsch variable is advected by the ve-
locity field u. The vector potential 3 is written in terms of the classical Clebsch
variables by

¥ = A7 (dA A dp).

Although the classical Clebsch variables satisfy the property above, there arise
some problems to construct the theory. The first is that the classical Clebsch vari-
ables are not uniquely defined as mentioned above. Since the derivatives of classical
Clebsch variables determine the vorticity 2-form w, we can always add arbitrary
constants to them. In fact, there is more arbitrariness. The vorticity field is invari-
ant under the action on R? = (), pu) preserving the symplectic 2-form A A y. The
second is that the classical Clebsch variables can only describe the vort1c1ty fields
which are helicity free:

H=/nu/\w=0.

Turbulent flows are generally has non-zero helicity and the classical Clebsch variables
can not describe those flow.

» In order to resolve second problem, we generalized the Clebsch variables to 2n-
scalar field: '

- (Nym): M — R™
w= Zd)\, A dy;.
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They are the former classical Clebsch variables when n = 1. The flows described
by the generalized Clebsch variables can have non-zero helicity, but it is not certain
if there is a large number n enough to describe turbulent flows. This is an open
question.

The first problem is more essential, which tells that the actual value of the Cleb-
sch variables are of little importance and that only their derivative have meanings.
We keep this fact in mind in constructing the theory for three-dimensional turbu-
lence in the following section. |

5 Three-dimensional Turbulent flow

In this section, an attempt is made to construct the theory of three-dimensional
turbulent flows using the method in equilibrium statistical mechanics. We consider
the force free case and suppose that the turbulent flow decays into a certain state.
The state may well not have global coherent structures like in the two-dimensional
flows.

For simplicity, let the domain (2 has no boundary and be T3, that is a cube with
the periodic boundary condition. First we assume that the Clebsch variables are
classical:

(A p): T° — R,

then the inverse image of a point (A, x) € R? is a vortex line: a integral curve with
orientation along the vorticity vector field. So classical Clebsch variables can be
interpreted as the indices of vortex lines. The inverse image B C T° of a connected
area A C R?is a collection of vortex lines. Let B’ be a connected part of intersection
of B with a plane, then

n|dz = |A
/., lenlde = |4

where w, is the normal component of the vorticity vector w and |A| is the area of
A. Let C be a small ball whose center is a point z € T° and D € R? be the image
of C through Clebsch variables. We assume that all vortex lines intersect with the
ball C at most once. Then the following equation is satisfied: ‘

1
5 Jlenl = DI,

since each vortex line intersects with dC twice.
Let J be a set of grid points in RZ:

J = {(mm,jn)li,j € 2},

where 1 is a grid size. Each point corresponds to a vortex line. The microscopic state
is defined by the map P, : J — {—1,0,1} and the direction d, € S? at each point
z. We use the approximation that vortex lines penetrate the ball C in the direction
d, or —dg. Py(\,pu) = 1,—1 if the vortex line correspond to (A, ) penetrate z in
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the direction d,, —d, respectively. P,(), u) = 0 if the corresponding vortex line does
not intersect with the ball C. The macroscopic vorticity vector w at z is defined by

w(@)= Y Polhp)n’ds. @)
()\,;A)EJ

We will define the ‘entropy’ pointwise. The ‘entropy’ of a macroscopic state
should be proportional to the log of the measure of corresponding microscopic states.
It should not depend on the direction d,, so that the ‘entropy’ should be a function
of the norm of the vorticity vector in the approximation here. Let the function be

f:

S(w = a) = f(la),
§= | f(lwl)dez,

T3

The energy of the state is determined by the macroscopic vorticity field w:

E#l/ w - bz
2 Jr3

The above results may be extended to the generalized Clebsch variables, because
the corresponding vorticity field is a n-fold superposition of the vorticity fields de-
scribed by classical Clebsch variables. So we may remove the helicity free condition.
Since vortices ‘stretch’, there is no constraint that corresponds to the invariance of
vorticities a; of vortex patches {};. Then the equation of the variations for the state
of entropy extremum becomes

§S = BSE, (5)
df w _
QMH6Wd$—ﬂA¢6Wd$a
aif w _ . r _
mlwl'_ BY+¢,  d°¢=0(rot{ =0). (6)

An arbitrary rotation free 2-form ( appears in the equation since the variation éw
is divergence-free (dw = 0). Operating d* (or rot ) on (6), we obtain

d* ( df w ) = Bd*y or rot (—df—-i> = Bu. (7)

dw] Jw]

6 Discussions

The state of ‘entropy’ extremum satisfy the relation (6) between the vector potential
¥ and the vorticity field w. The vector potential 1 is parallel to the vorticity field
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wat each point if we leave out the rotation free component (. If the domain 2 is
two-dimensional, the vector potential ) and the vorticity field w are both scalar and
parallel to each other. So (6) may suggest the two-dimensional structures in the
three-dimensional turbulent flows. ' ' o

~ A bottleneck in further study is the arbitrariness of the function f(|w|). If we
can determine the function f, then the equation (7) can be checked against the data
of direct numerical simulations of Navier-Stokes turbulence. Recall that ‘entropy’ S
is approximately proportional to the log of the probability density P(|w|):

S(|wl) ~ log P(jw))

In (4), the macroscopic vorticity w is defined as a summation. If P,(), #) are mutu-
ally independent as probability variables and the summation is over a large number,
then the probability distribution is approximated by the normal distribution from
the central limit theorem:

In this case, the relation between the vector potential 1 and the vorticity w become

AY =w = —foy.

This means that the vector potential ¢ is an eigenfunction of the Laplace-de Rham
operator A, which is unrealistic. So the assumption of the mutually independence or
the large number summation in P,(, ) is not appropriate. Indeed, the probability
distribution of the vorticity in direct numerical simulations is not normal but rather
has exponential tails [1]. The function f for the ‘entropy ’ corresponds to this
exponential distribution may be of the form

F(lwl) = —a/lwl* + 1.

Another possibility is to reproduce the two-dimensional result |w| = sinh(S8|y|) by
letting the function f be of the form

F(lol) = —wlog (VioP +1+0) + VP + 1.

This ambiguity is the fault of the theory at present.

Another problem is that a solution of (7) is generally not a stationary solution of
the Euler equation as in the two-dimensional case. This implies, in a sense, that the
statistical condition and the dynamical condition are not compatible in the three-
dimensional turbulence. Although (7) can not be satisfied at all points z €  and all
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time ¢, the possibility remains that the considerably many points satisfy the relation

(7). - .

We conclude this paper with giving the remark on the additional constraint. The
helicity is a constant of the motion in the three-dimensional Euler equation. Perhaps
the constraint that the helicity H is constant should be added in the equation (5),
which gives

§S = a6H + BSE,

df w )
rot | —— | = 2aw + Pu.
(d|w| X g
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