Some results on eigenvalues of the Cartan matrices for finite groups

東京農工大学・エ 和田倶幸 (Tomoyuki Wada)

G: a finite group

F: an algebraically closed field of characteristic p > 0

B: a block of the group algebra FG with defect group D of order p^d

 $C_B = (c_{ij})$: the Cartan matrix of B i.e. c_{ij} is the multiplicity of an irreducible FG-module S_j in a projective cover P_i of S_i as a composition factor, where S_j and P_i belong to B.

The following are well known properties of the Cartan matrix C_B .

• nonnegative (integral) indecomposable symmetric

• positive definite

• all elementary divisors are a power of p, the largest one is $p^d = |D|$ and the others are smaller than p^d

 $\rho(B)$: the Perron-Frobenius (i.e. the largest) eigenvalue of C_B

We note the following.

• eigenvalues and elementary divisors are not equal in general

• $G = A_5$ (the alternating group of degree 5), p = 2, $B = B_0$ (the principal block) $\implies \rho(B) = (7 + \sqrt{33})/2 > |D| = 4$

1. Known properties of $\rho(B)$

The following are known about lower and upper bounds for $\rho(B)$ in [K-W].

(1) $|O_p(G)| \le \rho(B) \le u$ for any block B of FG, where $u := \dim_F P(F_G)$ and $P(F_G)$ is a projective cover of the trivial FG-module F_G . (2) If G is p-solvable, then $\rho(B) \leq |D|$, and the equality holds if and only if the height of $\varphi = 0$ for all $\varphi \in IBr(B)$.

(3) If D is cyclic, then
$$\frac{|D|}{p} + 1 \le \rho(B) \le |D|$$
.

(4) If
$$D \triangleleft G$$
, then $\rho(B) = |D|$.

We have a lower bound and an upper bound of $\rho(B)$ in (1) in terms of G, but it should be given in terms of B for any block B and any group G. In this talk we showed a lower bound of $\rho(B)$ in terms of B.

2. A lower bound of $\rho(B)$

Irr(B):= the set of all ordinary (complex) irreducible characters in B,

IBr(B):= the set of all irreducible Brauer characters in B,

 $k(B) := |Irr(B)|, \ l(B) := |IBr(B)|.$

Let σ be a permutation on $\{1, 2, \dots, l\}$, where l = l(B). Then we have the following:

Theorem 1([W1]). Let $C_B = (c_{ij})$ be the Cartan matrix of any block B of FG for any finite group G. For l = l(B), we set $l \setminus t := \{1, 2, ..., l\} - \{t\}$ for $1 \le t \le l$. Then we have

$$k(B) \leq \sum_{i=1}^{l} c_{ii} - \sum_{j \in l \setminus t} c_{j\sigma(j)}$$

for any cycle σ of length l and any choice of $1 \leq t \leq l$.

Proof. By the fact $C_B = {}^t D_B D_B$ for the decomposition matrix D_B of B, we write the right hand side of the above inequality by using decomposition numbers for B and we can show a contribution for it of any $\chi \in Irr(B)$ is larger than or equal to 1.

Corollary 2. Let B be a block of FG with defect group D. Then $k(B) \leq \rho(B)l(B)$, and the equality holds if and only if l(B) = 1 and k(B) = |D|.

Proof. It is clear that $k(B) \leq \sum_{i=1}^{l(B)} c_{ii}$ even if we do not use Theorem 1. Combine it with the fact that $c_{ij} \leq \rho(B)$ for any i, j.

Question 1. There must be sharper inequalities than Corollary 2. For example, does it hold that $k(B) \leq \rho(B)$?

The answer is no. Let G = SL(2, p), p an odd prime, and B be any one of blocks of defect 1. Then l(B) = (p-1)/2, k(B) = l(B) + 2 and

	(2	1	0	•••	0)	
	1	2	1			
$C_B =$	0	۰.	۰.	۰.	0	
a e ^{n en e} nte		•••	1	2	1	
	0	• • •	0	1	3)	

Therefore $3 < \rho(C_B) < 4$ by Lemma 3.1 in [K-W], but $k(B) \ge 4$ if $p \ge 5$.

Question 2. Does it hold that $k(B) \leq \rho(B)$, in *p*-solvable groups?

Now we assume G is p-solvable, then we have the following.

Proposition 3. Let G be a p-solvable group and B a block of FG with l(B) = 2. Assume the p'-part f_i' of the degree f_i of two irreducible Brauer characters φ_i for i = 1, 2 are equal. Then $k(B) \leq \rho(C_B)$.

Proof. The explicit form of C_B in this case is known in [N-W]. Theorem 1 shows that $k(B) \leq c_{11} + c_{22} - c_{12}$. We can verify that the right hand side of the above inequality $\leq \rho(B)$ by the form of C_B .

Remark 4. We added an assumption in the above proposition, but it is conjectured in [N-W, p.329] that $f_1' = f_2'$ for *p*-solvable groups. Isaacs showed this is true if *G* is solvable in [I], and it is also proved to be true in some cases in [N-W]. Therefore, $k(B) \leq \rho(C_B)$ for *B* with l(B) = 2 in *p*-solvable groups, for example, if *G* is solvable, *B* is the principal block, or *B* has an abelian defect group.

Remark 5. Proposition 3 does not hold in general. K. Erdmann determined the shape of the Cartan matrix of tame blocks in [E] (i.e. p=2 and a defect group D is dihedral, generalized quaternion or semidihedral). For example, it actually fails in the following cases.

Let G=PGL(2,31) and B be the principal block. Then D is a dihedral group of order

2⁶, l(B) = 2, $C_B = \begin{pmatrix} 4 & 2 \\ 2 & 17 \end{pmatrix}$, k(B) = 19 (Erdmann's list D(2B)), but $\rho(C_B) < 19$ by Lemma 3.1(2) in [K-W].

We saw in the proof of Proposition 3 that Theorem 1 works well. So the diagonal entries of C_B for *p*-solvable groups seem to be not so extremely larger than the other entries, while it does not hold in general as is shown in the examples above.

Conjecture. If G is p-solvable, then $k(B) \leq \rho(B)$.

If Conjecture is true, then Brauer's k(B) conjecture (that is $k(B) \leq |D|$ for any finite group) is true in *p*-solvable groups, because [K-W] has showed $\rho(B) \leq |D|$ in *p*-solvable groups. Since Brauer's k(B) conjecture is not yet proved to be true even if G is a solvable group, it must be quite difficult to show directly that Conjecture is true. There sure is a possibility of the existence of a counter example for it. But we raise some more evidences for the conjecture.

(1) If G is of p-length 1, or D is abelian, then Conjecture can be reduced to the case that $D \triangleleft G$ by Külshammer [Kü].

(2) If B is tame, then Conjecture is true by [E-M, Kü, Ko1, B-W].

(3) If p = 3 and $D \simeq M(3)$ (i.e. extra special 3-group of order 27 with exponent 3), then Conjecture is true by [Ko2].

(4) Assume Brauer's k(B) conjecture is true for *p*-solvable groups. If k(B) = |D|, then $k(B) = \rho(B)$ by [M].

3. The Cartan matrix of a certain class of finite solvable groups

If there exists a counter example for Conjecture, Theorem 1 seems to assert that the non diagonal entries of its Cartan matrix must be extremely smaller than the diagonal ones. So first we should find *p*-solvable groups (blocks) whose Cartan matrix has many zero entries and l(B) is large like SL(2,p) because $\rho(B)$ is small and k(B) is large. Here by making use of Ninomiya's result in [N] we give an explicit form of the Cartan matrix of a certain class of solvable groups. The author owes to Professor Tetsuro Okuyama who taught him the following type of groups whose Cartan matrix has zero entries.

 $GF(p^n)$: the finite field with p^n elements

 $A(p^n)$: the additive group of $GF(p^n)$

 $M(p^n)$: the multiplicative group of $GF(p^n)$

 $X(p^n)$: the affine group of $GF(p^n)$ i.e. $M(p^n) \ltimes A(p^n)$ by ordinary scalar multiplication, then $X(p^n)$ is a complete Frobenius group whose Frobenius kernel is a Sylow p-subgroup,

and it is known that the Cartan matrix of $FX(p^n)$ is of the form $\begin{bmatrix} 1 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & & 1 & 2 \end{bmatrix}$.

 $<\sigma>$: the Galois group of $GF(p^n)$ over GF(p) of order n $G(p^n) := <\sigma > \ltimes X(p^n).$

We consider the case n = pq, where q is a prime number different from p. Let us set $G = G(p^{pq})$, then since $O_{p'}(G)$ is trivial, G has only the principal block by a theorem of Fong and G is of p-length 2.

Theorem 6. Under the above notation (see [W2] for more detailed notation), the Cartan matrix C(G) of FG is the following.

α_1	α_{2}	• • •	$lpha_{p-1}$	β	γ_{1}	γ_{2}	•.•.•	γ_n	θ
$2pI_q$	pI_q	•••	pI_q		pI_q	pI_q	•••	pI_q	
pI_q	$2pI_q$	•••	•		pI_q	pI_q	• • • • • •	pI_q	ti e Alina
	•	· · · ·	pI_q	pJ'_1					pJ'_2
pI_q	• • •	pI_q	$2pI_q$		pI_q	pI_q	• • •	pI_q	
-		$p \ ^tJ_1'$		B_1			pJ'_3		pqJ'_4
pI_q	pI_q	•••	pI_q		$(p+1)I_q$	pI_q	• • •	pI_q	
pI_q	pI_q	•••	pI_q	at a frainc	pI_q	$(p+1)I_q$			a ser pata A
•	÷		:	$p {}^t J'_3$		•••	•••	pI_q	pJ'_5
pI_q	pI_q	•••	pI_q		pI_q	• • •	pI_q	$(p+1)I_q$	
		$p \ ^t J_2'$		$pq \ ^tJ'_4$			$p t J'_5$		B_2

, where I_s is the unit matrix of degree $s, J_1', J_2', J_3', J_4', J_5'$ is the $(p-1)q \times m, (p-1)q \times (r-1)q \times (r-1$ $m)/p, m \times nq, m \times (r-m)/p, nq \times (r-m)/p$ matrix all of whose entries are 1, respectively. Furthermore, $B_1 = pI_m + pqJ_m$ and $B_2 = I_{\frac{r-m}{p}} + pqJ_{\frac{r-m}{p}}$, where J_s is the $s \times s$ matrix all of whose entries are 1.

It is known in general that $\sum_{i,j=1}^{l(B)} c_{ij}/l(B) \leq \rho(B)$ for any block B of FG for any finite group G, and now when $G = G(p^{pq})$ we can verify $k(FG) \leq \sum_{i,j=1}^{l(FG)} c_{ij}/l(FG)$. So we have

 $k(FG) \leq \rho(FG)$. When $G = G(p^q)$ and $G(p^p)$, we have also $k(FG) \leq \rho(FG)$.

4. Eigenvalues and elementary divisors of C_B

Elementary divisors of C_B are invarant under elementary operations i.e. C_B and SC_BT for unimodular matrices S, T have the same elementary divisors, while eigenvalues of them are different in general. So elementary divisors and eigenvalues of C_B do not coincide in general. When do they coincide? We have an answer to it in *p*-solvable groups as follows. This is a part of joint work with A. Hanaki, M. Kiyota and M. Murai [H, K, M, W].

Theorem 7. Let G be a p-solvable group, B a block of FG with defect group D. Then the following are equivalent.

(a) Elementary divisors and eigenvalues of C_B coincide.

(b) $\rho(B) = |D|$.

(c) The height of $\varphi = 0$ for all $\varphi \in IBr(B)$.

Proof. We have the following two results for *p*-solvable groups.

(1) Let G be a p-solvable group and η_G the character aforded by the principal indecomposable FG-module corresponding to the trivial FG-module F_G . Then $\eta_G(x)$ is a power of p for any p-regular element $x \in G$.

(2) Let G be a p-solvable group and B a block of FG of full defect. Suppose the height of $\varphi = 0$ for all $\varphi \in \text{IBr}(B)$. Then elementary divisors and eigenvalues of C_B coincide.

Then Fong's two reduction theorem works well, and we have the result.

In this case Conjecture is equivalent to Brauer's k(B) conjecture as $\rho(B) = |D|$.

References

[B-W] C. Bessenrodt and W. Willems, Relations between complexity and modular invariants and consequences for p-soluble groups, J. Algebra 86, 445-456(1984).

[E-M] K. Erdmann and G.O. Michler, *Blocks with dihedral defect groups*, Math. Zeit. 154, 143-151(1977).

[H, K, M, W] A. Hanaki, M. Kiyota, M. Murai and T. Wada, in preparation.

[I] I.M. Isaacs, Blocks with just two irreducible Brauer characters in solvable groups, J. Algebra 170, 487-503(1994).

[K-W] M. Kiyota and T.Wada, Some remarks on eigenvalues of the Cartan matrix in finite groups, Comm. in algebra 21(11), 3839-3860(1993).

[Ko1] S. Koshitani, A remark on blocks with dihedral defect groups in solvable groups, Math. Zeit. 179, 401-406(1982).

[Ko2] S. Koshitani, On group algebras of finite groups, Representation Theory ll Groups and Orders (Proc. 4th International Conference Ottawa, Canada 1984), Springer Lect. Notes 1178, 109-128(1986), Springer-Verlag.

[Kü] B. Külshammer, On p-blocks of p-solvable groups, Comm. in Algebra 9(17), 1763-1785(1981).

[M] M. Murai, preprint and personal communication.

[N] Y. Ninomiya, On the Cartan invariants of p-solvable groups, Math. Jour. Okayama Univ. 25, 57-68(1983).

[N-W] Y. Ninomiya and T. Wada, Cartan matrices for blocks of finite groups with two simple modules, J. Algebra 143, 315-333(1991).

[W1] T. Wada, A lower bound of the Perron-Frobenius eigenvalue of the Cartan matrix for finite groups, (preprint).

[W2] T. Wada, The Cartan matrix for a certain class of finite solvable groups, (preprint).

Tomoyuki Wada

Department of Mathematics

Tokyo University of Agriculture and Technology Saiwai-cho 3-5-8, Fuchu, Tokyo 183-0054, Japan

E-mail address: wada@cc.tuat.ac.jp