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Abstract

Universal polytope is the polytope defined as the convex hull of the
characteristic vectors of all triangulations for a given point configura-
tion. The equality system defining this polytope was found, but the
system of inequalities are not known yet. Larger polytopes, corre-
sponding to linear programming relaxations, have been used in prac-
tice. We show that (1) the universal polytope, the polytope of re-
laxation for (2) clique, (3) cocircuit and (4) chamber conditions have

“inclusion relation in this order. Examples of point configurations for
which these polytopes coincide and differ are given. We also discuss
briefly on the difficulty of giving inequalities for the universal poly-
tope.

1 Introduction

- Triangulation has been an important subject in several areas such as com-
putational geometry and mathematics. One natural approach for handling
all possible triangulations of a given point configuration is to investigate the



122

polytope made as the convex hull of the characteristic vectors of the trian-
gulations.

This polytope, the universal polytope, was first studied by Billera et al.
with relation to the secondary polytope [2]. Let the configuration be one of
n points spanning the d dimensional space. They showed that this polytope

has dimension (Z;i), lying in the space of d-simplices which has dimension

( dil). De Loera et al. studied the relation of this universal polytope and some
larger polytopes, and gave explicit descriptions for the equality conditions of
this polytope [4]. However, the description for the inequality conditions have
not been found yet.

In computational geometry, an important subject is to find the optimal
triangulation according to some cost. For example, the minimum weight
triangulation is among those problems. These problems can be thought of
as optimization problems on the universal polytope. However, neither de-
scription of this polytope, by inequalities or by vertices, can be obtained
easily.

Practical approaches taken recently begin the computation by a polytope
larger than the universal polytope [5] [11]. These polytopes are the polytopes
of linear programming relaxation of the universal polytope.

In this paper, we will show set inclusions of the universal polytope and
several polytopes of relaxation (section 2). We also discuss briefly on the
difficulty of enumerating inequalities for the universal polytope (section 3).

2 Polytopes of relaxation

Let A C IR® be a point configuration of n points spanning the d dimensional
space. A set of points ¢ C A is a simpler if the points are affinely inde-
pendent. Its dimension is #o — 1. A simplex of dimension % is called an
i-simplex in short. We represent the set of d-simplices by S4. The polytopes
we consider will be polytopes in IR5?.

We define two simplices o, T to intersect properly if conv(o) N conv(r) =
conv(c N 7). If not, they intersect improperly. ,

For a d-simplex o, we denote its volume by v, = vol(¢), and the volume
of the whole convex hull by V' = vol(conv(A)). We name the inequality
Yoes, Voo <V in IR% the wvolume inequality, and the equality obtained by
replacing the inequality by equality the volume equality. We can also define
volume (in)equality for sets of d-simplices by setting the characteristic vector
as the value of the variable.
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A set of d-simplices is a. triangulation if they (1) intersect properly and
(2) satisfy the volume equality. The universal polytope defined by Billera et
al. [2] is the convex hull of the characteristic vectors of triangulations:

Piniversal = conv{xr € IR% : T is a triangulation}.

The intersection graph of d-simplices is a graph with the d-simplices the
vertices and edges between pairs of improperly intersecting d-simplices. A set
of d-simplices is a triangulation if and only if (1) it is a (maximal) independent
set of the intersection graph and (2) suffices the volume equality. A maximal
independent set is not necessarily a triangulation. Such example can be
made by Schénhardt’s polytope [10] [12]. The independent set polytope is
the convex hull of the characteristic vectors of independent sets:

Pindependens = conv{xy : I is an independent set of the intersection graph}.

We iinmediately have the following lemma.

Lemma 2.1

The volume inequality is valid on the independent set polytope and the face
defined by this becomes the universal polytope

Piniversal = Pindependent 1N {CD z Voo = V}

0ESy

Proof. The d-simplices in an independent set only have overlap with vol-
ume zero. Thus, any independent set does not have more volume than the
whole convex hull, and satisfies the volume inequality. Since the indepen-
dent set polytope was the convex hull of the characteristic vectors of the
independent sets, it also satisfies the volume inequality.

Any triangulation is an independent set satisfying the volume equality.
Thus, its characteristic vector belongs to the polytope in the right side. The
universal polytope was the convex hull of such vectors, thus is included in
the right side.

Conversely, take a point from the right side. It is a convex combination
of independent sets. Since the whole combination satisfies the volume equal-
ity, all of the independent sets making the combination should satisfy the .
equality, thus are triangulations. Hence, this combination is a point of the
left side. O
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Any triangulation includes at most one element of a clique of the inter-
section graph. It satisfies the clique inequality 3, cclique To < 1. The set of
points satisfying this condition for all cliques becomes the polytope

Pique<1 = {& >0 : V (maximal) clique of the intersection graph

> 3, <1}

o€Eclique

In the proof of theorem 2.3 we will show that the volume inequality is valid
for this polytope. Then its face

Paiquesi N{x : D vz, =V}

gESy

becomes the feasible points of the linear programming relaxation by clique
conditions. o

We next define polytopes described by chamber conditions [1] [3] [4].
Consider the intersections of the convex hulls of d-simplices. A chamber is
such set having positive volume and minimal with respect to inclusion as
point sets. Take a chamber. Any triangulation has exactly one d-simplex
whose convex hull includes that chamber.

chamber

8%
y

2aN

P N .

+ + =1

The (in)equality ¥,. chambercconv(o) To = (<)1is called the chamber (in)equality.
Polytopes defined by these chamber conditions are

Pihamber<1 = {& > 0 :V chamber > T, < 1},
o: chamberCconv(o)
Prehamber=1 = {& > 0 : V chamber > z,=1}

o: chamberCconv(o)

P, amber—1 1s the feasible points of the linear programming relaxation by cham-
ber conditions. We have a lemma for these polytopes.
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Lemma 2.2

The volume inequality is valid on FPehamber<1, and it defines the face

Pchamber:l = Pcha.mbergl N {w : Z VgZg = V}

0ESy

Proof. The convex hull of each d-simplex can be divided into several cham-
bers. We can sum up the volume by chambers:

S vz = ), Vol(chamber) > Ty

0ESy chamber o: chamberCconv(o)

This shows that the volume inequality is valid on Fehamber<i-

Phamber=1 is included in Fepamber<1, and the above rewriting shows that
the volume equality holds on Pamber—=1- Thus the left side is included in the
right side.

Conversely, take a pomt from Pepamber<i satisfying the volume equality. If
there exists a chamber with 3. chambercconv(s) To < 1 the volume sum cannot
reach V. Thus all chambers must have 3. chambercconv(c) To = 1. Hence, it is
a point of Pamber—=1. O

Theorem 2.3

Piniversal C Pcliquegl N {m : Z VeZg = V} C FPehamber=1
€Sy

Proof. First, we show Pidependent C FPelique<i C Fehamber<i- Any indepen-
dent set satisfies the clique conditions. Pipdependent is the convex hull of the
characteristic vectors of independent sets, thus is included in Pique<i- For
the second inclusion, observe that for any chamber the d-simplices 1nclud1ng
it are making a clique in the intersection graph.

Thus the clique condition },ccjique o < 1 implies the chamber condition
Za: chamberCconv(s) Lo < 17 and we have Pc]iquegl - Pchambergl- |
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The volume inequality is valid on Fehamber<1 by lemma 2.2. The inclu-
sion above shows that it is valid also on Pigependent and Frlique<1- Thus the
volume inequality defines faces of these polytopes and we also have inclusion
relation among them: Pidependent N {® : Ypes, VoZo = V} C Puique<1 N {x :
Y ses, VoTo = V} C Pehamber<1t N {T : Ypes, Voo = V}. By lemmas 2.1, 2.2,
this means Pyniversal C Pcliquegl N {IE : EaeSd Voo = V} C Pehamber=1 O

The last conditions we consider are the cocircuit conditions by de Loera
et al. [4]. A (d — 1)-simplex is in interior if its convex hull is not included in
the boundary of conv(.A). For such interior (d — 1)-simplex 7, the interior
cocircuit condition is

> Ty = > Lo

0€S8y: o is on one side of 7 0E€Sg: o is on the other side of 7

Any triangulation satisfies these conditions. The last polytope is defined as
Peocircuit = achf(}Duniversa,l) N {:B > 0}-
De Loera et al. showed the following theorem.

Theorem 2.4 ([4, theorem 1.1})

Peocircuis 1S the polytope described by the interior cocircuit conditions and
one non-homogeneous equality (e.g. the volume equality).

Peocircuit 15 the feasible points of the linear programming relaxation by cocir-
cuit conditions. ,
- The following is our second theorem.

Theorem 2.5

Pcliquegl n {CB : Z Voly = V} C Peocireuit € Pehamber=1
0ES,
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Proof. By theorem 2.3, all points in' Pyyiversal Satisfy ¥, chambercconv(o) To =
1 for all chambers. The points in aff(Pyniversal) also satisfy them. Thus

P cocircuit C P chamber=1-
For the first inclusion, we have to check that any © € Peiique<1 N {x :

Y ses, VoZo =V} satisfies the cocircuit conditions. Suppose it was not satis-
fied. We should have some interior (d—1)-simplex 7 with 3. gt side of » To >
Yo second side of 7 Lo+ Since we took @ from @ € Puique<i N {T : Xpes, Voo =
V'}, and this polytope is included in P.amber=1 by theorem 2.3, cc satlsﬁes
the chamber equality for all chambers.

Take a chamber adjacent to 7 on the second side. The set

{o : adjacent to 7 on the first side} |

U {o : adjacent to 7 on the second side, but intersecting improperly,
T C conv(o)}

U {o : crossing 7,7 C conv(o)}

is making a clique in the intersection graph. However,

(*) Z Ty + Z - Xe + Z ‘ Ty

o: adjacent to T on o: adjacent to 7 on the second side, but o:crossing T,

the first side intersecting improperly, 7 C conv(o) T C conv(o)
o: adjacent to 7 on o: adjacent to 7 on the second side, but o:crossing T,
the second side intersecting improperly, 7 C conv(o) T C conv(o)

= Y g

o: 7Cconv(o)

=1,

but since & was satisfying the clique conditions, (x¥) < 1, a contradiction.

chamber
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Theorems 2.3, 2.5 lead the main theorem.

Theorem 2.6

Piniversal C Pclique§1 N {(I: : Z Volg = V} C Peocircuit € Pehamber=1
0ESy

Remark 2.7

For the polytope Peique<i N {T : Yses,VoTs = V}, we can get rid of the
volume equality, which has coefficient other than 0/1, adding many 0/1 con-
ditions instead:

Pclique§1 N {(II : Z Voo = V}

0ESy

= Lclique<1 N Pchamber:l n {m : Z Volg = V}
0ESy

= Lclique<l M Pehamber=1
= Lclique<1 N Pchambeer
Next we will give examples of point configurations to show that these
inclusions can be either equal or proper.
Example 2.8 (polygon)
For the vertices of a polygon de Loera et al. [4, theorem 4.1] showed

Piniversal = Pclique§1 N {CC : Z Voo = V} = Peocircuit = Pehamber=1-
0ESy

Example 2.9 (regular pentagon with a point in the center)
For this example from [4, example 4.2], the inclusion becomes
C

Puniversa]7épclique§1 N {CB : Z VoZg = V} = Peocircuit = Pehamber=1,
0ESy

and all the polytopes except Pypiversal has a fractional vertex.
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Example 2.10 (regular 9-gon with a point in the center)

In this example, the regions A,B,C show that triangles (138), (246), (579)
form a clique in the intersection graph. Thus, the inequality ‘

T(138) + T(246) + T(s70) < 1

must hold on Pigue<1- On the other hand, there exists a point of Peocircuit
with (138) = T(246) = T(s79y = 1/2 violating that inequality:

T(138) = T(246) — T(579) = T(038) — L(026) — L(059) — L(029) = L(035) — T(068)

= T(123) = T(234) = T(345) — L(456) — T(567) — T(678) — L(789) = T(189) = $(129)
=1/2,

Tothers = 0.
. . . . . C
For this point configuration, Pique<i N {Z : Xpes, Voo = V'} 2 Peocircuit-

1
M
1 sedR 3
6

C
5 o0,
43‘ 4
5

7
/>

De Loera et al. shdwed that for points in general position, Peocircuit =
Prnamber=1 [4, proposition 2.5]. However, for degenerate point configurations,
we cannot guarantee this.

Example 2.11 (square with a point in the center)

The point T(012) — 33(023) = T(134) = 1, Tothers — 0 belongs to Pcha.mber=1 \
P.ocireuit- Thus PcocircuitiPchmberzl for this point configuration. Further,
P.ocircuit has dimension 2, while Pgiamber=1 has dimension 4.

1 2

N
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Remark 2.12

The integers points of Prique<1 N {T : Yyes, Voo = V} and Peocircuir are the
integer points of Pjniversal, thus correspond to the triangulations. However, as

shown in example 2.11 Pamber=1 Can have extra integer vertices other than
those.

Remark 2.13

By definition, Pyniversal and Peocircuit have the same dimension. Thus, Peigye<iN
{T:Xoes, Voo = V'} also has the same dimension. However, the dimension
of Phamber=1 Can be larger, as shown in example 2.11.

From the examples above, we obtain the following theorem.

Theorem 2.14

The polytopes, the inclusion of which we showed in theorem 2.6, can coincide
or differ depending on the given point configuration.

The polytopes we handled correspond to linear relaxations of the universal
polytope. Here we summarize briefly their efficiency in practice.

Peiique<i N {T : Yges L Voo = V'} is the closest to the universal polytope.
To describe this polytope, we have to enumerate all cliques of the intersection
graph. This can be done by the generalized Paull-Unger procedure [8] with
improvements by Tsukiyama et al. [7] [13]. This enumeration can be done in
linear time with respect to the number of cliques, but with a large coefficient.
The investigation of the computational complexity and the number of the
cliques for the case of the intersection graph of d-simplices remains to be
explored.

Penamber=1 is not efficient, because (1) the number of chambers can be
large and (2) there can be new integer points. Giving a base of the chamber
conditions is done by Alekseyevskaya [1].

In practice, it has been shown that Peocircuis is the most efficient [5] [11].

3 Difficulty of enumerating the inequalities
of P, universal
De Loera et al. gave descriptions for the equality system of the universal

polytope. On the other hand, there are no results for giving descriptions of
the inequalities using geometric information of the point configuration. Even
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partial results for this problem would be useful, because they can result in
defining stricter relaxation polytopes for the universal polytope. However,
the authors have doubts whether this problem is computationally easy. In
this section, we would-like to show some examples, which may have relation
with the difficulty of this problem. |

Example 3.1

For the example of regular pentagon with a point in the center (example 2.9),
there is a facet £4 < xp + ¢ in the universal polytope. This can be read
as a condition “if z4 = 1 then either zg = 1 or ¢ = 1”. However if there
were other points in the left of the triangles A, B, x4 =1, 23 = z¢ = 0 can
happen, and the condition does not hold. Thus, we can say that this facet is
representing some “global” information of the point configuration, and this
is one reason we think the problem might be difficult.

<3/
<

Ruppert et al. showed that deciding whether a nonconvex polyhedron
can be triangulated or not without adding new vertices is NP-complete [9].
Triangulability can be judged by computing the intersection of the universal
polytope and the hyperplanes z, = 0 for d-simplices o not included in the
polyhedron, which we cannot use. The polyhedron is triangulable if and only
if this intersection is not empty. However, this connection does not immedi-
ately imply that giving inequalities is difficult. The triangulability problem
is a decision problem and giving inequalities is an enumeration problem, And
further, the connection between these problems are not straightforward.

The problem of computing the triangulation with minimum sum of edge
lengths for a given point configuration in the plane is one of the famous
problems in computational geometry. It is not know whether this problem
is NP-complete or computable in polynomial time [6]. This problem can
be solved as an optimization problem on the universal polytope. Even if
the universal polytope has many facets, if we can generate (appropriate)
inequalities of the universal polytope efficiently, we can use them as cuttmg
planes, and compute this problem quickly.

A
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