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A Real Inversion Formula for the Laplace
Transform in a Sobolev Space
(preliminary report)
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For the real-valued Sobolev Hilbert space on [0, o0) comprising absolutely con-
tinuous functions F(t) normalized by F(0) = 0 and equipped with the inner
product

(F, Fy) = /0 - (F1 (t)Fy(t) + F,()F, (t)) dt,

we shall establish the real inveréion formula and its error estimate for the Laplace
transform of the Sobolev Hilbert space.
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1 Introduction and results

The real inversion formulas for the Laplace transform are important in math-
ematical sciences, but the formulas are, in general, very involved. See, for
example [7, 11]. In [3, 10], new real inversion formulas for some general situa-
tions were given by a new method for integral transforms in the framework of
Hilbert spaces. In some special cases, their error estimates were given in [2]. In
the new method, inversion formulas for integral transforms will be, in general,
given in terms of strong convergence. For some practical purposes, we wish to
obtain inversion formulas in terms of pointwise convergence. For this purpose,
we shall establish a real inversion formula for the Laplace transform of a simple
Sobolev space, which will be given in terms of pointwise convergence.

Let S be the Sobolev Hilbert space on t > 0 comprising absolutely continu-
ous real-valued functions F(t) normalized by F(0) = 0 and equipped with the
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inner product

(Fi,Fy)s = /0 N (Fi(®F® +F (HF5(1)) dt.

We consider the Laplace transform of F' € S

f(z) = [LF](z) = /0 " F(t)e~=tdt, > 0. (1)

In connection with some general real inversion formulas [3, 10], we would like to
consider a more general Sobolev space such that for any positive g the following
inner product is given by

(Fy, Fy)s,q = /0 ” (Fl(t)F2(t) + Fl'(t)FQ'(t)) t1=294t,

However in this general case, its reproducing kernel will be very involved. So,
we shall consider the simple Sobolev space S. For more general order Sobolev
spaces, the circumstances are similar. That is, the Sobolev space S will be a
reasonable space for the Laplace transform for our purposes. See Lemmas 1 and
3 for this comment.

Then, we obtain

Theorem. For the Laplace transform (1) of the Sobolev Hilbert space S, we
have the real inversion formula

Foy = gim [ 1@ /0 == K(r,) (Px(2,7) + Qu(z, 7)) drdz (2)
where
K(r,t) = %(e“lT_tl—e_Te—t),
N & yent1 [2n) [V 1 v
Pue) = 22 D (7)) wrnesmt

x ((2n +1(r2)> = (2+ 5n+v+3nw) Tz + n(v + 1)%),

OnT) = = EN: S (1 (2:) (Z) - 1)tv .

n=0v=n

(3)
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X ((4n2 + 6n 4 2)(7z)® — (8 + 3v + 26n + 10nv + 20n? 4 8n?v)(rz)? +
(v +2)(3+v +10n + 4nv + 9n? + 5n%v)(r2) — n?(v +1)* (v + 2)) . (4)

In the real inversion formula (2), for any t > 0°the right hand side converges
and its convergence is uniform on [0,c0).

We introduce the differential operator
D, = z"8"zd,

for any nonnegative integer n.

2 Preliminaries for Theorem

At first we note

Lemma 1. The reproducing kernel K (t,?) for the Sobolev Hilbert space S is
given by

K(t,f) =

> sin(t€) sin(#€)
/0 gyl L

(e—lt-—fI _ e-—te—i) o (5)

Proof. For the positive matrix K (t,f) defined by (5) we shall show that the
reproducing kernel Hilbert space Hx admitting the reproducing kernel K (¢, t)
coincides with S. ,

From (5), we see that any member F' of Hy is expressible in the form

N = 3|

H(¢ s1n t€)
=2 [T Y g ©
for a (of course, uniquely determined) function H satisfying
5 2
/ T )d£<ooh (7)

and we have the isometrical identity

© H(€)?
T o &+1

I F I, = dg. (8)
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For this argument see [8, 9, or 10}. From (6)

HO=(€+1) [ FOsin)t, (9)
0
in the L, space and so, from (9) we obtain
| P = [ (PO +F (0P (10
From the uniqueness of reproducing kernels, we have the desired result.

Lemma 2. In the Laplace transform (1) of S, we have the isometrical identity

1 o o]
2 _ L 2 A2
17 1= sy | ADus @)+ (Dues@) . ()
Proof. In general, for F € L2(0,0) we have the isometrical identity

/ F(t)%dt = (+1)/ (D, f(2))? dzx (12)

([10, Chapter 5]). Since F(O) = 0 and by integration by parts we have

/ F'(t)e"'dt = 2 f(x). (13)
0 .
Hence, from (13) we have the desired isometrical identity (11).

Lemma 3. In the Laplace transform (1) of S, we have the real inversion
formula

F(t) = i _ﬁ‘(_n_l—}_-T)T /0°° [an(x) - D, /000 e """ K (T, t)dr

D, (:cf(a:)) +Dy(z ‘/000 e " K(r, t')dr)] dzx

e o]

-3 m /0 [Dusta) - D ()

+D, (zf(z)) - Dn (1‘ (%?%))]dm (14)

The convergence of this series is uniform on [0, 00).
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Proof. First we have

(LK (-, t))(z) = /000 e *TK(r,t)dr

_ /°° _m( /0 sm(T;Z)in;(t’E) )dT.

_ € sin(t€)
- / GENGETON

—t:c

22 -1

(see [1], page 410). Hence, by using the reproducing property of K (,t) in S

F(t) = (F(-),K(,1))g (15)
and from the isometrical identity (11) we have the desired result (14). The
uniform convergence of (14) on [0, 00) follows from the general property of re-
producing kernel Hilbert spaces (see, [10], page 35, Theorem 1) and the bound-
edness of the reproducing kernel (5) for S on [0, 00). -

For the property of f(r) satisfying (12) we note

Proposition 1 ([10, Chapter 5]). For a function f satisfying (12), we have
the isometrical identity

.1 -
= lim o [ |f(z+iy)ldy, (16)

where f(z) is analytic on the right half complez plane Rt = {Re z > 0} and
belongs to the Szegé space on R™ with a finite norm (16). Furthermore then
we have, forn>1, 0<m<n-—1,

Oz f'(z)]z™t™ ! = o(1), as 2 — 0™,

f('x):v%_: O(1), as x = 0™,

and for n > 0,
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3 Proof of Theorem

For n > 1, by integration by parts and by using Proposition 1, we have

/0 ” D,f(z) - Dp,e ™ dx
- /0 (@ f (@) or (na?” — rz?™H e da
S /0 " f(2)0,207 (na®" — r2?™ e d
— /0 " i) (ag ((nz?" — 7o27+1)e==7)
+2Opt! ((na®" — T2 )e-”))dx

= —r" /000 f(a:)((")‘;' ((na®® — ra?*t1)e™?7)

—.m'c’)," ((m:Q" 2n+1) ) + xan (( ):L_2n—1 _ (Qn)rarzn)e—”))dx

— f —‘r:c( - (n) (__(T‘)l/ (na;z—ux%z _ T@:_UJI??TH-I)

v

—'T:EZ(V (-—T) ( an v 271_Tag—um2n+l)

+z f: <Z) (—71)" ((2n2)8g_”a:2”_1 —7(2n +1)02 "V 2*") )d:c

— = , s _ l/l‘n e~ T (rp)nty F(2n+1)

= [t () e Ay 1)
X (—%%(rx)z — (%—% +3n + 1) Tz +n(n+v+ 1)) dz

= / f(z)e " Py(z,7)dz.

Similarly, we have

/0°° Dn(zf(z)) - Dn(ze™")dz

= (—7)i*7b /000 o7 (z(zf(2))) (%72 — (2n + )7 + n?) e *"2’"dx
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= = [T (ef(@) 4221 ()
or ((332""'37'2 — (2n 4+ 1)2®" 7 + n?2?) e7"7) dz

= —7'("'1_) /Ooof(x) (x@? (a:2"+27'2 —(2n + 1)x2"’+1'r + n2:1:2") e T —
Oy (:c28;' (;z:2"+27'2 - (2n+ 1)x2"+1r + n2x2") e"‘"))d:v

= (=1 /000 f(z) (:1:8: (™27 — (2n 4+ 1)22"Hir 4 n’zg®") e ") +
22020, ((2®"*21% — (2n + 1)2®"Hir + n?z?") e‘"zzn))dx

= r("’”;/ooo f(x) (x@a’; ((*"*2r* — (2n + 1);;2"“7 +n?z?") e™"7) —

z2or (PP t? — (4n + 3)r2z®" 1 4 (5n% + 4n + 1)7z®" — (2n3);1:2”"1)e_‘") dr

e o [y (o

v=0

(xaﬁ"" (22272 — (20 4 1)z 7 4 n2x2n) _ 2o (T3m2n+2

—(4n + 3)r* 2?4 (5n% + 4n + V)r2?" — (2n3):1:2"—1))d;v

— 00 - v+1 (T F(2n+l) —-zT ) nlu—-
= /0 f(:v)yz:%(—l) M (,{))F(n+v+1)€ z*(gr)ntrt

(4n® + 6n + 2) 3
((n+1/+ 1)(n+1/+2)(T$) B
(8 + 3v + 29n + 10nv + 30n2 + 8n%y + 8n3)
(n+v+1)(n+v+2)
(3+ v+ 11n + 4nv + 13n? + 5n%v 4 5n?)
n+v+1)

- /OOO f(2)e ™" Qn(z, T)dz. | | (18)

(r2)* +

(rz) —n*(n+v+ 1))d;r

Therefore, from Lemma 3 we have the desired real inversion formula (2).

4 Concluding Remark

The integrals (11) are effectively computable by using the Mellin transform

(fa-it)= [ St
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Indeed, note the identity
o0
271’/ |D, f(2)|?2*9 1dz
0
= [l a-iPa + e+ D + )

o {g4n-1 8 (g>0)
([10], page 207, (28)). Hence,

2m /oo |D,. f(z)|*dx
0

=/_Z|(A/If) (——zt)l {( ) +t2}2{( +1>2+t2}
..{(.;-+n—1)2+t2}dt,

and so, the first part of (5) is

= 1 oo 27
gm/o |Dy. f(x)|"dz

o0

1 1
=5 Z -_—-—n‘(n+ 0 / (M f) (— —zt) |2
IT(3 +n +t)?
IT(3 + it)|? at

The second part of (11) can be handled similarly by using the transformation
rule in the Mellin transform

M (zf(z)) (¢ —at) = (Mf)(g+1—it)

The series in (19) is estimated by the behavior of the Mellin transform
(Mf)(3 — it) at infinity, in some cases by using the formulas

(19)

/ IT(a + iz)|*dz = 220I’(2a) (a > 0)
0
and
/ IT(a + iz)T(b + iz)|*dz
0

_ Val(a)T'(a + H)T(B)C(b+ 3)T(a +b)

, b>0
2 (a+b+ 1) (a )

([1], page 655).
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