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Applications of a summation formula

Hiroshi Kumagai (FE%& 1 - iE#KFKZERT) |

1 Introduction and statement of results

‘Let A be the Laplacian on the compact Riemann manifold M. Then A has a

discrete spectrum _
O=X<A <A<,
for which we introduce the zetaiunction
, - |
Z(s) = Z—S, Re(s) =0 > a

on=1""n

(0-energy level excluded), absolutely convergent in a half-plane in view of the Weyl law.
It is shown that Z(s) can be continued to the region including 0, and we can interpret
the (otherwise) divergent ‘determinant’

det’'A = H An

n=1

as the zeta-regularized product (or the functional determinant)
det A = e_Z'(O)

which is the Determinant of the Laplacian in the title, where we note that since

> 1 .)\“
Z'(s) = — Z Ois -, 0 >«
n=1 n

e~ %' is formally equal to the product det’ A of positive eigenvalues.

For compact Riemann surfaces with constant curvature the determinants of the Lapla-
cian have recently been studied extensively by D’Hoker-Phong [6], [7], Sarnak [13], Voros
[17](for non-compact case, see, e.g. Efrat [8]), in view of their relevance to superstring
theory. The main feature is the computation of determinants in terms of values of the
Selbarg zeta-function, whete multiple gamma functions play important roles.

For compact Riemann manifolds of higher dimensions, such as the unit n-sphere

A Sn——l — {(-751" . . ,.’L’,,,) € R"I’Lf + .- +’L7ZI = 1}
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the regularized determinants have been also studied, notably by Weisherger [18], [19],
Vardi [15] and Choi [1], [2]. .
They computed the determinant of the Ldpldcldll of the unit n-sphere S"~! with stan-
dard metric in terms of the values of the derivative of the Hurwitz (Riemann) zeta-function
~at 0. The unit 2-sphere case which was computéd in all above papers have interest again
due to its relationship to superstring theory (see Vardi [15], Osgood, Phillips, Sarnak [11],
Weisberger [18], [19]). :

Our purpose is to give a closed form evaluation of det A, for any n, and give a corrected
version of Vardi’s Theorem 1.1 and 1.2 [15], thus compiling all existing special cases to
- higher dimension.

We note that our elementary method applies to any dimension, while Weisherger’s
method seems to be restricted to the 2-dimensional case, and Choi’s method seems too
complicated to modify it to higher (even 3-) dimeusion.

We now set out to state our theoreins. We recall from [16] that tho eigenvalues of the

standard Laplacian on the n-sphere are A(k + n — 1) with multiplicity

(l\:"{—”‘) _ (l\f—"”_z) (L;:O,l,Qv'..)'
n o n |

We form the zeta-function

" s (kN _ [(k4n-2
Z(S Zn(s — Z( ) ( )

(k(k +n — 1))

(zero mode excluded), which is absolutely convergent for Res := ¢ > %, and we shall
prove in Lemma 3 that it can be continued to a half-plane including the origin. Thus we
can define the (regularized) determinant det A, of the Laplacian of the n-sphere by

det A, = e 7O,
We shall prove the following closed form for det A,,.

- Theorem 1. We have for arbitrary dimension n,

n—1
det An = (“Xl)( Z Il,(IH:,_I’,I(U))s

d=0
where H' _, ;and T, 4 are as given in Lemma 2, and Lemma 6, respectively:

Hid0) = +"§:1() — )i (=1)

=0
+ (=1) Z(n —1—1)Yogl

2 sy~ (dF1
B d+1 ) E(Hl §J
2 24
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-~ and _ :
1 - r—d ' r—d
nd—'_l' Z nT)() —'(N‘—2) )’

: With s(n,r) denoting the Stu‘h_ng number of the first kind defined by the Newton expansion

n

(1)n =Y s(n,r)a’.

=0

Corollary. We have

(i) detA, = 4n*
(i) detAy = Aes
(ili) det Az = W‘exp('—gg)
| 1

(iv) detAy = —e e AR otir

o=

and similarly for higher dimensions.
From Theorem 1 we immediately deduce
Theorem 2. For arbitrary dimension n, (i) there are computable rational numbers

a"nvﬂnaf)/’n.aTn,h “y Tnmn-1 with Tn,n 1= (,, l)na’n 75 0 such that
‘ n—1 ,
— n . JTn,mG' (—m),
det A, —-(xf'e7" II eTmmC( :%
m=0

(ii) there are computable 1at10nal numbers An, B,, C’,,, Qniy, Quawith @, = %, A, #
0, such that ' ' '
det A, = Af" eCn H Fm Q" me

m=1

where I, (z) denotes the multlple gamma function (cf. Choi [1], Vardi [15]).
We intentionally used the same notatlon as in Vardi [15], but they may have shghtly
- different values.

2 Proofs

Lemma 1. For )\ = 0, 1, 2, e >0 and lzl < a we have
o0 m A
) = 2:? ( ) k=) = (=X 0)27

) L=
m= 0

_:\Tl_(w()\ +1) - () +7),

C(=m, )
—m
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N . . .
where o = 'l— denotes the Euler digannna function.

) -0)

P (k(k +n—1))*

Lemma 2. We have the decomposition

ANgE:

Z(s)=Zn(s) =

n—1
Z T;z,dHn—l,d(s)v
d=0

Wlfel'e | | ; »
| (1). Tha= l‘ é s(n,r) ( )(nr‘d— (n — 2)"“”),

s(n,r) denoting Stirling numbers of the first kind and

. . 00 .d
) CHs) = Haa(s) =Y ___"_____

Lemma 3. The expression

Hy(s) = Hya(s
' d
3 - ()i

—eryC2s + 2 =11+ 2)

provides us with an. analytic contmucmon of Hy(s) fo the half-plane o> -1 (at least)
with a possible simple pole at s = 2, when splitted into three parts :

, d (d ng, 1 ,n% m ' n
o) = (¢ (l)<—§>’ (PPN L1+ )
d (d n
- 5 ()
n? s+ n
(4) x ¥ %!(Z)'Hr—(t)—)c<25+2’"“”1+§)

1 on? T(s+7). n
X Z ﬁ(_%),——(f—(—%—zC(Q’q+2r—l’l+§)’

where the first term gives the principal part which does not appear when d = 0.
Proof. First use the binomial theorem to expand k¢ = (k + % — %)% to get

O o) = =3 () -,

=0
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where ‘.

. @ (k42
(6) Z n n2\g "
im ((k+ 52 =1)

Factoring the power of k + 5 out and applying the binomial theorem again to the

- remaining factor (1 — ( '3, we deduce that

Qk:-n 2)

' = —2s+41 "’"”) no o
) g g RIKE 2k+n) '

Changing the order of summation, pennlssﬂ)le by absolute convergence for o > “’1 , we
obtain the desired form of Gy(s).

Once (3) is established, it is enough to show that the infinite series in the second term
of (4) is absolutely convergent for o > —1. This is the case because C(29+27 L1+3) K
(1+2) 2 andso » < Z{( } < oo uniformly in ¢ > —1. ’

. r>LELG ,

(7) can be proved by quite elementouy means, smnlax to the spirit of proof of analytic
continuation of Z(s) by Egami. ‘ '

Lemma 4 (cf. Proposition 3.1 of Vardi [15]).

| oo | 1 (—n)# & (d41) L1
/ . — E—n)loghk — —~ 1 =
Hy(0) = H,, ,(0) ;(_ n)tlogk — o3 0T ,}_: 1+1, Z]‘
2n 2k

e+ ('3 (1)

r=0

We split the proof of Lemma 4 into a few sublemmas. Lemma 5 gives a more detailed
decomposition of Hy(s) than that in Lemma 3, and as its corollary gives a handy formula
for H)(s). Then in Lemma 6 we obtain by limit process a closed form evaluation of H(0),
and in Lemma 7 we collect auxiliary formulas that enable us to simplify the formula in
Lemma 6.

- Lemma 5. For ¢ > —1, we have

| - =y ' | n
(i)  Hu(s) = et (1>(—§)1 I(C(2.5—5’1+§)
+g:1 %!)ir(lf‘(+)l)c(25 l+".’1.+£)), |

(‘,l)ff( gw—“miif,:(";)«z l+m,i+§-)
A\ &S, g eml(s+m

() S-promiits

5) [(s+7)

= (5 , . n
. XZ ' T())C(Z.S—l+l+ln,1+§)
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(i) Hls) = Z()— Pl (2s =114 3)

:U°° (— ) T'(s + r)
D R V)
+2¢'(2s — L +7,1+ 5)))

- £

=0 :
X Z ), F(s(—f)l)((¢)(s + 1) = $(s))C(25 — 1+ 7;,1 N %)

(($(s+7) = w,(_s))c(zs 1471+ —'21) “

+

+20(25 — 1+ 7,1+ g))

+ 2(7 COEPIE F(%Z;)'") ((s +m) = 9(s))

!
me1

X 2-—15;%1—51_‘?(——:),—)«25 —l4+r4+m,1+ %) |
4 (d\ ngy & (=37 Ds +m)
* ; (l = ) mz—:l "i! ['(s)
x ‘3,) (3(+)’"’<<w( )= ()
r=1

-x§(25—l+7+m 14— )+2C(25—l+r+m 1+2))

Proof. To prove (i) we proceed as in the plOOf of Lemma 3. After factoring out the

factor (k+%)"%, we decompose the remaining factor (1 (% k+y_) )y*as (1— ’2—'k+,, )73 (1—
(=% H;ﬁ) and apply the binomial theorem to each factor to obtain
2

' o I‘(s+r) = T s+m n 1
G '. _ —_ m
® =Y S G w2 T T

in place of (7). Substituting this in (3) and changing the order of summation, we deduce
that

| d . I(s4m)
(I 4
) st (l) - ml!l(s)

~

* () I'(s + I
Z 2" )Q(2s—l—|—/+ml+ =),
= ! (%) 2
the process heing legitimate by absolute convergence.
The term with m = 0 on the RHS of (9) gives the first term of (1) after extracting the
term with » = 0, while the 1emcumng sum Z gives the second and third terms of (i)

m=1
when rewriting it as the sum with » =0 an(l one with r > 1.
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The formula (1) follows directly from (1) by applying Leibniz’s rule and noting the

identity

L(s+m),,

(s +m)

( mg-)z T'(s)

thereby completing the pIOOf
Lemma 6. It holds that

(¥(5 +m) — w(s)),

Hy0) = Y +37
1 n L (=™
Dyd- I 1+1
* Z() A m‘='ml+1_,’n)
where
+ 4 d 1 ‘ ny
¥ = 3 () ey z,1.+§>
1=0
(3) CIAE
—-l 2 — Z
+Z;, C(r 1+2 2_”
r#I+1 I=r
and | ‘
d ] ' 0o i3
- d N yd-i (=3)"
= ——) -1,1
= 2 ()epr s Elm-nep
m#l+1
(=5 1¢1
+ = =)
l+1 2 ; J
with v(«) - —9(a) denoting the first generalized Euler constant for the Hurwitz zeta-
function. *

 Proof. This can be proved in principle by substituting (fhen most terms vanish because
of the zero of I'(s)~! at s = 0) the value s = 0 in Lemma 5 (ii), but in Sqme terms involving
¢(2s+1,1+ %), we cannot substitute the value and we are to take limit as s — 0. Using

the expansions near s = 0
C(s+1,a)
(s + 1a)
I(s)™t

we see that
| 1
I'(s)
1
- (e 2\\ ([t
= GO+

((d(s +1) =

(s ))C(25+1 1+

§+ﬂm+0@x

1
-= +0(1),
S

5+ 0(s?),

2ﬂaun+11+))

1
+ (1 + -

—) %)+ 0(s)
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1

Denoting the 4 terms on the RHS of (ii) by S| — Sa, we see that in Sy, So, and S4 the
above process applies to the terms with r = [ 4 1, while other telms in 57 and S, are of
the form N ' '

(z)

' o
C(l——] 1+2) —‘T-C(T‘—l,1+§),

m view of I( )
. s+

Aud Sy vanishes since the inner infinite series has a definite value as $ — 0 and there is

(s 1) = () = (r = 1)1

a factor I'(s)~!, which is zero for s = 0.
Regarding 5'3, we note that the non-zero contributions come only from those telms
with r =1+1 —m, where m <. Take the limit as s — 0 of the sum

5 EDMTO M)y w(s))

- m=1 ‘l,n! ( )

(2)H=m D(s+141—m) n
X 254+ 1,1+ =),
I+1-m)t - T(s) C(s+ +2)
e 1 1 -
using (ii) and =——((2s + 1,1 o ) — = as s — 0. Then we see that this is
['(s) 2 2

l m I+1—m
Z: -5 (5)

m - (I+1-=m)’

so that this gives the third term for 4(0). This completes the proof.
Lemma 7. We lhave the evaluation '

4 (d ) L [ n.
Ny (l'>(—§)"-—‘ > ( ,)<'<—m)<2>l "= ((=d)

) =0 m=0 m
.. (ll (l n A1 { ] o n I—m
(ii) g (l)(—i) :L:‘o (H’)Q (=m, 1+ n)(~ 2)
d (] R
= Z . (=) 7" (=m, 1+ n)
m=0 ’ ‘

—_— 1 (d Mgy 1 (NS (N l 1
@ 53 ()G e
1, ngags 1 (d . L1
= (-= — (-1 -1) 3 =

2= )Y )g_,
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. | 1, ny d [ ! (=™
(1v) _5(_‘—2_) " ;(—1) (l) 7:;1 m(l+1—m)
Lo 1 (=
= 5(—"2')‘“1;1_*_ 1( )(( 1)f .— 1)2

Proof of Lemma 4. Substitu_ting‘ from Lemma 1, we see that

d n nyl+1 _n\l4+1 I

)J+1

J

I=0’ —~1J
> (7) > («i>¢’<-’"><z>’

d (d\, n L
+3 (1) 3 () )eem s mir

Using Lemma 7, we get

Z+ + Zb— = d) + Z ( ) 7’z)_‘i”"'('(-—m, 1+n)

m=0

d+121+1( ) (1) -1 Z_

11]

the last term of which together with the last sum on the RHS of the formula in Lemma
6 gives the second term on the RHS of the formula in Lemma 4. Hence

H0) - +Z( ) WP (m, 1 4 )

m=0

2 n o1 d+1 Z
d+1 v I+1)47J
211 ' 2k
Expressing ¢'(—m, 14 n) = ¢'(=m) + > ™ logr completes the proof.
r=2
Proof of Theorem 2. (i) is a restatement of Theorem 1 and is a corrected form of

Theorem 1.4 of Vardi [15], while (ii) follows from (i) and Theorem 1.1 of Vardi [15], and
is a corrected form of Theorem 1.3 of Vardi [15].

3 Remarks

Remark 1 The unit circle SY. The determinant det A, of S° with standard
Laplacian Al = (112 is ‘
det Ay = (27)%.

Remark 2. The unit disc S'. Vardi’s formula for F;(0) in Proposition 4.4 is correct.
As a matter of fact, the proof of Theorem 1.4 (p.505) gives the incorrect value of F}(0):

F(0) = 4((-1) +(0) - 5,



163

but in the statement of Proposition 4.4, the author omitted ¢’(0) by mistake to give a
correct value. Accordingly, the formulas containing Fj(0) would have been as tollows

The second for muld in Proposition 4. 5 would read .

L

(10) BPLE 1>—(dem2)-% 3

the foi'lnu_la for Ty(3) in Theorem 1.1 would read

' . 1 ) 3 1 1 1 -
(11) _ ' F2(§) = (det Ag)3(det Al)FZ_—Ge"’ﬁfﬁf“%
and that in Theorem 1.2 would read
(12) o det Ay =T (;)%z%(’;)fw_

The formulas for det Ay as given in Vardi (except for the one in Theorem 1.2 in which
the factor 7% is nnssmg) are in conformity with the formulas of Weisherger [18], [19] and
of Choi [1], [2] and Quine and Choi [12]. The error in Vardi arises from the erroneous
argument in Proposition 3.1 which lacks the evaluation of the infinite series :B(0), which
looks rather difficult. In the statement of P10pos1t10n 3.1 thls term B(0) is missing, but
the value given there is very close to the correct one.

Choi’s argument in the case n = 2 [1] follows exactly Voros’ and gives the correct value
of det Ay. His statement on p.166 [1] is rather mlsleadmg because he says there that his
value coincides with that of Vardi. However, Choi’s correct value does not coincide with “
(10), but rather with the value given in Theorem 1 (Corollary (ii)).

Remark 3. The unit sphere, ,

The only correct exiStillg formula is Choi’s main theorem [1], [2] and Quine‘ and Choi
[12]. Choi’s method uses the shifted generating Dirichlet series process of Voros’, which -
requires a considerable amount of calculation with sophisticated multiple gamma function,
and it looks rather hopeless to go on further to higher dimensions with Voros’ method.
Actually, the proof occupies the main body of Choi’s thesis. '

~ Vardi's general closed formula in Theorems 1.1 and 1.2 are wrong. Cloi’s remark in
[1] was again rather misleading in that he calculates the same value (unknown in the
literature) in two ways using both his results and Vardi’s results, and conéludes that they
give different values. This leaves a possibility that hoth might be wrong, but this defect
was rescued in [9], and Choi’s result for det Az is correct and coincides with ours.

Since our closed formula (Theorem) gives correct values for both det Ay and det Ay, it
is of considerable trust. .

Remark 4. Higher dimensions.

After presenting our results at the Japan-IKorea Number Theory Conference, Dec. 24-
27,1997 held at Saga University, we were communicated the paper of Quine and Choi [12],
which gives closed formula for det A, for any n. Their method avoids the computation
of the infinite series involving the Hurwitz zeta-function (Lemma 1) by an ingenious trick
of introducting a regularization lemma (Lemma 1), in which cancellation of terms in our
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Lemma 6 is effected by showing G'(0) = 0, and the proof is subtler than ours. We believe,
however, our method has its own right, clarifying how those cancel one another.
Acknowledgement. The author wonld like to express his deepest gratitude to Prof.
~ S. Kanemitsu for suggesting the problem and constant encouragement and to Mr. Yoshi-
moto for his invaluable help in writing the paper. _The author also wishes to thank
- Prof. J. S. Choi for informing his joint paper with Quine [12]. Finally, the author would
. like to thank Prof. S. Egami wholeheartedly for suggesting a method for continuing ana-
lytically the zeta-function, which enabled him to evaluate special values thereof.
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