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A remark on Serre’s example of p-adic Eisenstein series
by :
o & = <
S_’ Nacaoka (| 3@5& 'k(; IBr ,%[g\ ag )
1 Introduction.’

In [Se], J. P. Serre developed the theory of p-adic modular forms and applied
it to the construction of p-adic zeta function. In this paper, we shall try to
- generalize a formula for p-adic Eisenstein series which was originally given by
Serre. A p-adic modular form is a formal power series

f=> alt)q" € Q[lg]]
t=0

which is the limit of a sequence of modular forms {fm} with rational Fourier
coefficients: limy, 00 fin = f.
If we denote by

fm = a™(t)¢" € Qfg]]
t=0

the Fourier expansion of f,, (g-expansion), this limit means that
Up(f = fm) 1= irtlfvp(a(t) —a™(t)) = +co  (m — o0),

where v, is the valuation of Q, normalized as vp(p) = 1. If we denote by {kn}
the weight of {f,,}, then Serre showed that {km} has the limit in the following
- set: -

X:=limX/(p-1)p"'Z=2Z,xZ/(p - 1)Z.
Let E,(cn) be the Siegel-Eisenstein series of degree n and weight &k (for precise
definition, see §2). Set
1
Gy = 5((1—F) EM,
where -((s) is the Riemann zeta function. For k € X, we take a sequence

{km} C 2Z such that limm,_c ky = k and lkm| — 400 (m — o0). Serre
defined the p-adic Eisenstein series Gy, of weight k € X by

Gy = lim Gg,.

m—0o0

The right-hand side converges and it becomes a p-adic modular form. The
following example is due to Serre:
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EXAMPLE of G},. let p > 3 be a prime number such that p = 3 (mod 4) and
k=(1,82) € X. Then we have

Gp = h(— p+zz<)

t=1 0<d|t

where h(—p) is the class number of the quadratic field Q (v/=p).

The main purpose of this paper is to give a generalization of this example. The
Siegel modular form f(Z) has a Fourier expansion of the form

Zaf exp[27r\/—t1 TZ)] Zaf(T

where T runs over the set of half-integral, positive semi-definite symmetric ma-
trices (see §2). For T'=(t;;) and Z = (zm) we set g;;:=exp(2my/— lzw qi = Qii,

and ¢;=t;;. Then f can be regarded as a power series in Clg;;, g;; a1, --- » qnl)-
So we can define the p-adic Siegel modular form as an element of Q[qm,qul]
([g1,- .. ,qn]]. Our result can be stated as follows:

THEOREM Letp > 3 be a prime number such that p = 3 (mod 4). If we put
o 1_;_2.?2_—_1 ez,

then the sequence {km} has the limit k = (1,Z5*) € X and

E; := lim G C(1 = ko )E”’)
:l 1 h(—p) + E rank (7)) E g "
2 p
. T>0 0<dle(T)
D(T)=-poro0

where D(T) is the discriminant of the field Q (,/— det(27) ) and we understand‘
D(T) =0 ifdet(T) = 0, and &(T) := g.c.d (t11, 2t12, t22).

In the final section, we give an additional formula which is concerned with
reduction mod p of the Fourier coefficient of the Siegel-Eisenstein series.

2 Siegel-Eisenstein series.

Let H, be the Siegel upper half space of degree n:
Hy,:={Z=X++v-1Y € Sym,(C) | Y > 0}.

The real symplectic group Sp,,(R) acts on H, by

Z v+ M(Z) :=(AZ + B)(CZ + D)7}, M:(é1 g)eSpn(R)-
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The group I'y, := Sp,(R) N My, (Z) is called the Siegel modular group. Let
[T'n, k] denote the C-vector space of Siegel modular forms of weight k for I',.
Any element f in [I'n, k] admits a Fourier expansion of the form -

(2.1‘) | f(Zj: Z af(T)exp[Zvr\/—_‘lt_r(TZ)],v

0<TeA,

where the index set A, is defined by
(2.2) An = {T = (t;;) € Sym,(Q) | t;; € Z, 2t:; € Z}.

Let I'n 0 be the subgroup of I'y, d.eﬁned by‘

Fn,O::{<vé g)érn C-—_—On}
For an even integer k, we define a series A
(2.3) E{(Z) = 3 det(CZ + D)%, Z€H,.

* *
( ) Epn,O\Fn
CcC D

This series is absolutely com)ergent if ¥ > n+1 and it becomes a Siegel modular
form of weight k for I';, : E(n) € [[n, k].- Here we call this the Siegel-Eisenstein
series of degree n and weight k. We write the Fourier expansion of E(") by

(2.4) E,(in)(Z): Z ak")(T)eXp[2wﬁtr(TZ)].

0<TEA,,

It is known that any Fourier coefficient a( )(T) is rational ([Si]). The explicit

formula of ak ™(T) was studied by several authors ([Kau|, [M], [Kat]). For
later purpose, we shall introduce an abbreviation. For T = (ti;) € Ay and
Z = (z;) € Hy, we write . o

(255) 7 = explery/“Tu(rz)] = T[4 [T
i<j i=1

where ¢;; := exp(2mv/—12;;), and ¢; = gi, t; = t;. So the Fourier expansion
(2.1) can be rewritten as . ‘ :

f: Z G,f(T)qT eC[qlJ’qal][[qlayqn“,
0<TEA, .

namely, f is regarded as an element of the formal power series rmg Clgij, 9;; 1
[[QI, v ,Qn”
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3 Bernoulli numbers and generalized Bernoulli numbers.

In this section’ we review some of the basic facts about Bernoulli numbers and
generalized Bernoulli numbers. The ordinary Bernoulli numbers B, are deﬁned

by

t
(31) 'et_l—zBmE-

As is well known, certain special values of the Riemann zeta function can be
represented by the Bernoulli numbers: for any eveh positive integer m, we have
B .
3.2) 1-— w2
O ((1-m)= =T

THEOREM 3.1 (1) (Kummer) If m and n are positive even integers withm =n
(mod p*~'(p — 1)) and n # 0 (mod p — 1), then

: B B
_pm=1y Zm _ _an=1y 7 €y .
(3.3) (1-p™1) - =(1-p"7") - (mod p°®)
(cf. [W], §5.8, Corollary 5.14).
(2) (von Staudt- Clausen) Let m be even and positive. Then
(3.4) : B + Z = EZ
Cop-d ImP

Consequently, PBm is p-integral for allm and all p. (cf. [W], Theorem 5.10).
(3) (Carlitz) If p*=1(p — 1) | m, then we have

(3.5) me =p—1 (mod p?).

(cf. [W], p.86, 5.11 (b)).

(4) Let p > 3 be a prime number such that p = 3 (mod 4). Then we have
(3.6) Bey1 = —M #0 (mod p).

(cf. [BS], Chap. 5 88, Problem 4'and [W], p.86, Ezercise 5.9).

Let x be a Dirichlet character of conductor f = fx- The generalized Bernoulli
numbero B, are defined by

% x(a)te* >
(37) eft -1 Z m’x
a=1 m=0 ‘
Note that B, o = By, (x°:the principal character) except for m = 1, where
- we have By ;0 = 31 -

1
1. _
Let L(s; x) be the Dlrlchlet L-function belonging to a Dirichlet character ¥:

(3.8) | Z X(m).
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Then, for any integer m > 1, we have
Bm,
m

X

(3.9)  L(1-myx) = -

(e.g. cf [I], 82, Theorem 1). In the following, we shall state Carlitz’s result
- about generalized Bernoulli numbers in the case that X is quadratic.

THEOREM 3.2 (Carlitz [Ca]) Suppose that x is o quadratic Dirichlet char-
acter of conductor f,. ‘

(1) If x # X°, then fyBp y is a rational integer for every m > 0 and if f, is
not a power of a prime, then even #Bm,x is a rational integer.

(2) If p is a rational prime such that p° | m but P 1. fx, then p® divides the
numerator of B . If fy is divisible by at least two primes and p is arbitrary
prime, then again p® divides the numerator of B - »

(3) Suppose that f, = p is an odd prime, and pe=1 | m. Then

(3.10) PBmx=p—1 (mod p®)
if j(p = 1) = 2m for some odd j.

ReMark.  The original form of above statement (3) is as follows ([Cal, Theorem

3). Assume that f, = p is an odd prime and p°-! | m. Let p be a prime ideal
in Q(x) defined by

p=(1-x(9)g™)),
where g is a primitive root mod p. If p # (1), then

PBmyx=p-1 (mod p°).

In our case, X is quadratic, namely, Q(x) = Q. Obviously, if j(p — 1) = 2m for
some odd j, then '

x(g)g™ =1 (mod p).

Therefore, Theorem 3.2, (3) is a special case of Carlitz’s result.

4 Fourier coefficients of Siegel-Eisenstein series.

In this section, we shall introduce some explicit formulas of Fourier coefficient
a{™(T) of Siegel-Eisenstein series in the case n <2
It is well known that ail)(t) (4 < k €2Z) is given as follows:

——0k-1(t it ¢t>0,
(4.1) oM (t) = 5, 7+ ()

1 if t:O,

where o (t) 1= ’ZO<dlt dm.
In the case n = 2, G. Kaufhold [Kau] and H. Maass [M] gave explicit formulas.
Here we introduce a description of a,(f) by M. Eichler and D. Zagier [EZ] in
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which they used Cohen'’s function H (r,N).
Let r and N be non negative integers with r > 1. For N > 1, we define

(~Elr — N3 T L x o)
h(r,N) = if (=1)"N=0orl (mod4),
0 if (~1)"N=2o0r3 (mod 4),
where L(s; X) is the Dirichlet L-function and we write xp for the character

xp(d) = ( ) Moreover, for N € R, we define

Zh<" ﬁ) if (—1)’N=0orl (mod4), N >0,

H(r,N):={ @IV 7
(nN) = C(l—Qr) if N =0,
0 ' othermse

The above defined function H(r, N) is called Cohen’s Junction. It is known that
H(r, N) has the following description.

Lemma 4.1 ([Co], p.273, c)) If we set (=1)"N = D f? with D discriminant
of a quadratic field, then we have : '

(4.2) H(r,N)=L(1-7;xp) Y _ pbd)xp(d)d ‘oz (5)
o<dlf
where pu(d) is the Mobius function.
Returning to the formula aECZ)(T), for O #T € Az (cf. (2.2)), we define
4.3) e(T) :=max{l e N|I7'T € A;}.
TueoREM 4.2 ([EZ], p.80 Corollary 2) If0ST € Ay (T # Oy), then
det(QT)
(2) k—1 i Sl
(4.4) (T) = — e » d H( Z )
2 0<dle(T)
Especially, z'f'rankT =1, then
@ _ 2k k-1_ _2k T
(4.5) a,’(T) = N Z d By ox-1(e(T)) -
. 0<dle(T)
REMARK. It should be noted that the factor 4k(k — 1)/By - Bag—_2 in (4 4)

missing in the original formula of Eichler and Zagier.
By using (4.2), we can rewrite the formula (4.4). For 0 < T € A;, we write
(4.8) —det(2T) = D(T) - f(T)?,

where D(T') is the discriminant of the imaginary quadratic field Q (, /— det(2T) )

~and f(T) € N. It is quite obvious that the number f (T) is divisible by &(T) :
e(T) | £(T).



CoroLLARY 4.3 (Explicit formula of af) (T)) For 0 <T € Ap, we have

agcz) (T) = _4ké};BkB:,XD(T) Fi (T)
(4.7) 7T
 ER@M= ) &S w()xom () R oak-s (%)
' O<d|E(T) O<fi.ﬁd_l

5 p-adic Eisenstein series.

As we mentioned in Introduction, J. P. Serre developed the theory of p-adic
modular form and applied it to the construction of p-adic zeta function. The
p-adic Eisenstein series is a typical example of p-adic modular form. In this
section, we shall briefly review Serre’s theory.

In the following, for simplicity, we assume that p is an odd prime. Put

X =Z/p™ Y p-1)Z=Z/p™ ZxZ/(p—-1)Z, m>1.
Then {Xy,} forms a projective system. Let X be the limit of this system: -
(5.1) | X :=1limXm = Zp X Z/(p — 1)Z,

where Z,, is the ring of p-adic integers. -
The p-adic modular form

(5.2) B f= Za qup 1]

t=0

is defined as the limit of a sequence of modular forms { f, } with rational Fourier
coefficients. The limit means the following. Let vp be the valuation on Qp (the
field of p-adic numbers) normalized as vp(p) = 1. We denote by

fm =" a™(t)¢" € Q[lg]
t=0 = - :
the Fourier expansion of fm. The convergence lim,—,0 frn = f means that
vp(f = fm) ::'ir}f{/p(a(t) —a™ (@) - 400 (m — ).

We denote by {km} C 2Z theweighﬁ of {fm}. Serre [Se] showed that {km} has
the limit k in X. This element k € X is called the weight of p-adic modular

form f. The p-adic Eisenstein series (m the sense of Serre) is defined as follows.

Put
1

2

Bk

(1)
2%k Ei

Gr 1= 5 (1~ K)E® =

207
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where E,El) is the Siegel-Eisenstein series of degree 1 and weight k (4 < k € 2Z).
By (4.1), G has a Fourier expansion of the form

oo

= —— ~1( € .
Gy =~ +;€7k 1(t) ¢" € Q[[q]] N
Assume that k € X For an integer t > 1, we can define a p-adic integer oy _,(t)
by | |
O ()= Y drL
o<dlt ’
(d,p)=1
If k € X is even, then we can choose a sequence of integers {kn} (4 < km € 2Z)
- such that &k, — k € X and |km| — +oco where | - | is the ordinary absolute

value. For this {k,,}, we have
Ai_gnoo Ok—1(t) = 0 _1(2)

in Z,. The p-adic FEisenstein series (of degree 1) and weight k € X — {0} is
defined by '

(5.3) Gi = lim Gy,
- Namely,
(54) Gi=5C1-k)+> oi1(t)e" € Qllal],
| TET L |

where the convergence of the constant term is guaranteed in [Se], 1.5, Cor. 2,
and ¢* is essentially the p-adic zeta function of Kubota and Leopoldt. Strictly
speaking, if (s,u) € X =Z, x Z/(p - 1)Z ((s,u) # 1), then

5 C*(5,0) = Ly(si!™),

where Ly (s; x) is the p-adic L—fun.ction with charaeter x and w is the Teichmiiller
character (e.g. cf. [I], p.18).

ExampLE(Serre). Let p > 3 be a prime number such that p = 3 (mod 4). If
k= (1,22) € X, then

(5.6) = -;—h(-—p)—}—z > (g) ..

t=1 0<d|t

As mentioned before, h(—p) is the class number of Q (v/-p).
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6 M_ain result.

One of the main purpose of this note is to give a generalization of the above-

mentioned formula (5.6). It is interesting to us that the resulting formula has a
simple form unexpectedly.

~ As was mentioned earlier, the Fourier expansion of Siegel modular form f can
be written as

f=> ai(T)q" €Clasq5"lar, - 1 nll-
0<TeA, . ‘

As an analogy of the degree one case, one can define the notion of p-adic Siegel
modular form f as the limit of a sequence of ordinary Siegel modular forms
{fm} with rational Fourier coefficients:

f= Y o) e” € Qla o llan - »anl,

0<TeA,

fm= Y a™(T)q" € Qlaij a5 g, - - - » nl],
0<TEA,,

'Up(f ~ fm) = OsiII‘IEfA,‘ Up (a(T) - a(m)(T)) — +00. (m — o).

Our result is as follows:
THEOREM 6.1 Let p > 3 be a prime number such that p = 3 (mod 4). If we
put ,

~1
ko ::1+p—2—~-pm“1eN,

then the sequence {kn}3_, has the limit k = (1, 2f*) € X and

(6-.1) - E; = lim (%g('l—km)E,ﬁif)
; lh(—pH— Z rank(Tj Z é) q7,
2 p
0<TEA,, 0<dle(T)
: D(T):v——porO

where we understand D(T) = 0 if det(T) = 0.

'To prove this theorem, we prepare some lemma.

LEMMA 6.2 For non negative integers k, N, we define Sk(N) = YN a*.

Then, for any prime p > 3 and integer h > 1, the following congruence relation
holds:

S h
(6.2) _&*p_f]’_) = B (mod p"),
where By . is the km-th Bernoulli number and k., is the integer defined in
Theorem 6. 1.



Proor. Let B,(z) be the n-th Bernoulli polynomial. The following identity is
well known:

Sk(N) = —— (Br+1(N) — Br+1(0))

E+1 + 1
(e.g. cf. {I], p.15). Since

‘ ' k+1 g
Bit1(z) — Bx41(0)=(k+1)- By -z + ( 9 ) +Bp_y-xt + -,
we have .

Skm(ph) km h o, km (km — 1) .2k
T T Bt Do P TR B P
The prime p does not appear in the denominator of B, 1 and appears at most
once those of By_ _; (j > 2). This shows (6.2). | u

PROOF‘ of Theorem 6.1. Put
1
(6.3) Bk, =35 C(1~km) Eff,f
We write the Fourier expansion of Ex_ by
(6.4) By, = Z a™(T) ¢ € Qlg12, 912 )[la1, 2]} -
0LTEA,

Moreover, put

—;—h(—p) if T=0,,
> <5‘-l> if rank(T) =1,
(6.5) o(T) =  o<die(r) \P o |
2 Y ( ) if rank(T) =2 and D(T) = —p,
0<dle(T) p .
0 A otherwise.

Our aim is to show the following:

: (m) _ L
(6.6) ogl’}}é/\g Up (a (T) a(T)) — +00 (m — 00)
As a first step, we shall show that
Bk 1
i (m) — _Zkm ) — Zh(=—D).
(6.7) aim a™(0z) = lim ( e ) (=P)

210

Althoutrh this is a part of the result (5.6), we shall give a direct proof. By

Kummer’s congruence (3.3),
' B
<1 _ pkm—-l) km

-1\ Bk !
=(1-p* 1=t (mod
o =(1-rp )7, (modp)
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for m> [ (note that p> 3). This means that the sequence {(1—pkm_1)Bkm/km},
hence {B,,/km} converges in Q,. By Euler’s criterion,

; m—1 .
aFm = (ap%)p o= (E) a (mod p™).
p .
Hence we have

0 s Fo e () i

a=1 a=1 a=1

for any positive integers m, h with m > R, equivalently,

Sk (P") _ 1 (3 a od pm—h
©9) Hella (Z (p) a) (mod p )..

a=1

From this, we have

S (h) 1 [ a ﬂ
10 dm e = (Z 5) )

m-—0oo m m— 00 m—oco ph
This shows
-1
; B B, 1 ? <a> '
6.11 lim —= = = -lal.
Gy m_,ookmvp@p _

From the general formula for A(D) (D: fundamental discriminant), we get the
following identity:

‘ E p—=1 .. 2 p—-1 |
(6.12) h(—p) = _1_1) (Z Xop(@) a) = _é (Z (g) a)
. a=1 \a=1

(e.g. cf. [Z], §9, Satz 3). Combining (6.11) and (6.12), we get (6.7). The second
step is to prove the following: for T" # O,, :

(6.13) o™ (T) = o(T) (mod p™).
or equivalently, |

: in| (™) () — >m.
(6.14) Oz;ir%t'GAz Up (a (T) a(T)) >m
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First assume that T is rank 1. In this case, by (4.5), we have

(D) = - 3= o)1) = 01,1 (e(T)).

Again by Euler’s criterion, we obtain

(6.15)

a™\(T) = Z dFm=1= Z dLE‘E"P_m_lE Z (g) (mod p™).

0<d|e(T) 0<d|e(T) 0<d|e(T)

Finally we assume that T € A, is rank 2. By Corollary 4.3, a™)(T) can be
- written as

(6.16) . o
B . 2By, 1
(m) — _Zkm  (2) = ZTEm T XD | T),
a™(T) = — 5 aké(T) B (D)
Fen = Y d0 Y wlf) o) Fo o (L)
Em = B\ ) XD(T)\J. m— fd
O<d|s(T). 0<fl‘(Lf‘)'

We shall prove the following:

- | 1 if D(T)=—
. Bog,,.—2 0  otherwise

By definition, the factor of Bernoulli numbers becomes

Bkm—i:XD(T) _ BL P™ L, XD(T)

Bak,, 2 — B(p— Lpm-t

Suppose that D(T) # —p. By Theorem 3.2, (1), (2) and (3.5), we have

B%I'D"‘"lyxb(r)

=0 (modp™), pBp_1)pm-r =p—1 (modp™).
From these formulas, we get |

BLP

yXD(T) —
=0 (modp™).
B(p—1pm-1

Suppose that D(T) = —p. By (3.5) and Theorem 3.2, (3), we have
pB”—Eip"“-l,x-p' =p-1 (modp™), pBp_1)pm-1=p—1 (mod pm).
From these formulas, we obtain

Bp__ pm-

Lx-p ™m
=1 (modp™),
B(p—l)pm—



and this completes the proof of (6.17). Next we shall show that, i D(‘T) = —p,
then '

(6.18) B (T) = Z (é) (mod p™).
0<dle(T)
In our case, we have xp(ry(a) = x_,(a) = (%) Therefore
Rz 3 (9) > up e, (f—g-)) (mod p™),
0<dle(T) o< f| [@
(f;p)=1

where 0% () = Zo<d|l @p=1 4" (cf. §5). To prove (6.18), it suffices to show
that . o '

(6.19) S uf) Flor, (f}?) =1
o< LR
(f,p)=1

for any d with d | £(T). In general, we can prove

. “1 = (T _
(6.20) 3 w@iton, (-l—)_l
o<lim
t,p)=1
for any m € N. For any m € N with p® || m, we put mg := m/pt =

pi-- P (p; : prime # p). Then

2o urton (T) = 3 witen ()

o<i|m o<lim

(l,p)=1
(o)

I

i=1 \o<l|p:

The inner sum of the last formula is trivially equal to 1. This shows (6.20).
Combining (6.17) and (6.18), we obtain

d

- 2 > (-) if D(T)=-p _

a™(T) = o<de(ry \P - (mod p™).
0 otherwise :

This proves (6.13). If we put b, := v, (af™(0;) — a(02)), then, by (6.5) and
(6.7), we have b, — 4-co (m — o). Therefore we obtain

osi'zr"leng Vp (a("‘) (T) - a(T)) > min(m, bm) — +00  (m — o).

This showa (6.6) and completes the proof of Theorem 6.1. a

213
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7 Reduction mod p of Fourier coefficient of Siegel-Eisenstein series.

By similar argument used in §6, we can present an additional formula for the
Fourier coefficient of Siegel-Eisenstein series of degree 2.
The following result is due to Yamaguchi.

THEOREM 7.1 (Yamaguchi [Y]) Letp > 3 be a prime number such that p =
3 (mod 4). For any 0 < T € Ay with f(T)= 1, we have

4pBE_1XD(T)

(7.1) o2 (1) = - e

(mod p)

(for the definition of f(T), see (4.6)).

REMARK. The right- hand s1de does not necessanly vanish because there is a
possibility that prime p appears in the denominator of B B2l ey

We can genralize the above result.

THEOREM 7.2 Let p > 3 be a prime number such that p = 3 (mod 4). For any
0 <T € Az, we have

= 5 (D) oo
(72) &;;I(T)_h(_p)k%;ﬂ( (mod p),

where

0 otherwise.

{1 if D(T)=-—
Q=

Proor. By Corollary 4.3, we can write as

o2 (T) = i ;Z_ {B;i 2O Foga (7).
Recall h(—p)
Bepr = ——5 #Z0 (modp), (Theorem 3.1, (4)).
This implies |
4(p+1)Ber

(7.3) g__ T) = XD “Fpp1 (T)  (mod p).

h(—p) Bp_]_ .

First suppose that D(T) # —p. In this case, p does not appear in the de-
nominator of B 221 ooy (cf. Theorem 3.2, (1)). Then, by the theorem of von .

Staudt-Clausen (Theorem 3.1, (2)), the right-hand side of (7.3) is divisible by
p- Secondly suppose that D(T) = —p. In this case, we have

pB,_1 = -1 (mod p), po%g,x_p = -1 (mod p)
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(cf. (3.5), (3.10)). Therefore, we get

Bm

7.4 T X i
( )‘ o By _1 (mod p)
So we can rewrite (7.3) as
@ y = dor

We shall show .

. d
(7.5) Fep(T)= ) (—) (mod p) .

0<d|e(T) p

The proof of this formula is the same as that of (6.18). In fact, we have

Fep() = Y dF 3 u(f)x-p(f)fzg'gffp2<f}(c§)>

0<dle(T) o< f] LR
d | . [(f(T - o
= Y (5) > o) el (f J(,d) ) (mod p).
0<dle(T) N*7/ oy LX) : -
(fp)=1" T
We can show by (6.20) that the inner sum is equal to 1. Thls proves (7 5) 511(1
consequently, we get (7. 2) O
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