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ON STARLIKENESS AND CONVEXITY OF
FUNCTIONS AND THE SCHWARZIAN DERIVATIVE

AKIRA IKEDA [fhH % &N KEHFEH]

ABsTRACT. The purpose of this paper is to generalize Miller and Mocanu’s result [2].

1. Introduction

Let A denote the class of functions f(z) defined by
f@)=z+> ¥,
k=2

which are analytic in the open unit disk U = {z:2€C, and |z| < 1}. Also, let S denote
the class of all functions in .4 which are univalent in /. A function f(z) belonging to
the class S is said to be in the class S* if and only if

Re{Z;;S)}>O_ Cin U

and is said to be in the class C if and only if

1+Re{zf”(z)} >0 in U

f'(z)
We denote by {f, 2z} the Schwarzian derivative, which is characterized by the equality
f"(2)>' 1 (f"(z))2
1 , 2} = - = .
. va=(56) -3 (765

In [1], Nunokawa et al. obtained the following result:
Theorem A. Let f(z) € A and suppose that

2) Re [Z]{;S) <1+ ZJ{,’;S) + 22{f, z})] > —% in U

Then f(z) € S*.
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Remark. Theorem A is an extension of Miller and Mocanu [2], where the right hand

side of (2) is 1mproved from 0 to —3.

Further Miller and Mocanu 2] obtamed the followmg results
Theorem B. Let f(z) e A satzsfy

Re [<1+ z]{,’;iz))>2+z2{f, z}]'>0 n U

Then f(z) € C.
Theorem C. Let f(z) € A satisfy o
[+ 5) ] 0
e (1575 seom
Then f(z) € C.

Let us investigate improvements of these results in the next section.

2. Main Results
The following result will be required in our investigation :

Lemma. [3] Let p(z) be analytic in U with p(0) = 1 and suppose that there exists a
point zg € U such that Re{p(z)} > 0 for |z| < |zo| and Re {p(zo)} =0 (p(zo) 79 0).
Then we have ‘

o (20) _
p(z0). .
where k is a real number and '
o , . o o ‘ .
k2§(a+—>21 when  p(z9) =ia, a >0,
o a L
and
1\. , (
kS%(a%—;)Sz—l* when  p(zg) = ia, a <0. -

Now we state our main result.

Theorem 1. Let f(z) € A and satisfy one of the following inegualities :

(N T L) | e

R . K ) (g }>]
'@ (]2 @

e 1)

1
2

+1) m U,



4) Re

() (o)

f |
' ! 4m—4 / .
__;_ 2f'(2) [ <3 2f'(2) +1) in U

f(2) fG)
where m is a positive integer. Then f(z) € S§*.

Proof. Let us put '
2f'(2)

p(z) = )
then we easily have ) ' .
zf"(z) s 2p/(2)
e POt 0
and from (1), by a simple calculation, we have
a2 (@Y _L (@Y
© va=2(53) -3 (F5)
L 2p(z) | 2P B (AN 1, e
-2 T -5 (B ey

To prove Re {zf(z)/f(z)} >0 in U, we show Re {p(z)} > 0 in U. If there exists a point
2o € U such that .
Re{p(z)} >0  for |z| <|z|

and

Re {p(z0)} =0 (p(20) #0),

then from Lemma we have

Zopl(zo) — ik

‘ p(20)

and (3), (4) and (5) imply
20f' (20) l Zof” (20) 2

© () (g +4u 0}>
_ (o) [ia+ ikt ik+ B2 B2 Loy gy
= @ ok LSt - )]

— (ia)" [i{a+k+k (1+ z‘;fg:;”)} +gk2 + % (1+a2)] :

where [ is a positive integer. Let J be the right hand side of (6). For the case [ =2n—1,

o [iforen (10 ) S L)




Therefore we have
_ n 2n-— ZOP"(ZO)
Re{J} = (-1)" a? 1{a+k+k(1+Re{ 7 (20) })]

Considering the geometrical property, we notice that the tangential vector of the curve
p(z) = p(z0) moves to positive direction near the point p(zo). In short, p(z) is convex
in the neighborhood of the point p(zp), or

1+Re { z‘;’f,(’:)") } > 0.

(i) Case n =2m :

Re {J} = (=1)*" o*™1 [a +k+k (1 +Re { 2ot '(ZO)})}

P (20)

= —q*m~2 (—a2 — ak)

1
_a4m—2{__a2 _ 5 (a2 +1)}
— _a4m—2 __§a2 _ 1
2 2

20f'(z0) [ (3 ‘. 1) ‘
(ii)) Casen =2m —1:

flz0)
’Re{J} _ (_1)2'”;1 gtm—3 [a +k+k (1 +Re { Z‘ﬁljj;’) })]

%

2o f' (20)
f(20)

1
2

< _a4m—3 (a + k)

= gim* (—a2 - ak)

_ 1
< gtm—1 {_az_ 5 (a2+1)}

_ 4m—4 _§ 2 l
- ( 2% T2
Hal o[ ([l @ ).
2| f(z0) f(z0)
These contradict (3) and (4), respectively. Hence we must have

Re{p(2)} >0 in U

zf ’(2)} ,
Re >0 in U,
{ f(2)

which means f(z) € §*. This completes our proof.

or

Setting @ = 1 in Theorem 1, we obtain



Corollary 1. Let f(z) € A and suppose that

Re [zf;g) (1 +. ZJ{,’;()) + 224, z})] > -—-;- (1 +3

Then f(z) e S*.
Corollary 1 is better than Theorem A.
Theorem 2. Let f(z) € A and suppose that

M Re [(1 +20) " Z}] R

zf'(2)
f(2)

2
) n U.

2n

2f"(2)

70 >0 in U

1+

f'(2)
for positive integer n. Then f(z) € C.
Proof. Let us put

zf"(2)
f'iz)
Note that ¢(0) = 1. Then from (1), we easﬂy have

q(z) =1+

®) 2{f,2} = 24 (2) — 30+ 5.

To prove 1 +Re{zf"(2)/f'(z)} > 0 in U, we show Re{q(2)} > 0 in Y. If there exists a
point zg € U such that ,
Re{q(z)} >0  for |z| <|zo|

and

Re{q(z0)} =0 (q(20) #0),

then from Lemma a real number k (k # 0) exists such that

209’ (20) _;
a(z0) = ik.

From (7) and (8), we have

z0f" (20) an 2L f 5 _1yn+1 zof" (20)
e [(” o) U °}}+( g 77Ceo)

= Re{ (a(co)™ + 20 (o) = (20 + 3 | + (0l
3 b+ (1) il

< (170 = g (1) 5 (0 41) + ()" ol
= 0.

2n
14+

=Re {(ia)zn ak — = (za) + - 2



This is in contradiction to (7). Hence we must have

Re{q(z)} >0 in U

1+Re{—%)—}>0 in U.

Therefore f(z) € C and our result is established.

or

Taking n = 1 in Theorem 2, we have

Corollary 2. Let f(z) € A and suppose that

RO\ zf"<z)12 »
(1+ f,(z)> +2{f, }}+‘1+ 70 >0 U.

Re

Then f(z) € C.
Corollary 2 is better than Theorem B.
Theorem 3. Let f(z) € A and suppose that

Re I:(l + zf”(z))2n—l e"’z{f’Z}] #0 in U

f'(2)

Then f(z) € C.

Proof. Let us take the same function g(z) as in the proof of Theorem 2. Then from the
assumption of theorem and (8), we find o

) Zof” (ZO))Zn—ll ZO2{_f,zQ}
(; + o)

(q(ZO))2"—1 eigq’(Zo)— 1q(z0)%+ %]

Re

(i)t emok "+ h

M. 1 12,1
i (=1)"t! g?n—lemaktza +2] -
This is a contradiction to the assumption. Hence we must have

Re{q()} >0 in U

1+Re{2]{,,;$)}>0 in U,

or

which yields our result.

Putting n = 1 in Theorem 3, we have



Corollary 8. Let f(z) € A and suppose that

Re'[(l + %?—) ezz{f’z}] #0 in U.

Then f(z) éC.

Corollary 3 is a revision of Theorem C.
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