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1 Introduction

In this note I describe some recent work on nonlinear wave equations,
done jointly with T.Ozawa ( Hokkaido university ). We study the Cauchy

problem for nonlinear wave equations of the form
Ou — Au = f(u) (L.1)

in the homogeneous Sobolev space H*(R™) with n > 2 and 0 < p < n/2,
where A denotes the Laplacian in R™ and the typical form of f(u) is the
single power interaction Alu|P~'u with A € R and 1 < p < co. As usually
done, with data u(0) = é,0,u(0) = 9 we regard (1.1) as the following

integral equation.
u(t) = B(u(t) = KOo+ K0 + | Kt=nftulr)in,  (12)

where K(t) = cos»t\/——K, K(t) = (sin tv/=A)/V-A.

There are many papers on the Cauchy problem for (1.1) and large time
behavior of global solutions, see 2, 4, 5, 7-15, 17-23]. Recently, in [15] Lind-
blad and Sogge studied (1.1) in the Sobolev space with minimal regularity
assumptions on the data. One of the key ingredients in [15] is general-

ized Strichartz estimates on the free wave equation. Those estimates are
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described exclusively in terms of the homogeneous Sobolev space, and ac-
cordingly, the associated estimates on the nonlinear term are required to
take a form in the framework of the homogeneous Sobolev spaces.

Unfortunately, however, when it comes to the Leibniz rule for fractional
derivatives, it sometimes happens that additional regularity assumptions on
f would be necessary more than one needed.

Meanwhile, we have recently found that the problem could be efficiently
dealt in the framework of the homogeneous Besov spaces [16], see also [3, 7).
Moreover, the Strichartz estimate are now available in the fully extended
version, especially in the homogeneous Besov setting [10].

The purpose of this paper is to reexamine the results of [15] on the
Cauchy problem for (1.1) in the homogeneous Sobolev spaces by means of

a number of sharp estimates described in terms of the homogeneous Besov

spaces. As a result of the homogeneous Besov technique, we have refined and

generalized the previous results in some directions. To state our theorem,

we make a series of definitions.

Definition 1.1 For s > —1and p > 1, we define a class of functions G(s,p)
in C(C,C) as following. We say f € G(s,p) if f satisfies either of the

following conditions

1. For some nonnegative integers a,b with p = a+b, f(z) = C; +Co2%7%,

where C) and C; are constants and C; is disregarded if s < 0.

2. [s]+1 < p, f e ClEIFI(C,C). f(0) =-.- = fUEI+D(0) = 0, where
f(0) = 0 may be disregarded if s > 0 or p satisfies [s] + 2 < p.
Moreover, f satisfies the estimates for all z,w € C

D (z) — fEHD ()
< { Ol b2 4w b12)|z —w| if [s]+2<p,
- Clz — w|p~tel-1 if [s]+1<p<[s]+2,
(1.3)
where [s] denotes the largest integer less than or equal to s, but [0] =
—1. We call s the first index of G(s, p).

Definition 1.2 Let € > 0. Let ¢ be

Q. = {(1/g,1/r) | 0< 1/g,1/r <1/2, e<1/r <1/2=2/((n = 1)g),
(1/g,1/r) ¢ Be(1/2,1/2 = 1/(n - 1))},
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where B(1/2,1/2~1/(n—1)) denotes an open ball with radius ¢ and center
Cat (1/2,1/2-1/(n —1)). Let 0< p < n/2. Let Qe 4 be

Qe ={(1/g,1/r,0) | (1/g, 1/r) €Qe,0< p <,
p=p+n(l/2-1/r)~1/q,0<1/g < n/2 — p - ne).
Deﬁnitibn 1.3 Forany —co <a <0< b < oo, we define an 1nterva.l.

= [a,b] N R with length |a — b| and for R > 0 a functlon space X, (I R)
with metric d by

Xﬁ(IvR) = {uen(l/q,l/rp)EQ Lq(I Bp) l

el LB < B,

d = —v: LY(I, B?)|l.
(u,v) /i /r’geﬂw | ’v,L (I, BR)||

In our theorem below, ||(¢,%)||, denotes max(||¢; =, |93 "),
denotes the lower root of the quadratic equation

Fle)=a" - ((n*=3)/(2n - 2)z+ (n* +n+4)/(dn—4) =0.  (1.4)

It follows that min(l,a) = 1 for n < 6 and (n + 1)/(2n~2) < a < 1 for
n 2> 7. Finally, 8(u) is given by

n’+n+4-2(n-3)u
2(n —1)(n - 2p)

It follows that 8(a) = a, ﬂ((n —4)/2) = 1 and that G(u) is a strictly

increasing function in u.

Blp) =

Theorem 1.1 Letn > 2,0 < pu < n/2 and 2/(n—-2u)<p—1. Letn, f,p
satisfy any of the following conditions.

(A1) n=2, feG(0,p) and
2(n+1)/n+4p)/(n+1-4p) for 0< p<1/4,
p—1<1< 4/(n+1-4p) for 1/4<p<1/2,
4/(n —2p) - for 1/2< p<n/2.
(42) n >3, 0<p < min(l,a), f € G(0,p) and
p—1 < B(n+1)+2(n-1)p)/(n? +n — dnp)
for 0<p<(n=-3)/(2n-2),
p—1 < 4/(n+1-4y) for p=(n-3)/(2n-2),

P { 4(n+1-4u) for (n—3)/(2n-2)<p<1/2
4/(n - 2u) for 1/2 < p < min(1, ).



(A3) n>T7, a<p<(n-4)/2, f€G(p—p(p)p) and
p—124/(n—-2p).

(A4) n >3, max(l,(n—4)/2) <p<n/2, feG(p—1p) and
p—1<4/(n—2p).

Let € > 0 be sufficiently small. Then for any data (¢, ¥) € H* x HA1 there
ezists a unique local solution of (1.2) in X(I,R) with |I| > 0 sufficiently
small and R sufficiently large. Moreover if p—1=4/(n—2p) and ||(¢,%)||,
is sufficiently small, there ezists a unique global solution in X ((—o0, ), R)
with R sufficiently small. _

On the solutions given by above, we have the following results:

(1) (u,8yu) is continuous in time with respect to the norm HH x H+-L,

(2) The solution u depends on the data (¢,v) continuously. Namely let
v be the solution of (1.2) with data (¢o,%0) such that [|(¢ — do,% — to)|lu
tends to zero, then d(u,v) — 0 forp ¢ J, v — uw in D'(R™!) forpe J,
where D' (R™1) denotes the space of distribution and J denotes an interval
defined only for (A3) and (A4) as J = ([ — B(p)] + 1, [ — B(w)] + 2) for
(A3), J = ([u], (] + 1) for (A4). ‘ .

(3) Let p—1 =4/(n —2p). There exists a pair (¢, ¥) in H* x H*!
such that

lu(t) = K(2)ps — K(t)os B = 0 as t = co.

(4) Letp—1 = 4/(n—2p). Let~y > 0 be sufficiently small. Then for any
data () which satisfies ||(d—,¥-)||x < 7, there ezists a global solution
u and a pair (¢4, ¥4 in H* x H#=' such that |

[ut) — K (t)px — K ()dx; H*| = 0 as t — oo.

Moreover if p ¢ J, then the map (¢_,¢-) — (¢+,%+) is continuous in
HH x H+-L,

~ Remark 1. By dilation argument, it is natural to call p = 1+4/(n—2p) the
critical exponent for the well-posedness of the Cauchy problem for (1.2) in
H*“x H*=1, On the other hand, H.Lindblad and C.D.Sogge ([14, 15]) showed
the ill-posedness in the following three cases: (a) p > 1+ 4/(n +1 —4p)
withn=2and 1/4<p<1/2. (b) p>1+4/(n+1-4p) with n > 3 and
(n—-3)/(2n—-2) < p<1/2. (c) p=2withn =3 and = 0.

Remark 2. We use the homogeneous Besov space for the linear and nonlin-

ear estimates for (1.2), by which it becomes easy to deal with the fractional .

12



derivative of nonlinear term (see Propositions 2.1 and 2.2). For the defi-
nition of the homdgeneous Besov space and its properties, we refer to [1,
8, 10, 24]. Our results for the local and global solvability of (1.2) in the
homogeneous Sobolev space H* with 3/2 < p < n/2 and the corresponding

results on scattering are new.

2 Estimates for nonlinear terms

Proposition 2.1 Let s > 0,1 < p and f € G(s,p). Let1 <€ < 00,2 <
q<00,2<7 <00 with 1/=(p—-1)/q+1/r. Then '

17 B2l < Cllws BOP=" s B, (25)

1£(w) = £(v); Bl
< Cmax(||u; By, llv; Bl)P " flu — v; By
+C max(||u; By, [lv; BII)*~*||w ~ v; By|| max(||u; B2, |]v; B:)
+C max([lu; By, lvs BYI)! lw — v; BYIP =¥ max(||u; B2, v; B2)),

where the second and third terms on the right hand side of the last inequality
are disregarded for p < 2 and p ¢ ([s] + 1,[s] + 2) respectively.

Proof) We have already shown the first inequality in [16]. The second

inequality would be proved analogously and we omit the proof. S

For the proof of the next proposition, we describe fundamental relations
between 1/q and 1/r with (1/¢,1/r) € Ucsof2e.

Lemma 2.1 Let u,p € R. Let 1/q,1/r satisfy p=p—n(1/2-1/r)-1/q.
If p, q satisfy dny of the following conditions, then the above 1/q,1/r satisfy
(1/g,1/7) € UesoS2e-

(1)n=2,0<1/g<n/2—(p—p) forp—1<p<p—-3/4,0<1/9<
(n—1)(p-p)/(n+1) for p=3/4<p<p. |

(2)n>3,0<1/g<1/2forp=p—-(n-1)/2,0<1/q <1/2 for
p—(n-1)/2<p<p-(n+1)/(2n-2),0<1/g<1/2 forp=p—(n+
1)/(21-2),0 < 1/ < (n=1)(u—p)/(n+1) for u—(n+1)/(2n—2) < p < p.

Prop_ositibn 2.2 Let n,u,p, f satisfy any of the assumptions in Theorem
1.1. Let —pg be the first index of G. Then for sufficiently small € > 0, there
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ezists a pair (1/g0,1/70) € Qe with p=1—(po +n(1/2—-1/ro) —1/q0) and
two triplets (1/qi, 1/, pi) € Qe p, t = 1,2, such that

£ (); L% (T, B2l < CITI [lulR ™ lulz, (2.6)

I1£(w) = £(v); L% (I, BZ)|
< Cl11” max(|fulls, [oll)P~ lu = olle
+C1|” max(lfull, ol )7 lu = vl max((lall [lo]l2)
+CI1° max([lufl, lloll) e = ol max(ulls, [lv]l2),

where || ||i = || L% (I, B2)|| and o = 2— (p—1)(n—2u)/2 and the constant
Cis independent of I. On the right hand side of the last inequality, the
second and third terms are disregarded for p < 2 and p & ([—po]+1,[—po]+2)

respectively.

Proof) Let 1/r* = 1/ry — pi/n and 1/r** = 1/ry — (po + p2)/n. If
pr 20,0 < —pp < pg, 0 < 1fr* <1/2,0 < 1/r™ < 1/2, 1frg =
(p=1)/r*+1/r**and 0 = 1/qp—(p—1)/q1 —1/q2 2.0, then by Proposition
2.1 and the embeddings B,’.’f C BE. , B;ﬁ’z2 C B2 and the Hélder inequality
in time, we obtain the required inequality, where we use the embedding
L¢ C B? with 1 < ¢ <2 for pp = 0.

By a simple calculation, we see that the above assumptions are satisfied
by a pair (1/qo,1/70) € e and po with 1 — p = po + n(1/2 = 1/70) — 1/q0
and two triplets (1/q;, 1/7i, pi) € Qe p, i= 1,2, which satisfy the following

conditions.
1 p1 20, 0< —po < pa. (2.7)
9. 1/gi<n/2-p i=12 (2.8)
3. lYgp+1l/g=t1/qa)=s@pE-1)n/2-p-1/a)-1 (29)
4 c=2-(p-1)(n-2p)/2>0. - (2.10)

We show the existence of the above triplets (1/¢;, 1/7,p:), ¢ = 0,1,2 using
Lemma 2.1. We make some comments here. By the condition 3, we must
assume g < n/2 and p —1 > 2/(n — 2p). By 4, we must assume p —1 <
4/(n — 2u), but this is required for the well-posedness of (1.2) in H*,

In the following, we consider the case n > 4 only since the proofs for the
case n = 2,3 are analogous. We make a classification on g. The problem is
reduced to the existence of the required 1/g;, ¢ = 1,2.

Casel. 0<pu<(n-3)/(2n-2)
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Let p; = 0, ¢ = 0,1,2. Let 0 < 1/go £ 1/2, 0 £ 1/g; £ (n -
Duf/(n 4+ 1), i = 1,2. Then by Lemma 2.1, we have (1/go,1/70) € Q.
and (1/¢i,1/ri,pi) € Qey, © = 1,2, for sufficiently small ¢ > 0. Now
1/q,~7‘, i = 0,1, 2, must satisfy (2.9), but the existence of such 1/q;, 1 = 0,1, 2,
is guaranteed if p satisfies -

2/(n—2u) Sp—1< (3(n+1)+2n - Du)/(n* +n—dnp).  (2.11) |

Case 2. p=(n-3)(2n-2) _
In Case 1, with 1/gy < 1/2 replaced with 1/gy < 1/2, we conclude the
existence of the required 1 /i, 1 =0,1,2, if p satisfies

2/(n—-2u)<p-1<4/(n+1-4p). (2.12)

In the following cases, the argument after setting p;, 1/¢;, i =0,1,2, is

similar to that of Case 1, so that we omit it and write the assumption on p

only.
 Case3. (n—3)/(2n-2)<pu<(n+1)/(2n-2)

Let p; =0,¢=0,1,2. Let 0 < 1/qo < (n—=1)(1—p)/(n+1), 0 < 1/q; <
(n—1)p/(n+l), i=1,2,forp < (n+1)/(2n—2),0< 1/¢; < 1/2, i = 1,2,
for g = (n +1)/(2n — 2). The required assumption on p is

| { 4/(n+1—-4p) if p<1/2, (2.13)

2/(n—?u)sp—15_ 4/(n-2p)  if p21/2

Case 4. (n+1)/(2n-2) < p < min(l,a)

Let p;=0,7=0,1,2. Let 0< 1/qo < (n—1)(1-p)/(n+1), 0 < 1/g; <
1/2, i = 1,2. The assumption on pis 2/(n — 2u) < p—1<4/(n - 2u).

We refer to the constant o which depends on the spatial dimension. By
the condition (2.9), we must assume at least £(1/2) < (n — 1)(1 — p)/(n +
1) + 1/2, which is equivalent to

p—1< (20— D)L= w)/(n+1)+3)/(n -1 - 20). (2.14)

To enlarge the right hand side than 4/(n — 2u), p must satisfy F(u) > 0.
But this is guaranteed if u < a since a is the lower root of F(z) = 0.
Case 5. n>7, a<u<(n—4)/2
Let —po = p1 = p2 = p— B(p). Let 0 < 1/g0 < (n—1)(1 = B(k))/(n+
1), 0<1/¢; £1/2, i =1,2. The assumption on pis 2/(n —2pu) <p-1<
4/(n - 2u).
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We refer to G(x) which depends on the spatial dimension and p. By the

condition (2.9), we must assume at least
p-1<@n-1)(1-pW)/(n+1)+3)/(n-1-20),  (215)

but the right hand side is equal to 4/(n — 2x) by the definition of (u).
Case 6. max(l,(n—4)/2) <p<n/2
Let —po = p1 = p2 = gt — 1. Let 1/gy = 0, O<1/q,§1/2 i =1,2,
and 1/q; <n/2—-p, i =1,2. The assumptmn onpis2/(n—2p)<p-1%

4/(n - 2p). | 0

3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section.
 Proof of Theorem 1.1) First of all, we recall the following inequalities
by Proposition 3.1 in [10].

1K (8)¢; LI, BE)|| < Cligs H |}, (3.16)
| K (¢)w; LI, BE)|| < Cllws; H*71), ' (317

I [ K = atyirs L, B < Ol L0, B, (319

for any p, p,po € R and (1/q,1/7),(1/qo,1/r0) € Qe with p = p+n(1/2 -
1/r)-1/q= 1—(p0+n(l/2—1/r0)—1~/q0), where C is a constant independent
of I. ,
Let n, i, p, f satisfy any of the assumptions in Theorem 1.1. Let € 1/q:,
1/r;, piy © = 0,1,2, be those in Proposition 2.2. By the above inequalities

and Proposition 2.2, we have

|8 (w); LI(I, BY)| |
Cll(®, %)l + CIIF (w); L% (T, BP)| (3.19)
< Cll(é %)l + CIII llus L2 (I, BE)||P~||u; L92(1, BE?)|

IA

for any (1/q,1/r,p) € Q. ,, where C is independent of I. Therefore we

obtain

@ ;Lq I,Bﬁ SC’ , +CIU'Rp’ 3.20
a2 o 12w LY BRI < Cll(8, 9l + CH] (3.20)

for any « € X(I, R). Similarly we have

d(®(w), 3(v)) < C|I|” RP~d(u,v) + C|I|° R-Poltd(y, v)P~1=pl=1  (3.21) .
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for any u,v € X.(I,R), where C is independent of I and the second term
on the right hand side of (3.21) is disregarded for p ¢ J. If p ¢ J, then the
unique solution of (1.2) is given by the standard contraction argument on
(X(I, R),d) with R sufficiently large and |I| > 0 sufficiently small for the
local solution, with R and ||(4, ¥)||, sufficiently small for the global solution.
If p € J, then we have only to consider the case (n+1)/(2n-2) < p < n/2.
Let |I| and R satisfy ‘

Cll(¢s¥)|lu + CII|I°RP < R, C|I|"RP™' <1, (3.22)

and let ||(¢, )], be sufficiently small for ¢ = 0. Let ug = 0 and u;y; =
®(u;) for i = 1,2,---. Then there is a subsequence {u;, }x C {u;}; and
u € X.(I,R) such that u;, converges to u in the distribution sense as
k — co. On the other hand, let (n — 3)/(2n — 2) < po < (n+1)/(2n — 2)
and let A > 0 and A(A) = {(t,z) € R*"! | |z] < A = |t|}, then we have for
sufficiently small € > 0,

Y P it = wigr; LILT(A(A))]

< ClI|°RP1 max wiyy —uz LILT(A(V)]. 3.93
< o (1/4,1/r0)€Q0 g iy (AN (3.23)

Indeed, let w and wy satisfy (82 — A)w = h, w(0) = d;w(0) = 0 and
(82 — A)wx = hxaer), wa(0) = dwx(0) =0, then w = wy on A(X), where
XA(x) is a characteristic function on A()). By this fact and (3.18) and the
argument as described in the proof of Proposition 2.2, we obtain the above
inequality. v

By (3.23), we conclude that {u;} converges to some vy strongly in
LIL"(A(N)) for any (1/¢,1/7,0) € Q¢ ,, s0 that u = vy on A(X). Therefore

we have for any A > 0

| ®(u) — u; LIL"(A(X
o, 190 = LILTAQ)]

(1/4,1/7,0)€Q¢, 4,

< C|I|°RP! max u—u;; LILT(A(X
< Y [ (A

— 0 as 72— o0,

by which we conclude that u = ®(u) a.e (t,z) € I x R", namely u = ®(u)
in (X.(I,R),d). "

The uniqueness of the solution also follows from (3.23).

(1) The continuity of the solution (u,d;u) in time with respect to the
H* x H# l.norm follows from the Lebesgue convergence theorem. The

proof is standard and we omit it.
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(2) For the continuous dependence on the initial data of its solution,
we consider the case p € J only since for p ¢ J the last term of (3.21) is
disregarded, so that we can use the standard argument [3]. By (3.23), w

have -

max u—v; LIL"(A(X '
10 | (A

< —_ —_ o pp-1 ‘ s TATT
< a6 = o0 = )l + CUIPRP | max = L (AL

where C), is a constant dependent on A, but not on I. So that we conclude

v = 4 in N1 /q,1/r0)€0. ., LILT(A(N)) as (¢o,%0) tends to (¢,%), by which
we conclude that v coriverges to u in D'(R™*!), as required.

(3) Let (¢+,%4) be

be=6+ [ Knfur)in vezvs [ KEn )
Then we have
— B(t)6s - K(t)yps: ¥

Jutt)
[ K= st 27
< Clus L7((t,00), B2~ s L (8, 00), BEI,

IN

where we have used a similar result to (3.18) and Proposition 2.2, and we
can take 1/g;, i = 1,2, for 1/¢; # oo since p — 1 = 4/(n — 2u). Therefore
we have

lu(t) = K )¢+ — K(t)v+; H”“ —0 as t— oo.
(4) For (¢_,1_) € H* x H*~1, let &_ be an operator defined by

t

&_(u) = K(t)o- + K(t)w- + / K(t — 1) (u(r))dr, (3.24)

—o0
Similarly to ®, we have

max &_(u); LY(I, B?)|| < C||(¢—, )| + CRP, 3.95
(1/‘?»1/T'vp)€ﬂe,,‘ ” ( ) ( )” ”(¢ Ip )”I‘ ( )

d(®_(u),®_(v)) < CRP d(u,v) + C|I|° RI-Pol+1d(y, v)P=[=pol=1 " (3.26)

for any u,v € X(I, R), where the second term on the right hand side of
(3.26) is disregarded for p ¢ J. Therefore for p ¢ J we have the unique fixed
point of ®_ in X.(I, R) by a contraction argument with ||(¢—,%_)||, and
R sufficiently small. We show that for p € J we also have a fixed point of
®_ in X (I, R) with ||(¢-,%_)||x and R sufficiently small in the following.



We may assume (n +1)/(2n —2) < p < n/2. Let (n = 3)/(2n - 2) < po <
(n+1)/(2n —2). Let Ry > 0. Let X.(I, R, Ry) and dy be

X(I,R,Ry) = {ueX(,R) | lle; LI(L, L7)|| < Ro},

max
(l/q,l/r,O)EQE,”o

d = nax —v: LT r
o) = i, I I

for any u, v E X (I, R, Ry). Then similarly to (3.25) and (3.26), we have

. T4 r p—1
0 B, 18-S LD LD S OG-0l + OB B, (327)

®_(u); (L, BD)|| < Cll(¢-,%-)llu + CR?, (328
0/0ifea, NP L EDI < UG- vl (3.23)

do(®_(u),®_(v)) < CRP1dy(u,v). (3.29)
So that if (¢_,9-) € H#o x H¥o~! and if ||(¢_,%_)||, and R are sufficiently

small and R, sufficiently large, then ®_ becomes a contraction map on

Xe(I , R, Ry) with the metric dg. Therefore we obtain the unique fixed point

of ®_. Let ||(¢-,%-)||, be sufficiently small. Let {(¢:,v:)}32, be asequence
such that (¢i,'¢i) — (¢—,¥_) in H* x H*-! as i — oo and (¢iy i) €
H#o x HHo=1 Then by the above argument, there exists u; € X(I,R, Ry)
which satisfies '

U; = R’(t)(ﬁi + K(t)wi + [j I{(t;_ T)f(ui(T))dT, (330)

for ¢ sufficiently large. We can take a subsequence of {ui} which converges

to some u in the distribution sense. This u is the required fixed point of & _

in X(I,R). For details, we refer to the discussion before Lemma 7.1 and’

itself in [15]. The result [Ju(t) — K (t)¢— — K(t)_; H*|| - 0 as t — —co
now follows similarly to the proof of (3).

Next we show that the scattering map (¢_,¢¥_) — (¢+,%+) is contin-
uous in the neighborhood at the origin in H* x H#~! for p & J. By the
proof of (3) and (4), we have the following relation between (¢_,7%_) and

(¢+7 d}+) as

br=0-+ [ Knfnan vr=v-+ [ K=nfirar
| (3.31)
where u is the solution of u = ®_(u). Let ((<;~S_5,2,Z~1_), i, (¢y,1)) be

another triplet. It suffices to show that

{6+ — S e =)l = 0 as [|($- — b, ¥ - ?/;—)”u —0. (3.32)
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Similarly to the proof of (3.21), we have

64 = ¢4: HH|| < [l — 6 H¥|| + CRP~Md(w, @), (3.33)

and S
40, 3) OG- — st — 9-)llu + CRP Ud(w, @), (3.30)
Since CRP~! < 1, we conclude that ||¢; — ¢ H“|| —0as||(¢-— b, Y_—
_)||, tends to zero. For ||¢4 — ¥4; H#~1||, the proof is analogous. m]
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