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Introduction

We shall investigate Gevrey smoothing effects of the solutions to the Cauchy problem for Schrédinger type
equations. Roughly speaking,we shall prove that if the initial data decay as e=¢<*> ” 0<k<1,c>0),
then the solutions belong to Gevrey class 4'/* with respect to the space variables. Let T > 0. We
consider the following Cauchy problem,

€)) %u(t, x) —iAu(t, z) — b(t, z, D)u(t,z) = 0,t € [-T, T],:i € R",
) ' w(0,7) = uo(z), r € R,
where
n
(3) b(t, 2, D)u=>_ b;(t,z)Dju+ bo(t,z)u,,
i=1
and D; = uia—%. We assume that the coefficients b;(t, z) satisfy
(4) |D3b;(t, 2)| < Chlos < & >)"1*alt?,
for (t,z) € [-T,T|x R", & € N™, where < z >= (1+|z|?)/2. Moreover we assume that there is x € (0, 1]
such that :
(5) | llim Rebj(t,z) < z >17%= 0, uniformly in t € [T, T].
Ti—00

For p > 0 let define a exponential operator e?<P>" as follows,
ep<D>“ 'u,(rL') — / eiz£+p<§>"ﬁ(§)d‘§
; -

where 4(£) stands for a Fourier transform of u and d¢ = (2r)~"d¢. For € € R denote ¢, = z€ — iczf <
z >771< ¢ >%-1 where 0 + 6§ = k and we define

Tyl Dyu@) = [ e=Ou(e)ae.

Then our main theorem follows.
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Theorem. Assume (4)-(5) are valid and there is € > 0 such that Is uo € L*(R™). Then if dx <1,
there ezists a solution of (1)-(2) satisfying that there are C > 0,p > 0 and § > 0 such that ’

(6) |8%u(t, z)| < Clp|t]) 1™ |a|1oef <=>"
for (t,z) € [-T,T]\0 x R*,a € N™,

Remark. (i) Kato T. and Yajima in [12] considered the smoothing effect phenomena . A. Jensen in
[6] and Hayashi, Nakarmtsu & Tsutsumi in [5] showed that if < z >* ug(z) € LZ(R"), the solution u of

(1)-(2) belongs to Hf,, for t # 0, Hayashi & Saitoh in [4] proved that if €8<=>*yy (6 > 0) is in L2(R™),
the solution u is analytic in x for ¢t # 0 and De Bouard, Hayashi & Kato in [1], Kato & Taniguti in [11]
show that if ug satisfies ||(z - V)uo|| < C7+141# for j = 0, 1.2..., then the solution belongs to Gevrey y3/?
with respect to z for t # 0. Theorem 1 is proved by Kajitani in {8] and [10], when 0 =k = 1.

1 Weighted Sobolev spaces

We intfc;duce some Sobolev spaces with weights. Let p, 6§ be real numbers and « € (0, 1]. Define
H5 - {U € Lloc(Rn); eé<:1;>'°u(x) € Lz(Rn)}'
For p > 0 let define

= {u € L*(R™); Fu(§) € Hy(R)},
where Fu stands for the Fourier transform of u. For p < 0 we define H} as the dual space of H”,. Then

the Fourier transform F' becomes bijective from Hj to H o~. We define the operator e?<P>" mapping

continuously from Hp, to Hj, _, as follows;

e”<D>"u(z) = F~1(e"<*>" Fu(§))(w),
for u € Hj, and e®<*>" maps continuously from ﬁg‘l to H'g‘l_é. “We define for § >0 and p€ R

(1.1) Hfs = {u€ Hyer<P>"ue Hf}.

For § < 0 we define Hf, as the dual space of H%, ;. We note that Hj, = Hj,Hgs = Hf and
H§, = L*(R™). Furthermore we define for p > 0 and 6 € R

(1.2) %5 = {u€ HE; <" u € Hf}

and for p < 0 define ﬂ' 55 as the dual spase of H* s Denote by H " the dual space of a topological

space H. Then Hj 6-.H sandH 5_H _g hold for any p and 6 € R. Weshallprover‘S:H"
later on (see Proposmon 3. 8) :
Lemma 1.1. Let p,6§ € R. Then

. —_— p ~ — 1.3 — ~ =~
(2) H;f& —e p<D> e b<z> L2 —e p<D> Hg
b
e -~ — ~ —_ L3 _ x
(u) H;)s&:e b<x> e p<D> L2:6 b<z> H';
y

Lemma 1.2 Let 1> p>0,6€ Randu € fI;,"é. Then

(16) ID2u(2)] < Call - =2l 4= (ep) 1 [alte?<=>"
P
forze R",ae N" and 0<e <1 »

We can prove these lemmas analogously to the case of k = 1 which is proved in [10].



48

2 Almost analytic extension of symbols

Following Hormander’s notation we define the symbol classes of pseudo-differential operators. Let
m(z, ), p(x, £), ¥(z, £) a weight and g = ¢~2dz? + ¢ ~2d¢? a Riemann metric. We denote by S(m, g) the
set of symbols a(x, £) satisfying ,

I“Egg (z,8)| € Copm(z,E)yp~10~ 181

for (z,¢) € R o, € N™., where agg)) = 8"Dﬁa Letd > 1. Moreover we call that a function

a(z, &) € S(m, g) belongs to y4S(m, g), if a(z, §) satisfies that there are C, > 0, p, > 0 such that

2.1) (3 (2, €)| < Capg®*Plla+ Byl 1e!

for (z,£) € R*",a, 3 € N™. We denote go = dz® +d¢? and g1 =< =z >~2 gz < € >~2 d¢2. We remark
that the symbol class v1S(m, g;)(i = 0, 1) is introduced in {10] when d = 1. Here we consider the case of

d> 1
Let d > 1 and x(t) € C$°((0,00)) satsfying that x(t) = 0,t < 1/2,x(¢) = 1, < 1, and

(2.2) |D x()| < C’op0 14

for t € R,k € N. Then for a weight w(z, £) € ¥25(m, g1) and a parameter b > 0 we can see easily that
x(bw(z, £)) € v2S(1, g) satisfying

(2.3) ID2Dgx(bw(z,£))| < Crpy “Fl|a + ﬂl"’ <z>lcg>lal

for (z,€) € R*", 0,8 € N",b> 1.

Lemma 2.1. Let d > 1 and {pi(z,£)}32, be a series of symbols satisfying

(24) Ipi (@, 6)| < MUz, E)(< T >< & >)*p, eIk o 4 |1tk (z) ~11(E) I,

for (z,€) € R*",a, f € N™and k > 0. Then there is p(z, £) € ¥ DS(m, g1) such that

N-1

(2:5) P(@,€) = 3 pr(, €) € YDS(m((2)(€)py) VN, ),

k=0

for any integer N > 0.
Proof This lemma is essentially a result of [2] The case of d = 1 is explained in [10]. Here we prove

the lemma in the case of d > 1. Let by = ;1k!kM and M > 2.Define

[o ol

(2.6) p(z,€) = kzopk (, &) x (br ((z){(€) ),
_ Then we have )
LD (s ) (52 ﬁ,)pg;*ﬁ% (e €N NG5
25> (5) (57 5 )00 il 4 1oty

k o,p

XM—kCOpalaﬂa'-l‘ﬂ—ﬁqla —ad + B= ﬁ/lld
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< 2L m(a, 71 P+ Bt a) g1
o —
for (z,€) € R?",a, 3 € N™. Here we used the following inequality
a\ i —la—a’ Po
2.7 'l dprlael g o/ 1d < —22 a9,
eX D L S el
for py > p,. Moreover we can write
~ N-1
- Z pk(l', 6)
k_ .
oo ) ‘
=Y (@ x(br((2)(€) 1) + Zpk(z €)(1— x(bx ((2)(€) ™)
k=N
=TI+1I

Noting that p5*kl¢(M(z)(€))™N < 1 on suppx(be((z)(¢))for k > N and p %KM (z)(€))~N >
1/2 on supp(l — x(bp({z)(€))" 1)) for k < N —1 respectlvely, we can see that I and II belong to
1S (m((z){€)pp) VN1, g). QED.

Let a(z, £) € y%(m,g; ), that is, a(z, £) satisfies (2.1). Denote by(z) = Bp;14"(:l:)‘1|oz|!g|7:'!i for z € R™.
We define an almost analytic extension of a(z, ) as follows, »

(2.8) a@+iy, € +in) =Y a3 (z, €)(—1)? (i) x(5 @)y x(ba(©) In) @181,

for z,y,&,n € R™, where agg)) (2,8) = 92 (—i0;)P a(z, €). Then we can prove easily

Proposition 2.2 Let a(z, £) € v%S(m, g1). Then the function a(z+1iy, £+in) defined by (2.8) satisfies
the following properties.

(&) |D2OED}d%a(w + iy, & +in)| < Cmz, €)(Cpa) 141+ (2) 181 g) =l () = () =¥l oy B+ + 8]1°.
(i4) ' (8, + i0,,)DEOE D] alx + iy, & + in)|
: =) g
< Om(z, §)(Cpa) 7187+ e= GO T ()= l(g)=el(y) =P < >0 a4 f 4y + 8|12,
(i@5) (O, + 0y, ) DEOZ DB a(x + iy, & + in)]

1
< Cm(z, £)(Cpg) 1A+ 110l gm0 G TT ()18l () =l <y 5= (y =18l 4 5 4 + |1,

For simplicity denote 71/“S(eﬁ<x>”+P<§>" o) by AP s» Where go = dz® + d€*. For a; € AS 5 (i =1,2)
we define a product of a;and ay as follows,

29) (a1 0 a2)(z, £) = 05 — / / My (2, € + n)az(z + v, €)dudn,

= lim ]/ e—iyn—e(lyl“+!77I°)a1 (z, € + n)az(z + v, E)dytfn,
Rﬂn

e—0

where dn = (27)~™dn. Then we can show the proposition below.
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Proposition 2.3. (i) Let k <1 and a; € A7 5,1 =1,2. Then there is € > 0 such that if |p1], |62] <
€o, the product ay o ay belongs to Aerpn,,ler

(i) Let a; € A% 5.,% = 1,2,3. Then if |p,|(z =1,2),|6|(G = 2,3) < €/2, we have (a; 0az) 0oaz =
a; o (ag © az).

Proposition 2.4 Letd > 1 and a; € v4S({x)™ (€)%, g1),7 = 1, 2. Then a;0a; belongs to S((zymtma(g)hrtta g1)
and moreover we can decompose

(2.10) a; 0 ag(z,€) = p(x, §) + r(z,§),
where p(z,£) € 'de((:l:)ml*'m?({;“)el“z,gl) satisfies that there are C > 0 and ¢ > such that

(2.11) e - > 10 (2, €)aze) (2, €) € ¥ES(CHN NY(gymitma—N(g)htla=N g),
‘ lvl<N .

1/d

—€0,—€0"

for any non negative integer N, and r(z,§) belongs to A

3 Pseudo-differential operators

Let < k < 1. Now we want to define a pseudo differential operator a(z, D) for a symbol a(z,§) € A7 ,
which operates from HJ; ;%0 Hpi_, 5. ‘When p and § are non positive, since A7 ; is contained in the
usual symbol class S ,(denote by S7% the Hormander’s class), we can define

(3.1 oz, Dyu(e) = [ ¢ ale, a(e)de,
for u € L*(R") and for a € A} ;. Moreover for a; € A = 1,2 (p; and §; non positive) the symbol

o(a1(z, D)az(z, D))(z; §) of the product of a1(x, D) and ag(:c D) can be written as follows,

(3.2) * o(a1(z, D)as(z, D))(x, ) = (a1 0 az)(a, £)

and we have

(3.3) a1(z, D)(az2(z, D)u)(z) = (a1 0 a2)(z, D)u(x)

for u € L?(R"™), where a; o a; is defined by (2.9). Next we shall show that (3.2) and (3.3) are valid
for any p;,6;. To do so, we need some preparations. Let a € A7 ; and u € Hj. Then we can define

‘a(z, D)u(z) which belongs to Hg In fact, put d(z,7) = e—5<“”>'°"“’<§> a(z, €). Then a(z,¢) € A§ 5o+ Noting
that e?{€)"4(¢) we can define

(34) )" o(z, Dyu(z) = / 7z, £)e O a(€)dE,

which is in L2, that is, a(z, D)u € f:ff For € > 0 we denote x () = e=<@)* and x(D) = e~«D)?,

Lemma 3.1. (i) Let a € A} 5(p,6 € R),u € L2 and € > 0 chosen in Proposition 2.3. Then for any
e>0

(3.5) a(z, D)(Xe(D)xe(x)u)(x) = (a(z, §)Xc(£)) 0 X(2)) (2, D)u(z)

and

(3.6) (axe(§)) o xe(x) € Ap_c) 5—co-
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(ii) Let u € L? and €o > 0 chosen in Proposition 2.3. Then there is €, > 0 such that for any e > 0

(3.7) ' emP<D>" (e=8<>"y (2)x((D)u)(z) = ac(z, D)u(z),
where
(3'8) a‘é(x7 6) =e P> o (6_6<w>nXe(m)X€(€)) S Aip €0,—8—€0?

for |p| < € and p < €;. We can prove the following lemma by use of Lemma 3.1.

Lemma 3.2. Let u € Hj s and |p|, || < €0/2 (€0 is gwen in Proposztzon 2.8). Then for any € > 0

there is u. € HF c0/2,¢0/2 such that

39 llu = uellms, <e.
Lemma 3.3. Leta € Az 5,0 < €5, €0 < €o(€g is given in Proposition 2.3) and u € H:;,Eo. Then there

is € > 0 independent of a, p and § such that a(z, D)u(z)belongs.to H " if 0 < € — p < min{eo, €2
rhog} and 0 < & — 6 < €.

—p,€0—6

Lemma 3.4. Leta; € A} ; (i = 1,2) andu € H%’Eo(e{),é'o > 0). Then if |p1]| < €0,|62| < €,0 <

— p2 < eomin{l, pa,},0 < €0 — 82 < €0,0 < € — p2 — p1 L eomin{l, p,, } and 0 < & — 6 — 6; < €p are
valid (eq is given in Proposition 2.3), we have

(3.10) a1(z, D)(az(x, D)u)(x) = (a1 0 a2)(x, D)u(x),

K
which is mH 1 pa,Eo—b1—b3"

Let a € A5 5(|ol, 18] < €o/4),u € HE 5 /5 80d |01],]61] < €0/4. Put w = eh<2>"eP1<DP>"4, which
isin HE 5, o /2—s, Since we can write u = e =P <D>" (o=61<2>"4)) we get by use of Lemma 3.4 with

€ = €0/2 — p1, & = €0/2 — 61,01 = a(z,£)e <" and a; = e <T>TSk ¢ = 1
a(z, D)u(z) = a(z, D)(e~"<P>" (e7<=>"w) = ((a(=, £)e™"<¢>") 0 e71<*>")(z, D)w(z).

Noting that a (x, é) ;:'(3(61»6)<:c>Ske(p1~p)<§>'°) o (a(x, g)e“Pl <E>~) o 6—61<$>'c = AS,OV we Obta‘in

(3.11) llawlax = llax(z, Dywl| 12 < Cllwl|zs = C||U||H~

P1—p 616 P16

for any u € HE, 5 . /o- Since HZ /5 . 5 is dense in HJ 5 from Lemma 3.2, we get the following theorem.

Theorem 3.5 Let a € A”6(|p| |6] < €0/4),|p1], [61] < €0/4, where €y are given in Proposition 2.3.

Then a(z, D) maps from to Hp s and satisfies the following inequality

Pl 61 p1—p,01—

(3.12) lawllsy _,, _, < Cllullag

for anyu € HY

P1,61
For a € A®

5.5 We difine

(3.13) a(z,€) = 05— / f V(g + y, € + n)dydn,
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and a*(z, £) = at(zx, £). Then we can prove the following lemma, by the same way as that of the proof (i)
of Proposition 2.3.

Lemma 3.6. Let a € A% ; and |p|, |6] < €o0. Then a*(z,§) defined in (2.29) belongs to A7 ;. Moreover
it holds

(314), | (a*(z, D)u, £) 1 = (,o(, D)) za,

(a* (x) D)U, ‘P)LZ = (u9 a(xs D)‘P)LZ’
for any u,p € Hf.

The relation (3.14) and the inequality (3.12) yield

@) < ol Naglas_, , <Clulas__,_, llelas ..

if |p], |6] < €0/4 and |p1|, |61] < €0/4. Therefore taking account that HZ , ., is dense in we get

from (3.14)

K
p1,61?

38.15) lla*ull = < Cllull ey

—P1.—61 T p—p1.6-61"

for any u € Hj, 5 . Thus we get the following proposition. -

1°

Propostion 3.7. Let a € A%, and |p|, 6] < €0/4 and |pi1, |61] < €0/4. Then the pseudodzﬁerentzal
operators at(z, D) and a*(z, D) satzsfy (3.15).

Noting that (ef<#>"eP<D>")t = er<D>"¢f<2>" we have for u € Hj

ep<D>"e¢$<x>"u(x) — (6«5<x>’° ep<D>'°)t(eap<D>" ea6<:c>"ea<x>" e"<D>~u)(z)

= (5<B>"gP<D>")t g (gm8<B>" o=p<D>" )t 8<a>" p<D>"y (1),

o(e e

Moreover we can see from Proposition 2.3 and Lemma 2.9 that(ef <#>"eP<¢>")t o (¢=9<2>"g—P<E>")t
is in Af . Hence we obtain the fact below.

Proposition 3.8. Let |p|, |6| < €0/4. Then u belongs to Hy 5 if and only if u € I;T;f"s

The following result on the muitiple symbols of pseudodifferential operators is a special case of Lemma
2.2 of Chapter 7 in Kumanogo’s book [12].

Lemma 3.9. Let rj(z,() € A§o(j = 1,2,...,v) and put
gu(z,D) =1 (a:,»D)’rz (z,D)---ry(z, D).

Then the symbol g, (z, () belongs to Af, and satisfies

(3.16) 168 @ Ol < ¢ [] Cry& oo+ 4],
| e

for (z,{) € R*™™,q, 3 € N", where C is independent of v and &, = min{e,;/4}.

We can prove easily the following lemma as a corollary of Lemma 3.9, by using the Neumann series
method.
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Lemma 3.10. Let r(z,£) be in Afy. If Cr > 0 is sufficiently small, then there is the inverse
(I +r(z, D))~ which is a pseudodifferential operator with its symbol contained in Afp.

Lemma 3.11. Let j(x,£) € v%S(e1,91). Thenifer > 0 is small enough, there are k1(z, §) € v4S(e1 <
z >"1< € >71,91),80 > 0 independent of €1 and roo(,€) € Al_/s),_ao such that (I + j(z,D))™! =
k(z, D) + k1(z, D) + oo (z, D), where k(z,€) = (1+j(z,€)) ™

4 Fourier Integral Operators

For 9 € AS(ps < € > +6s <z >,g)(ps, 69 > 0),where dk < 1, we denote

For a € Af, we define a Fourier integral operator with a phase function ¢(z,£) as follows,

(4.1) 0oz, DYu(z) = / @ oz, £)a(€)dE,
Rn

for u € Hey - Putting p(z,€) = a(z,£)e’®%), we can see p(z,€) € A%, 5 . Therefore we can regard
as(z, D) as a pseudo differential operator with its symbol p = ae’ defined in §2 and consequently it
follows from Theorem 3.5 that a,(z, D) acts continuously from H, :}6 to H ,‘f_ po6—b0" However in order to.
construct the inverse operator of p(x, D) it is better to regard p(z, D) as a Fourier integral operator. In
paticular for a = 1 we denote

42) Iote, Dyu(e) = [ e Oa(e)is

(4.3) iz, Dyv(x) = /eix5(f§/ei¢(y’5)v(y)dy.

Theorem 4.1. Let a € v2S({(x)™(€)%,91),9 € v4S(ps(€)" + 65(2)",01) and ¢ = € — W¥(x,§). As-
sume dk < 1. Then if py, &y are sufficiently small, a(z,D) = I4(z, D)a(x, D)Iq;1 and @ (z,D) =

I4(zx, D) ta(z, D)Is(z, D) are pseudodifferential operators of which symbols are given by

(4.4) az,8) = p(x, ) +r(z,€),

45) . - & (z,€) = P (2, €) +1'(2,€),

where

(4.6) p(z,€) — a(z — iVed(z, ®), £+ iV,9(2, ®)) € 12S(< v >™ < £ >4 g1),
(4.7) 7 (z,€) — alz +iVed(@', £), £ —iV,0(',€)) € viS(< z >™ 1< £ >, 1),

where & = &(z,z,€) and &' = ¥ (z,€,€) are given by (4.6) and (4.19) respectively and 7,7’ belong to
AF Jor an g5 > 0 independent of ps. '

—€0,—€0
This theorem is proved in [10] in the case of d = x = 1. We can prove it similar way as that of [10].

Next we consider a phase function 9 € y¢S({x)°(£)%,91). Wheno+6=x=1/d<loro+6=1and
d= mz’n(&‘l’”"l,), Theorem 4.1 holds aiso, that is, we can prove Theorem 4.6 below. So far we consider
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only d,o, 6, kK above. We note that d > 1.

Lemma 4.2. Let a(z,£) € y4S(< ¢ >™< € >4, 1) and 9 € v8S(ps < &€ >0< 2 >, g1)(ps > 0) .
Put ¢ = r€ —id(z,§) and a(z, D) = ay(z, D)Iﬁi,(m,D). If py is sufficiently small, then a(z,€) belongs
to S(< z >™< € >, g) and moreover satisfies
(4.8) a(z, §) = p(z, §) + r(z, §),
forz,£ € R™, and

ﬁ(xsg) - Z 7!w1D;877{a(z’¢)(x’ Y, T]))J(IE, Y, TI)}y=:c,n:§
|vl<N :

(4.9) € YS(CHNNIE < g >™ N g SN g

for any N, where ®(z,y,£) is a solution of the following equation,

(410) <I>(a:, Y, é) "‘i6z19(x’ y,q)(.’ll,y, E)) = 6;

. . 1 . .
(4.11) ¥,0(z,v,€) = A Vo(y + t(z — y), €)dt,

J(z,y,8) = %&ﬁ is the Jacobian of ®,r(z,£) € AYE and C > 0,&0 > 0 are independent of py.

—€0,—E€0’

Lemma 4.3. Let a(z,£) and O be satisfied with the same condition as one of Lemma 4.2. For
¢ = z€ — i¥(z,&) put d'(z,8) = IF (T, D)ag(x, D). Then if p19 and 6y are sufficiently small, oa'(x, §)
belongs to S(< z >™< € >¢,g) and moreover satisfies

(4.12) d(2,€) = p/(z,€) +7'(z,8),

(4.13) '(@,6) = D v DO (v, € m), )T (4, £,1) by=sim=e

IM<N

€ YIS(CHNNI < g >mN ¢ >1“N,g1),

for any non negative integer N, where ®'(y, £,n) is a solution of the equation

(4.14) ®'(y,&,m) —iVed (@' (y,€,1),€,1) = v,

V _ 1
(4.15) Ved(y, €,n) = L Ved(y, n + t(€ —n))dt,

—E&0,—€0

and J'(y,&,m) = ZX@ED and (2,€) € AYL _, (eo > 0 is independent of ps. |

Lemma 4.4. Let 9(z,£) € v4S(ps(z)7 (€)%, 01). If ps and 65 are sufficently small, there is the inverse
of Iy(z, D), which maps continuously from Hp, 5,t0 Hy,_p, 5,—5, for |p1],|61] small enough and satisfies

(416) Iy(w, D)™* = IR,(2, D)(I + j(z, D))" = (I + §'(z, D))~"I%,(z, D)

= I§¢(Z, D)(k((l?, D) + kl(x, D) +T($: D)) = (kl(x7 5) + k{((L’,D) + rl(xa D)))Ifda(xi D)a
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where ](Il', 5) = J(il?, 0) 5) - 1+7’1(Z, 5),jl($, é) = J/(Iaf9 0) - 1+T’2((IJ,£),]€(.’L‘, &) - J(ZIJ, 0, 5)_1”6’(1;7{) =
J'(2,€,0)7 and k1, k) € y4S(< 2z >71< >N g1) and 1y € AYe

—€90,—€0"°

Lemma 4.5. Let a(z,£) and O be satisfied with the same condition as one of Lemma 3,3. Let
¢ = x€ — i0. Then we have ‘ :

(4.17) o(I4(z, D)a(z, D))(z, £) = Iy 0 afa, €) = °@9) (g(x, &) + (s, €)),
(4.18) o(a(z, D)I4(z, D)(z,€) = a o Iy(x,&) = "I (¢ (x,€) + 7/ (2,£)),
where r,r’ Jis in Al_/;z’_so, if ps is sufficiently small, and q, q' satisfies
(4'19) Q(-’L', 6) - Z 7!—1D56;]7{a(m + Y- 7/6579(377 é’ 7)), 6)}9:’030

‘ [v|<N

c ,yl/ds(cl+NN!d <z >m—N< 5 >£—N,gl),

(4.20) ¢ (&) - Y v 'Dyo7{a(z,€+n - Va2, Y, £))}y=n=0
l7l<N
€ 'y"S(C”NN!d <z > Nce >N g)),

for any positive integer N, and C > 0 and €9 > 0 are independent of py, where {7519(:1:, &n) =
[XVed(a, € + tn)dt and Vy9(z,y,€) = [, Vad(z + ty, €)dt.

Summing up Lemma 4.2-Lemma 4,5, we obtain the following theorem.

Theorem 4.6. Leta € y4S(< z >™< € >%,91),9 € ¥4S(ps < € >0< x>, 1) and ¢ = 2€ —id(z, §).
Assume thato+ 6=k =1/d<1oro+ 6=k =1,d = min(6~,07 ). Then if ps,bs are sufficiently
small, a(z,D) = I¢(I,D)a(x,D)Iqjl and @' (z, D) = I4(z, D) 'a(z,D)I4(z, D) are pseudodifferential
operators of which symbols are given by

(4.21) | i(z,€) = p(z, &) +7(z,6),

(4.22) a'(z,€) = p'(z,€) +'(2,8),

where

(4.23) p(z,€) — a(z — iVed(z, ®), € + iV, 0(x, @) € v4S(< z >™ 1< € > gy),

(4.24) 7(2,€) - alo + iV, €), € —iV,D(¥, &) € vIS(< & >™ 1< €547, gy),

where ® = &(z,x,£¢) and ' = ¥'(z,£,€) are given by (4.6) and (4.10) respectively and r,v’ belong to
Al_/e‘i’_ao for an g¢ > 0 independent of py.

5 Criterion to L?—well posed Cauchy problem
For T' > 0 let consider the following Cauchy problem,

| (6.1) Syult, ) — iAu(t, x) — b(t,’m,D)u(t, z) =0,
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(5.2) u(0, z) = uo(),

for (t,z) € (0,T) x R*. We assume that b(t,z, £) is in C°([0, T] S10)- Moreover we suppose that there
are C € R, K > 0 such that

(5.3) | . Réb(t, r,§) < C,

for z,£ € R™ with |z|,|¢| > K and ¢t € [0,7]. Then we can prove the following theorem by use of the
same method as that of [3] and [7].

Theorem 5.1. Assume that the above conditions (4.8)-(4.5) are valid. For any uop € L? and

f € C°([0,T); L?) there ezists a unique solution u € C°([0,T]; L?) N C*([0,T); H~2) of the Cauchy
problem (5.1)-(5.2).

6 Proof of Theorem

Assume that u(t,z) satisfies (1)-(2) in the introduction. Put v(t, 7) = e?P*y(t,z). Then v satiesfies -
the following Cauchy problem,

6.1) 2 0(t,7) = (s + elt,7, D))ol 2),
(62) v(0,7) = uo(z),
where

e(t,z, D) = p(D)* + e*PY" b(t, zD)e=" D"

(6.3) _ = p(D)"* + b(t, z, D) + by (t,z, D) + 15(t, x, D),

where by(z,£) € v4S(< € >< z >71,q1),m1(t,2,() € A” ¢ vepoT,—eofrom Theorem 4.1. Oncemore we
change the unknown function v to w as follows,

(6.4) w(t,x) = Iy(z, D)v(t, x),

where ¢ = z€ — ied(t, z,€) and 9 is given by

0(t,x,s)=ﬂo(z_,o¢o( )+ e (1 - o( k),

M) M(€)
. _ r-€ §—c T-§ _ A
'190( ,5) ($>1—0(§>1_6€ )¢0(( >(E> )+ (f) f(lz él)[¢+ (I)(é)&:l) ¢_((IE><§>€1 )]’

£(8) :-A 1+ 82) T ds,

and ¢ (t) = x(%1), o(t) = 1 — ¢, (t) — ¢_(t) and x(t) € ¥*(R) such that x(t) = 1for t > 1,x(t) = 0
for t < 1/2,x'(t) > 0 and 0 < x(t) < 1. Then we can see that 9(t, z, £) belongs to Y¢S({z)°(£)%, g1) and
that there are €1 > 0, M > 0, K > 0,co > 0 such that 9 satisfies

(6.5) (@ +£- V2)9(t,,€) 2 co((€)*(2)* 7 +(€)7 + (€N T) —en,
for z,{ € R™ with |z|, |§]>K [t <T.

It follows from Lemma 4.4 that if |e| is sufficiently small, we have the inverse I, s(z, D). Therefore
we get the following Cauchy problem of w from (6.1)-(6.2),
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(6.6) %w(t, z) = (8l4)4(zx, D) twl(t, é:) + I (iA + c(t, z, D)) 4(z, D) lw(t, z),

(6.7) : w(0,z) = I4(z, D)uo(z).

Since (¢, z, £) € Y4S({z)? (€)%, g1), it follows from (4.10) that Ved(z, ®(z,8)) € vIS(< x >7< ¢ >0-1
,91), Vad(z, B(z,£)) € v4S(< & >771< € >0, 91), and ®(z, £) — € € ¥4S(< £ >~ 1< £ >%, g;). Hence we
have from (4.16) in Theorem 4.6 and Proposition 2.3 ‘

68) O(IGAT; ) (z,€) = € + i€V, d(z, B)P +ar(z, D) + 72z, £),

= —(I§* + |Vad(t, 2, ) + 2ie€ - V,9(t, 7, ) + ¢! (x, €) + 72(w, D)

where a; € S(< € >< 7 >71,9),d} € S(< 7 >272< £ 520 4(£)(x)"1,g1) and 1, € AV €o+lclsl eotelel
for some ¢ > 0 (independent of ¢). Here we choose € such that r; belongs to S(1, g). Thus we obtain the
equation of w from (6.6)-( 6.7),

S = (i + p(D)* + b(t, 2, D) + €@, + £ - Va)9)(t, 7, D)) +rs(t, 7, D)t z),

8
(5.10) e

where 14 € S(< £ >?< 2 >%72 4 < ¢ >< 7 >"1,9;). Moreover taking account of the assumptions (5)
in the introduction and (6.5) we can choose conviniently K > 0, ¢ and p such that we have

pp(z,§) + Reb(t, x, £) — eH,0(x,£) + Rery(t,z,£) <0,

for z,£ € R™ with |z|, || > K,where K > 0 is sufficiently large. Therefore we can solve the Cauchy
problem (6.6)-(6.7) by use of Theorem 5.1, since w(0) = Iyuo belongs to L?, and cosequently we get
the solution u = e P*P)" [y(z, D)~ w(t, z) = e(t,z, D) Uy (2, D) s(z, D)~ w, which satisfies (6)
from Lemma 1.2. This completes the proof of Theorem. ‘
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