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A BASIS ON THE SPACE OF WHITTAKER FUNCTIONS
FOR THE REPRESENTATIONS OF THE DISCRETE SERIES
- THE CASE OF Sp(2;R) -

HIRONORI SAKUNO (fEE& 3i44)

We investigate Whittaker functions of the discrete series of the real symplectic
group Sp(2;R). We determine a basis on the space of Whittaker functions and find
integral expressions of their functions by classical special functions.

1. POWER SERIES SOLUTION

We consider the following system of diffeential equations for k;, k2, i, v in C:
(1.1) {6010; — K1(a1/a2)?} (a1, a2) = O,

(1.2) {(81 + 32)2 + 2/.1(81 + 82) + /J2 -2+ 252(1%32}¢((11, ag) = 0.

" This system has power series solutions for (—1 a}) in a neighborhood of the origin.
For p1, p2 in C , we define the formal power series ¢,, 4, (a1, a2) by

ai P a
(13) bin(@,00) = (2) @ 3 ena (2)" e,

2

We assume ¢y # 0 and ¢, ,, satisfies the system (1.1), (1 2) Then we have the
following result:

Proposition 1.1. We put for any ﬁ.Ied c# 0 inC,

(0, if m orn is odd,
) e
1) Pr(g+k+1)T (252 +k—1+1)
cm,n"_‘< - . : 1

X : ,
[ (22 414 1) T (22 4 | 4 1) |
if (m,n) = (2k,2l) € 2Z x 2Z.

\

Then for each (p1,p2) in {(0,—p + 1/) ( pEv,—pEtv)}, dpp given in (1.3) is

: a
absolutely convergent for any ki, ke, u,v in C, in all (—-— as ) im C x C, and a

az
solution of the system (1.1),(1.2).
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Here if 5y = 0 (resp. wy = 0), we put x,° (resp. ko0) = 1.
For (k1, k) in C? such that x;k, = 0, Proposot1on(1 1) means the followmg result:

Corollary 1. 1 The system of differential equatzons (1.1), (1.2) has the following four
solutzons fij (4,7=10,1) for three cases:

)"{ n+(=1)7v} —pt(=1)iv

(1) if K1 = ko =0, fz;(al,az)—— ( a, ,

as

ay \ (=10}
) I 1) (2\/Kpap),

(2) f 51 =0 and k2 # 0, fi;(a1,a) = (a
(3) if k1 # 0 and k3 = 0,

SNl b__ iy
fislar,a2) = (a2 st (

v —kKia;
Qs ’

where we denote by I,(z) the modified Bessel function:

z/2)u+2k
Z KTw+k+1)

Jor |arg(z)| < .

For the case k;x, ;é 0, we have the following expressmns of the power series
solutions ¢, 4,. :

<m,

Definition 1.1. We define for 1,5 = 0, 1, larg( —Kq %21)

fii(a, 02) =
27!'\/ Z (\/—nlm2a1a2/2) { —nt(= I)J”}+k \/—mal)

E'T((-1)Iv + k+1) I(—l)"{—%(—w(—l)fu)—k} ( as

and for each (p1,p2) € {(0,—p £ v), (—p +v,—pu +v)},

~ 27T\/ -1 —K1 %l . P2 '
¢P1,P2 = 4# ( 4 ) K2 2 ¢P1,P2 *

Then we have the following result:

Theorem 1.1. (1) There are the following relations between {f;;|i,j = 0,1} and
{bo1ml(P1,02) = (0, —p £ V), (~p £ v, —p£v)}:

[ foo if (p1,p2) = (O -#+ V),
é - _ S, f (p1,p2) = (0,—p —v) ,
2 o s if (p1,p2) = (—p + v,—p+v),
S, (p1p2) = (—pu—v,—p—v) .
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(2) For each (i,7), fi; has the following integral formula:

1 t . t 4K K90,2 |
2 i(ar, ap) = a2}y [, _ dk1keay
uglar,o2) /(—1)*c.~ 0w 727 ) PP\ 16m0,2 t at

Here we denote by Cy and C; the following contour:

= {—16k2a2z | z € C},
Ci= {4&1@(@ € C’} )

z
where C' is the contour which starts from a point +co on the real axis,proceeds along
- the realaxis to 1 , describes a circle counter-clocszse round the origin and returns to
+o00 along the real axis.

By Theorem(1.1), we know when ¢,, 5,, (01,p2) = (0, —p £ v),(~p £ v, —pu £ v)
are linearly independent. :

Corollary 1.2. If and only if both v, ““2*"’ and =5~ are not in Z, the set {$,, 5|
(p1,p2) = (0,—p £v),(—p £ v,—p +v)} is a basis on the space of solutions for the
system (1.1),(1.2). '

‘ 2. ANOTHER BASIS ON THE SPACE OF SOLUTIONS

The basis {f; ;|%,j = 0,1} does not contain a moderate growth function on Rsg x
Rso. Here R, ¢ denotes the set of positive element in R. Now we construct another
basis which contains a moderate growth function on Ry X Ryg.

Definition 2.1. We set for each | = 0, 1.,

1 (=13 (f )~ fo) 1 |
V=1 sin{—3(~p + (-1)W)} if o {-u+ (-)v} €2,
. 1 (=12 F{—n+(- 1)’v}(f“_f01)
Hopt(-)}om 2¢/=1 sin{—3(—p+ (=D))7} ’
$1 = fop, ¢z = fo,

™ fo1 — Joo (rep mh- fo) gz,

2 sinvm 9 sinym

fi=
f { p+ (-)v}=meZ,

¢3 (resp. ¢4) =

v—=m9 ginvm v—m) sinvm

limﬁf01 Joo (resp hm—f1 fo), ifr=meZz,

Then we have the following:
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Theorem 2.1. For any k1, Kz, p,v € C, the set {¢; | i = 1,2,3 or 4} is a basis on
the space of solutions for the system (1.1), (1.2). Moreover we have the following
integral formula of ¢5:

_1 \/_t- t 4/‘61/‘62&% dt
= [ g, [ X5 _ a
¢3(a1, az) -/Co 2 ( 5 )exp (16@(1% 7 :

\/——1—01>

az

(-16k2a3)-c0 Vi t dkiK0a?\ dt
¢2‘(a1"a2) A ( 2 )exp (16n2a§ t ) t’

(—16k2a2)-c0 \/z , tv 4/4,1/‘6202 dt
oy, ap) = 3K, [ L - - =
¢4( 41 2) A v ( 2 ) eXp <16K42a% t ) t

Here we denote by K, the Bessel function:

w1 ,(z) — L(2)

)2 sin v ’
Kulz) = Ty = L(2)

2 sinvmw

< 7 , we have the following integral formula of ¢o and ¢,:

| and when ] arg(

v ¢,

fv=melZ.

lim,_,,, =

and [y (-16rz03)-00 gy zmplzes that we e:z:change the variable s in the usual integral [5° ds
~on (0,00) for s = —16kKqa3t .

Next we shall obtain some evaluations of |pi(a,a2)| (1 <1< 4) We need some
evaluations of the Bessel functions /,(2z) and K, (z):

Lemma 2.1. We assume that v € R. Then, for any ¢ > 0, there exist constants
Ce, C! > 0 such that:

5, :
_Kulz) < C. (E> exp(—2), forz€R and z > ¢,
r(6,+3) 2

5y
_ L& < (E) exp(z), forze R and z > ¢
r <5nu + %) 2 ‘

Here for v € C we denote by 6, the following number:

5 — v ifR(v) >0
= fR(v) <0
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We set for v € R, j = 0,1,
X {k€N|k>|I/|+1} if v € Z and (—1)’v < 0,
v N, ‘ otherwise,
ki, = min{k € X}
I3~ + (=DIv+ 1)+

M;,, = su : ,
= Sy E ]
My, = gngbf Mj -

We denote by Y (j=0,1;u,v €R) the following constant:
lI‘ (1 —p— (=1)v + 1))’, if v € Z and (—1)’v < 0,
‘ CJ,#, II‘ ( —u+ (—1)ju + 1))‘
IT((=1)7v + 1)]

For simplicity, we wrirte ¢; ; = ciju., My = M;,,, M = M, , and k; = k;,,. Then
we obtain the following results of ¢; from Lemma(2.1) and Theorem(2.1):

, otherwise.

Corollary‘ 2.1. We assume that K1, k2,1, v € R, ko # 0, kK1 < 0 and ay,a; > 0.
Then we obtain the following results:

(1) If =+ v and —p — v are not contained in the set {z € 2Z + 1 | z < —1}, then
for any fixed € > 0, we obtain the followmg evaluations of ¢, (1<i<4):

| Cl - 2( #+V) '
b1, )| < m M (‘ilrl) < LN B )

' ‘ 3(—p+v)
2¢0Ce . K1k 2" 51l a
|¢2(a1,a2)| < 1 MO ko <__ 1|4 2|a:13) exp ( A/IO IL 2' % _ _lel_:“> ,
7T2 (CO + CI)C/ f‘f«1 |K2| 2( P+( l)JV) Y
|pa(ar, a2)| < - Egg%’)% -2 a’ My

xexp( M 1| | ?4—\/—/{1 >

Lt (=1)0)
C S 2 ks
lba(ar, az)| < 7T(C°—+Cl)__f§r=1%)§ { (_Mai) M; k;}

4m 4
' Iillfigl al)

xexp( M 1 a2 2

a
for;l- > €,a9 > 0.
2
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(2) @2 (resp. ¢4) is positive real valued for any v > 0 (resp. v € R). Moreover we
assume that ky < 0. Then, for any fired % >0, ¢3(a1,a2) and ¢4(a;,a;) are rapidly -
decreasing as a; — +oo0. » v -

3. WHITTAKER FUNCTIONS FOR THE REPRESENTATIONS OF THE DISCRETE
'SERIES - THE CASE OF Sp(2;R) -

3.1. Structure of Lie group and Lie algebra. Let G be the symplectic group
Sp(2; R) realized as ’

G={geSL(R)|‘gJg=J}, withJ= ( _(_)12 32 ) € My(R),

where g denotes the transpose of a matrix g and 1, denotes a unit matrix of size 2.

Let O(4) be the orthogonal group of degree 2. Take a maximal compact subgroup
K = GNO(4). We denote by g, t the Lie algebra of G, K, respectively. Let
0(X) = ~*X be a Cartan involution and g = t + p is the Cartan decomposition of g.

We set a = RH, +RH, with H, = diag(1,0,-1,0), H, = diag(0, 1,0, —1). Then a
is a maximally Cartan subalgebra, of g and the restricted root system A = A(g;a) is
expressed as A = A(g; a) = {£X; £ Ay, £2),, +2)X2}, where ), is the dual of H;. “We
choose a positive root system A+ as At = {A1 £ 22,201, 2),}. We also denote the
corresponding nilpotent subalgebra by n = > pea+ 95- Here gg is the root subspace
of g corresponding to 8 € A*. Then one obtains an Iwasawa decomposition of g and
G;g=n+a+t G=NAK with A = expa, N = expn.

3.2. Representation of the maximal compact subgroup. Firstly, we review
the parametrization of the finite-dimensional irreducible representations of SL, (C).
Let {f1, fo} be the standard basis of the vector space V =V} = C®C. Then GLy(C)
acts on V' by matrix multiplication. We denote the symmetric tensor space of 2
.dimension by V; = S4(V). Here V; = C. We consider Vj as a S Ly (C)-module by

symi(g) (11 @1 ® - ®vs) = g1 ® g ® - ® gu.

It is well known that all the finite-dimensional irreducible (polynomial) representa-
tions of 5Ly(C) can be obtained in this way. By Weyl’s unitary trick, all irreducible
unitary representations of SU(2) are obtained by restriction of sym? (d>0).

The maximal compact subgroup K is isomorphic to the unitary group U(2) of
degree 2 by ‘ |

A B | A B
(—B A ) — A+ +-1B, for (—B A ) € K.

For d;m € Z,d > 0, we define a holomorphic representation (0dm, Va) of GLy(C) by
oam(g) = sym?(g) ® det(g)™. Then we know U(2) = {amlue) | d,;m € Z,d > 0}.
We set A = (A1, A2) = (m + d,m) and 7\ = oy4m|ue. By the isomorphism between
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K and U(2), we obtain K = {(m,V3) | A = (A\1,)2) € Z, Ay > Ao}, We choose the
basis of V, as

n=Aw = __nl__ *® f®(" *) (symmetric teﬁsor) |0<k<n
kl(n — k)! I P
3.3. Characters of the unipotent radical. The commutator subgroup [N, N| of

N is given by

1 0fjny no
VN = |2 0 eR
B
Hence a unitary character n of N is written for some constant 7,73 € R as
1 noj 1 0f{ny no
L | |25 | o exp{v=T(mno + mna)} € C
-ng 1 lo 1 .

A unitary character n of N is said to be non-degenerate if ngn3 # 0.

3.4. Parametrization of the discrete series. Let us now parametrize the discrete
series of Sp(2;R). Take a compact Cartan subalgebra § defined by h = Rh; & Rh,
with h; = X3 — X31, hy = Xa4 — X42, Where the X] ’Js are elementary matrices given
by Xij = (6ipbjq)1<p,q<4, With Kronecker’s delta §; 5, and let b be its complexification.
Then the absolute root system is expressed as

A = A(g; b) = {£(2,0),£(0,2),%£(1,1), £(1, 1)},
‘where by B = (r,s), we mean r = B(—=v—=1h1),s = B(—v/—1hs). Let
A+ = {(2’ 0)7 (0a2)1 (1a 1)(1) —1)}'

We write the set of compact positive roots by A} = {(1,-1)}. Then there are 4 sets
of positive roots AY (J = I, I, I, IV) of (g,b) containing Af(g; h) as follows:

A+ = {(21 0)7 (17 1)7 (0) 2), (1: —"1)}7 A+ = {(17 1)’ (2’0)7 (17 _1), (0) _2)}7
Af ={(2,0,(1,-1),00,-2),(-1,-1)}, A ={(1,-1),(0,-2),(~1,~1),(=2,0)}
We put 6gy = 27 ZﬁeA"’IB (resp. bk = 271 Y pca+ B), the half sum of positive

roots (resp. the half sum of compact positive roots). By definition, the space of
Harish-Chandra parameters _.c is gwen by

= {A € h¢ | A+ bg,1 is analytically integral and

A is regular and A*-dominant}.

Foreach J=1I1,1,1I,1V, wesetuJ—{Ae:Jfl(A a) >0 (e € AF)}. Then Ef is

written as a disjoint union ZF =11¥,=.
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It is well-known that there exists a bijection from =} to the set of equivalence
classes of discrete series representations of G. Let m, be the discrete series represen-
tation associated to A in E} , then 7, (A = A + 8g ; — 26k) is the unique minimal
K-type of mp. We note that for each A in EF, A = A + 6¢ s — 20k is called the
Blattner parameter. An easy computation implies

= {(A],AQ) €EZDZ | A #O,AQ#O,AQ <A1,A1+A2 #O}

We note that = (resp.Zy ) corresponds to the holomorphic (resp. anti-holomorphic)
discrete series, and =y and =g coresponds to the large discrete series in the sence of
Vogan,[V].

3.5. Characterization of the minimal K-type of a discrete series represen-
tation. Let n be a unitary character of N. Then we set

CP(N\G) ={¢:G — C, C®-class | ¢(ng) = n(n)$(g), (n,9) € N x G}.

By the right regular action of G, C;°(N \ G) has a structure of smooth G-module.
For any finite dimensional K -module (1, V), we set

C,‘;f,’r(N \G/K) =
{F:G—V, C®class | F(ngk™) = n(n)7(k)F(g), (n,g,k) € N x G x K}.

Let (w4, H) be the discrete series representation of G with Harish-Chandra parameter
Ain =, (J=1,1,1I,IV), and denote its associated (gc, K)-module by the same
symbol. For W in Hom g k) (7}, C3°(N \ G)), we define Fy in- nn(N \ G/K) by

W) (g) = (v', Fw(g)), (v* € Vy,g€@q).

Here (75, Vh) denotes the minimal K-type of w4 and (x,x) denotes the canonical
pairing on V) x V. _

Now let us recall the definition of the Schmid-operater. Let g = t @ p be a Cartan
decomposition of g and Ad = Ad,. be the adjoint representation of K on pc. Then
we can define a differential operator V,, 5 from C n (N\G/K) to C5. 44(N\ G/ K)
as Vo F' = Y, Rx,F(-) ® X;. Here the set {X; }z is any fixed orthonormal basis of
p with respect to the Klilling form on g and RxF denotes the right differential of
the function F' by X in g ie. RxF(g) = 5F(g9-exptX )l . This operator V,  is
called the Schmid operator.

Let (7y,V, ) be the sum of irreducible K-submodules of V) ® pc w1th heighest
weight of the form A — 8 (B € AJn, J =1,0I0,0,1IV). Let P, be the projection
from Vi ® pc to Vy-. We define a differential operator from C75 (N \ G/K) to
C,?;;(N\G/K) by DyaF'(g) = Pa(VaaF(g)) for F € ,,TA(N\G/K) € G. We

have the following:
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Proposition 3.1 ( [Y1] H.Yamashita, Proposition(2.1)). Let ms be a represen-
tation of discrete series with Harish- Chandra pammeter Aez= J of Sp(2 R). Set
A=A+ 6g — 26k .Then the linear map

W e Homgc,K(ﬂA,Cf(N\G)) — Fy € Ker(Dy)
is injective, and if A is far from the walls of the Wyel chambers, it is bijective.
3.6. A basis on the Whittaker space on Sp(2;R). By the result of Kostant [Ko],
and Vogan [V], if 77 is non-degenerate, we obtain
dimcHome (G NGN = {3 13 S 212
Oda proved the following: '

Theorem 3.1 ([O] Oda). Let us assume that n is non- degenemte and A € =p. We
choose the basis Vi = {vx | 0 < k < d}¢ defined in §4.2. Here d = A — Ao. Then
(1) F € KerDy if and only if F' satisfies the following conditions:

| (8 — K)ha_x + V=1noha—k-1=0, k=0,1,...,d—1,
(3.1) {6,0, + (a;/a2)2n§}hd =0 |

(3.2) (81 + 8)? + 200 — 1)(81 + 85) — 2Xo + 1 + 4130502} ha = 0.

Here 0; = "a%,‘-» i=1,2 and {ht | 0 < k < d} is determined by

d
Fla(a) = ch(a)vk,'
k=0 '
; k
xla) = airtiad (2 exp(mad)ula), (a € 4 k=010 ,d)
2

(2) If 73 < 0, KerDy contains the function F' such that hy has an integral vrepreseh-

tation: ” g p
B R e AN t nemaal \ dt
hd(a) [) t 2 Wo,_,\2( ) exp (327)30'% + 2 t

By Theorem 3.1 , Oda showed that if A € =7 UZr and 7 is non-degenerate,

. ~ C, m<QO,
HM(QC,K)(WAaAn(N\G)) - {0 772 > 0.

Here we put

An(N\G) = {F € C°°(N\G) | K -finite and for any X € U(gc) there exists a
' constant C'x > 0 such that |F(g)| < Cxtr(’gg), g€ G }

and U(gc) denotes the universal enveloping algebra of gc.
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The system of equations (3.1), (3.2) is coincide with the system (1.1), (1.2) with the
parameters Ky = 1g, kg = —2v/—1ng, p = A\y—1, v = —),. And these parameters sat- -
isfies the assumptions in the Corollary(2.1). So let us denote by ¢;(k1, k2, i1, v; a1, az)
for the function ¢;(a1,a2) (1 <4 < 4) given for &, Ky, p,v € C in §3. We set

‘hg)(abaQ) = ¢i(’r]g7 _2V “1773,)\2 - 17 _)‘27 (11,0.2), fOI' 1 S 1 S 4; a, ap >'O;
and determine h,(:) by the relations
B — k)AY  + V=Inoh{?,_, =0, for0<k<d—1,1<i<4.

We define the function F®) € C°(N\G/K) by

. k

FOla@) = 3 ce(@)ue, with cp(a) = a)2*1a? (—) exp(7302) he (a),

o 0<k<d : as
forac A, 0<k<d 1<i<4

and set for t € C, |argt| < m,

. Ku(\/z/2): 1f7’ = 1727
i () = {I,,(\/Z/2), if i = 3,4,

Then we obtain the following result:

Theorem 3.2. Let us assume that 1) is non-degenerate and A € 5. Then we obtain
- the following results: :

(1) KerDy,x has the basis {F®|1 <4 < 4} and b (1 <i < 4) have the following
integral expresstons:

; 1 t 8772173a2 dt
h(l) - / tl(l—-z\z)k. (2 0 1) =
d (a) : C: 2 ‘f, ( )exp 327)3(1% + + ¢

Here we denote by C; (1 <1 < 4) the following contour:
ci | [fdt,  ifi=2,4,

where [ dt is the contour integral on C given in Theorem (1.1)-(2) and [5° dt is the
usual integral on (0,00) C R.
(2) For any fixed constant Ry, R, > 0, we denote by Dg, g, the domain

DRI,Rz = {(a17a2) € IR>0 X R>0 l aias S Rl and ar S RZ}



29

Then there exist constants C® = C'(l) Rk, (1 <4< 4) and C’,f,z) C}‘{f mr 05k <
d; i=1,2) such that

. ' - 3 a y
el < OO 0 ()l o)
2

1-(cndk
.2 I a
)T e (Dl 2+ mima3)

for (a1,az) € Dg, gr,. |

Vlcg)(ahaz)l < CWght 1+mv\2 (al
as

Here we set for1 <i<4

e — {—-1, ifi=1,2,

1, if1=3,4
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