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INTRODUCTION AND RESULTS

For any ¢ > 0, we let Lg be the class of all square integrable functions with respect to
the measure t!~29dt on the half line (0, c0). Then we consider the Laplace transform

(CF)(z) = / F(t)e~*tdt (z > 0)
0
for F € L2. Then we have |

Proposition 1 ([2, 5]). For any fized ¢ > 0 and for any function F € Lg, put f =LF.
Then the inversion formula

M FO) =s- fim [~ @ Pugats (¢ 0

is valid, where the limit is taken in the space L:‘; and the polynomials Py 4 are given by
the formulas
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Moreover the series
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converges and the truncation error is estimated by the inequality
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Some characteristics of the strong singularity of the polynomials Py 1(£) and some
effective algorithms for the real inversion formula in Proposition 1 are examined by

J. Kajiwara and M. Tsuji [3, 4] and K. Tsuji [6]. Furthermore they gave numerical
experiments by using computers.
In connection with the integral in (2) we have

Proposition 2 ([5], Chapter 5).  Let ¢ > 0 be arbitrary and let F € L2. For the
Laplace transform LF = f, we have the isometrical identity

@ [ Irorttn =Y s [T e @)

n=0

Moreover the image f = LF belongs to the Bergman-Selberg space Hy(R*) on the right
half complex plane RT = {Re z > 0} admitting the reproducing kernel

. TI'(29)
Kq(z,u) = Grom

and comprising analytic functions on R*. For ¢ > %, we can characterize

H,(RY)={f:f analyticon R*,
T [ L, P ey < oo)

and for q = %

Hy (RY) ={f:f analytic on R,

X 1 12
Jim o . |f(z + iy)|"dy < oo}

Moreover for any q¢ > 0, we have the representation of the norm in Hy(R*)

oo

() ”f”%!q(Rﬂ = Z

n=0
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Now we can state our main results.

Theorem 1. We assume that

(6) max(%,2q—1) <a<l,



and

(7) a<B<q+g.

If f € Hy(R*) and

(8) f(2)2° € Hoyg-p(RY),

then the following error estimate holds

(9) ’F(t) _ /0 ” f(@)e ™ Py 4(zt)dz| = t9-1+% o (Nl"f“)

as N — oo.

Next we give a sufficient condition for F' whose Laplace transform satisfies (8).

Theorem 2.  Let us assume (7). We further assume

(10) g+ g > 1.

If

(11) F € C?[0,00),

(12) F(0) = F'(0) =0,
and

(13) F't)=0@t"%, t>0
for

(14) 2-¢-5 <6<,

then (8) holds.
Note that from (12) and (13)

(15) tlim et F(t) = tlim e " F'(t)=0, z>0.

Finally, we characterize F whose Laplace transform satisfies (8).
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Theore;m 3. If f = LF satisfies (8), then there exists h € Lg+%—ﬂ such that (7) is
true an

(16) Ft) = /0 h(z)(t — £)f~de.

A real inversion formula for the Laplace transform is known (eg. Widder (7], page
386), which is different from ours. However it seems that no error estimates in the
truncation are known.

PRELIMINARIES

First we shall give
Lemma. If f € C*(0,00) and

oo

) Lel) = ey ) RS @) s < o,

n=0

for fized
(18) max (%,ZQ ~1) <a,
then
(19) > :

n=N+1n!F(n +2¢+1)

x / e f (2|0 (28 (e~H%))2? ™29 dz
0
=t“—32—‘10( Nl—?ﬁ),

as N — oo.

CONCLUDING REMARKS

(1) The conditions (12) and (13) are not essential if we know F(0) and F’(0), and
we can assume that

(20) IF@)],|F'(£)] < O(eF) for t>0 with k>0.
In fact, we set

(21) F(t) = (F(t) — F(0) — F'(0)t)e~2*t, ¢ >0.
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Then F satisfies (12) and (13).
On the other hand,

F(O) ~ F'(0)

(22) (LF)(2) = f(z+20) =~ = T

Thus we first apply Theorems 1 and 2 to this function (22) so that we can obtain
approximations Fy (t) for F(t):

(29) 1P@) - Fu(®)] = e+ Eo(3*).
We set v
(24) EFn(t) = Fn(t)e*™ + F(0) + F'(0)t, for t> 0.

Then we have

(25) |F(t) — B ()] = e |F(t) — Fn(t)] = e?19 1 3o(N 7).

Thus we can obtain error estimates in any finite interval in ¢, which however breakes as
t — o0. '

(2) Since a typical member of the Bergman-Selberg space H,(R") is the reproducing
kernel K, (z,%), we see that typical functions f satisfying (17) are given by

2B

(26) £) = Gramrams

Reu>0

for a and g satisfying (7). From the identities (16) and
Kqrg-p(2,1) = /:o e tretu2ata=28-1g

we see that the Laplace transform of the functions

(27) /0 te—ﬁx?ﬁd*?ﬁ-l(t —z)Pldz, Reu>0, >1

satisfies the property (17).

(3) As functions F where f = LF satisfies the conditions in Theorem 1, we consider
Dirichlet series

(28) F(t)=>) Cit" e ' (ax > 0,7 > 1),
k=1
where

) _ oo . o
(29) Z |Ck|a'z T< 00, Z ]Ck’a?i ! <00, Y>q+ —2_ > 0.
k=1 k=1
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Then F € L2 and f = LF satisfies (8) for § satisfying (7).
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