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Abstract

We consider the optimal imperfect repair problem of reliability system under the average cost
criterion. It is formulated as a semi-Markov decision process for the optimal maintenance problem of
reliability systems with two types of imperfect repairs which are probabilistically mixed maintenance
activities of minimal-repair and replacement. One side of maintenance activities need not much cost
but repairs the system likely new one in lesser degree, and the other side need much cost but repairs
the system likely new one in greater degree. It is shown that there is an optimal £—policy for the
system of which failure rate monotonically increases to infinity. A t—policy implies that a failure
before age t is repaired by one of these activities, a failure after age t is repaired by the other.

1 Introduction

- Imperfect repair considering in this paper is probabilistically mixed maintenance activities of minimal-

~ repair and replacement. It is a extension of minimal-repair and replacement. A minimal-repair is the
maintenance activity which recovers the function of the failed system without changing its age.. A
replacement restores the entire system into the new one. In the past three decades, vast literature has
discussed various maintenance problems with the above maintenance activities. A pioneering work on the
maintenance problem with minimal repair was done by Barlow and Hunter [1] in 1960. They considered
minimal repair and preventive replacement as maintenance activities. Later, Phelps [6] discussed the
maintenance problem with minimal repair and failure replacement under the average cost criterion. He
formulated the problem as a semi-Markov decision process. Assuming that the failure time distribution
has increasing failure rate (IFR) , he showed that the optimal policy of all allowable policies is a t-policy,
that is, there exists a threshold age t such that failures before age t are minimally repaired, but the
system is replaced at the first failure after age t. Segawa and Ohnishi [8] discuss the minimal-repair and
replacement problem under the average cost criterion, assuming that the cost structure is dependent on
age. They formulate the problem as a semi-Markov decision process, and show that an optimal policy
of all allowable policies is in the class of t-policies under some assumptions which are weaker than those
of Phelps [6]. We consider the optimal imperfect repair problem of reliability system under the average
cost criterion. It is formulated as a semi-Markov decision process for the optimal maintenance problem
of reliability systems with two types of imperfect repairs which are probabilistically mixed maintenance
activities of minimal-repair and replacement. One side of maintenance activities need not much cost but
repairs the system likely new one in lesser degree, and the other side need much cost but repairs the
system likely new one in greater degree. It is shown that there is an optimal ¢t—policy for the system of
which failure rate monotonically increases to infinity. A t—policy implies that a failure before age t is
repaired by one of these activities, & failure after age t is repaired by the other.
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2 Model and Optimality Equation

We consider a reliability system described in following. Maintenance activities are 2-types imperfect
repair R1 and R2. When the system failed at age z, imperfect repair R1 recovers its function with cost
¢1 by probability p; like new and by probability 1 —p; without changing the age, and imperfect repair R2
recovers its function with cost ¢, by probability p, like new and by probability 1—p, without changing the
age. The time required for performing these activity is assumed to negligible. The cumulative distribution
function of the failure time of the system is F'(z) and it has the continuous density function f(z). We
denote the reliability function as Fi(z) = 1 — F(z), and the failure rate function as A\(z) = f(z)/ F(z).
It is assumed that F'(z) is positive and A(z) is continuous for all z € [0, 00). Our problem is to find the
optimal policy of the average cost, i.e:, the sum of the expected maintenance costs par unit time averaged
over the infinite time horizon.

Assumption 1
0<p<p <L (2.1)

Assumption 2
' 0<c <. (2.2)

Assumption 3 The reliability function follows IFR, A\(z) is continuous and A\(co0) = oo.

Under Assumptions 1, 2, and 3, we discuss the problem that we can find a policy of threshold type. This
problem can be formulated as a semi-Markov decision process in which the age of the system is chosen as
the state, and decision on maintenance activities are made just after the epochs at which system failures
occur. The following theorem is well-known for a semi-Markov decision process under the average cost
criterion (see [3]).

Theorem 1 If there erist a constant g and a bounded function v which satisfies the following equations,
called the optimality equation, and a policy described by these equation is an optimal policy.

¢+ 1};(5)1 L v(s) f(s)ds — / F(s)ds s + Fp;) /Ooo v(s) f(s)ds ——g/ooo F(s)ds

1-p _ s E - s)ds — i s
o+l / v(s) f(s)ds / Fiayis [+ 54 [“oo)f0)as g / F(s)(;)

v(z) = min

The function v(-) which appears in the above optimality equation is called the relative cost function.
Because v(+) is determined unique without an adaptive constant, we can normalize, without any loss of
generality, by adding an equation to the above optimality equations for simplification and obtain the
following.

Theorem 2 If there ezist a constant g and a bounded function v which satisfy the following equations
called the optimality equation, and a policy described by these equation is an optimal policy.

1 -p 00 . oo )
- F(p)2 Lw v(s) f(s)d gﬁw F(s)ds }, 04
c + _FT)_ /z v(s) f(s)ds — g/r F(s)ds 3,

/Ooo v(s) f(s)ds — g[)oo F(s)ds=0. O , - (2.5)



We describe the optimality equation by following operator.

[1(x)=c1+F(p)1{/ f(s)ds—g / F(s)ds }

lHd@hﬂa+%%§{LwM@ﬂ@®—9L F@m%w

Ulel(e) = min{Us o] (2), Valo(2)} .
Uill(e) = Uslol(a)

=‘q+ﬂi?{/mM@ﬂ$%—gﬁmF®M%,

_ @+%%§{ﬁwmwﬂ@w—g£wﬁwwﬁ,

QmﬂﬂECr-%%%{[fdﬂﬂﬁﬁ—gAmﬂQ@},
U, ol(z) = ¢ — 115—2;};2— {Amv(s)f(s)ds —g‘/om F‘(s)ds}.

We can describe the optimality equation by the operatar as following.

o@) =Upl@),
/ v(s) f(s)ds - g/ F(s)ds = 0.
‘ 0 0
Now we have the relations for these operators.
Lemma 1 If
oo o) _
/ v(s)f(s)ds — g/ F(s)ds =0,
0 0

then we can describe
Ui [vl(z ) 1[v)(z
Usv)(z) [ \(z

We consider following integral equations.
v1(z) = U, [n](2).
V2 (fE) = T]—Q [‘UQ] (CE)

vmm=cr—%ﬁﬂ{AZMQﬂ@w—gﬁfﬂﬁw},

0a(2) = q+%i%{/“$x@ﬂ@@—glwﬁ@m%.

We multiply F(z) to (2.16) and differentiate by z, we get a differential equation.

)
)

U, [v](2),
U,[v)(z). O

[o)(z
(z

They are

vi(z) — prA(@)vi(z) + e M(z) — (1 —p1)g = 0.

It has a general solution with integration constant C,

o (z) = [c - A “{eA(s) — (1= pr)g} exp (—pl A | A(u)du) ds] exp <p1 A i )\(s)ds> .
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(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)



By definition of reliability function,

P(z) = exp <~ A i )\(s)ds> ,

v (z) = [C— ¢ ’/OI A(8)FPi(s) +(1—p1)g AI FP (s)ds} FP1(x).

Since v1(0) = ¢, then C = ¢;. We think separately for the case of p; = 0 and 0 < p; < 1.

Now we have a explicit solution for p; =0,
[cl - c’1/ v)\(s)ds +g/ ds}
Q 0

T

vl(z)

¢ — c1/ A(s)ds + gz
0

vi(z) =¢1 — 01/ A(s)ds + gz.
)
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(2.22)

(2.23)

(2.29)

(2.25)

This is a same solution as Segawa and Ohnishi(1992). For 0 < p; < 1, we can get integration by parts,

- [T — 1 Fri(z)

A8)FPi(s)ds = — — —~£,
A ( ) . ( ) D1 Y41
Then we can describe similarly
I'P1 o _ -
(@) = [C — e (i - F—“)) +a-p | F“(s)ds] Fri(a)
Y41 D0 0 -
g 1-p

= 2o RaP @)+ (-meF @) [ s

When p; - 0,

p1—0

lim v(z) =¢;1 — cl/ A(s)ds + gz,
0
then, we can describe generally for 0 < p; < 1,

1- — _ . '
vi(z) = a_ b aF P (z)+(1 —pl)gF_Pl(z)/ FP(s)ds.
y 2! gl 0

Next, for 0 < pp < 1,

o [ [T o[ F
ve(2) = 62 + ) {L va(s)f(s)ds g/m F(s)ds}
has a general solution similarly for v,
ve(2) = &, (C - E)F‘_m () +(1 —m)gﬁ"”(x)/ FP2(s)ds.
D2 P2 0

Because v2(z) is bounded for z, then v(co) is finite. We get initial condition for z = oo,

w(eo) = o+ (=) im 2o { [Cune) s —g [ Pleas)

- 02+(1—P2)x]£{.1°{7)2(x)“
= 02—4-(1-—])2)1)2(00).

9
Az)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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Then we have

va(00) = (2.33)

Co
g
We get similarly,

wwg—gw?Lwﬁ%5{<C—%)+u~mm1fﬁw@@}. (2.34)

Since the denominator tends to 0 at x — oo, then the numerator is 0 at x — co.

C - % +(1-m)g Aw FP2(s)ds = 0. (2.35)

Then we have

ve(z) = » E—(l— p2)gF P2 (x )/r FP2(s)ds. (2.36)

For the case of p, = 1, (2.30) is not integral equation, but v2(z) = ¢; is the solution of (2.30). Then we
can explicitly describe vy, v2 for 0 < p; < p2 <1,
1-
v(z) = a_ Len FPi(z) + (1 —~p1)gF Pi(g) / FP1(s)ds,
g m o0 (2.37)
ta(a) = 2 — (1= po)gF7(a) [ F(e)ds

x

We define
Wi(z) = Uy [ui](z) — Us [na)(2). : (2.38)
Then

Wi(z) = e—a g i 1;1 {/xvl(s)f(s)ds —g/)z F(s)ds}

= Cz—cl+p12 L {e —vi(2)}
— /M1
P2 — D1 g 1- )
¢ ——+ chlm—l— F”lm/Fl"1 ds—c
2 o - 2 B b e) - (1= p)o PR ) )
P1C2 — P2Cy P2 — D1

= + el F P (z) — (pp — p1)gF~ Pl(:z:)/ FPi(s)ds
‘ b 0 ,

= ¢ —C -+

b1
B (2.39)
. .. Fri(z) .
We concern the signature of W1 (z), then we multiple o p for the both side,
— /M
FP(z)
wi(x,g) = — Wi (x). 2.40
1(z, 9) pa— 1(2) (2.40)
PGz — p2C1
w1 (T . _Fm —I——-— FPi(s)d 2.41
0.9) = HE TS g [ P (241)
In the same way, .
Wa (II)) U2 [7.}2 (.’E) Ul[’UQ](QZ). (2.42)
_ &%) . o
Wao(z) = c—c - %(51 {/z va(8) f(s)ds — g/x F(s)ds}
- @_q_?_TgM@—@} (2.43)

— — oo—
- %%§ﬂ+@—mwwuV‘ﬁ%m
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P2
We concern the signature of Wa(z), then we multiple F (Z;) for the both side,
-
F72(z)
‘wolz, g) = Wo(z 2.44
2(e0) = o Wa() (249
P — i & -
wo(z,9) = ————ZFP2(x) + / FP2(s)ds. 2.45
2(0,9) = DN @ o [P (2.45)
We have after all o -
wn(o,g) = BEPE (o) 4 2 [ sy,
p1(p2 — p1) m o Jo (2.46)
P1C2 — P2l1 5 = '
wa(z, 9) = ————FP?(x) + FP2(s)ds.
2(, 9) 2 (Ps — 1) (z) 9 (s)

Lemma 2 If g is an optimal average cost and v-is an optimal relative function, then wy > 0 means R1
is a good selection, w1 < 0 means R2 is o good selection. When wy > 0, wp < 0, it 4s similarly. O

In order to check the signature of w; and w,, we partially differentiate w; and w, by z. We get

R [Pz —pca
—wi(x,9)=—FP(x){ ———=Ax) +g}, 2.47
(@)=~ (@) { 2P0y | (2.47)
0 - P1C2 — P2Cy }
—wp(z,g) = —FP(2) { B2 22 \(2) 4+ ¢ V. 2.48
| Srun(@,9) = ~7(a) { B2 ) 1 (249
There is the relation for them,
_ 0
- — FP2—P1 —_
We define P1Cs — pac
D(z,g) = 222\ (2) — g. 2.50
(z,9) o — B (z)—g (2.50)
Lemma 3 Ifpico —pecy <0, there exists at least one pair gol’utz’on of simultaneous equation of
» N wl(x: g) = 0:
2.51
{ we(z,9) = 0. (2:51)
O
(Proof)
For z € (0,00), we define
)= e (BB )
Fpl(s)ds ypl(pZ“Pl) D1
e (2.52)
Ccy — FP2 (g
o) = — (Pre2 — P2p1) ki @) v
P =) [ sy
And ’ '
Z(x) = go(z) —ga(z)
= (pr&2 — poc1) FP2(x)
- [s%e}
p2(p2 — 1) FP2(s)ds (2.53)

DP1C2 — P20y

p1(p2 — 1)

1
_/: FP(s)ds {

_ c
FPi(z)+ —}.
() pl}
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From de I’'Héspital’s rule,

0 — PaC c
b1 P21+1

D1Co — DoC (s — D7) D1
Z(40) = Pics — Paca _ nulp wpi) P
Pz(Pz—Pl)/ FP2(s)ds  lim / FP1(s)ds
0 =10 0
@A (2.54)
_ Di1C2 — P21 _ P2 — D1
= - _
p2(p2 — p1) / FP2(s)ds  lim FPi(s)ds
o z—+40 0
= —0Q,
and
&1
e . Fp2
Z(00) = L @)

_ P1
/ FP1(s)ds P2(p2 = p1) w=o0 / FP2(s)ds
°a ° (2.55)

S i1 _ D —pa lim p2)(z)

/ Fri(s)ds  Pelpe—p1) e
0
00

Since Z(z) is continuos for z € (0, 00), there exists t* € (0, 00) such that Z(t*) = 0, i.e. ¢1(t*) = g2(¢*).
We define g* by

g" =q1(t") = g(*) > 0. (2.56)
Then .
9" = —F {??;;_i% FP(t*) + -ci} (2.57)
/ F~P1(s)ds ! ' h
o}
and
— - ) FP2(¢*
g =— (p1c2 P2610)o (t*) (2.58)
p2(p2 — p1) / FPi(s)ds
t*
It means that - ‘
P1C2 — 201 5 c1 —
g2 R ey 4 2 - */ FP1(s)ds =0 2.59
p1(p2 — 1) (#) n 7 (s) (2.59)
and -
P1C2 — P2C1 = i -~
F172 270 prea(e) 4 */ - FP2(s)ds = 0. 2.60
p2(p2 — p1) () +9 o (5) (2.60)
That is
wi(t*, g*) = we(t*, ¢") =0. O (2.61)

Definition 1 For (t*, ¢*) which is a solution of (2.51), we define

a 1-p

» o - PP (z)+ (1 - p)g*F P (z) /;D FPi(s)ds, z€[0,t%), . 262)
vt (z) = 0o 0 62
= — (1 —p2)g* FP2(x) FP2(s)ds, x € [t*, 00).

T
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Lemma 4 g¢*v* in (2.62) satisfy

Up[v*](z) = Ul[v ](w), z €[0,t%), (2.63)
and ’
U, [v*)(z) < Uil (a:), T € [t 00). O (2.64)
(Proof) For g*,v*, |
we (00, ¢*) = 0. (2.65_)

D(z, g*) increases in z. There exists zp(¢*) such that D(zp(¢*),9*) = 0. ws(z, g)is increasing in
[xp(g*), +00), then wa(zp(y*) < 0. wi(z,g*) and wy(z,¢*) is decreasing in [0,zp(g*)]. Because
w1 (t*, g*) = we (t*, ¢*) = 0, then

wi(z,9*) >0, z€][0,t") © - (2.66)
and ‘
wa(z,9%) <0, =z € [t"00). (2.67)
That is o
Wi(z) = Up[v*](z) — Uy [v*](2) 2 0 (2.68)
and = . . :
Wa(z) = Us[v*](z) — U1[v*](z) < 0. O (2.69)
We have following lemma.
Lemma 5 ' o U
(o] o _
/ v*(s)f(s)ds — ¢* / F(s)ds=0. O ' (2.70)
0 0
From (wl(t*)g*) = wZ(t*7g*)‘: 0,
t* \ _
Proof)F~P (¢ */ FPi(s)ds = X2 P2 | G ppy g , 2.71
(Proof) F(t)g" [ Fri(a)ds = BELL 4 & pomr 1)
oQ
= a P12 — P26
Fp2(t* / FPa(s)ds = 222 1271 2.72
() ¢ (®) p2(p2 — p1) (272)

then

Lw v(s)f(s)ds — g* Aoo F(s)ds

*

:A v(s)f(s)ds—g*/3 F(S)ds+1w v(s)f(s)ds — g* :3 F‘(s)ds

F(t {c -1 (t* }+ F(t*) {'U (t*) — e}
— F(t*) _J&a _ 1—p o FPi(t* — * fr—pL(4* ¢ FPL(s)ds
- 1—p1{cl {p1 Do o)+ (1= p)g P ) [ (s }}

LFE) {% — (1~ po)g* FP2(t%) [o P2 (s)ds — c2}

1-p2

:F(t*){—c—l+—ciF*7’1(t*)—-{plc2—_p2cl+£1_F—p1<t*)}__22__*_?102_?201}
2 p(pz—p1) ¢ P2 Da(pe —p1)
=0 O

‘Theorem 3 If pic; — p2c1 < 0, then t—policy which takes the action R1 for z € [0,%") and R2 for
x € [t*, 00) is optimal. O
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(Proof) From Lemma 1 and 5, for (t*, g*), v* satisfy

U,v*l(z) = U2[v*](z), z€[0,t),
U@) = Uile)e), (273)
e Tivl@) = Uill(e), 2 € [t,00),
1v*](z) = Uilv*)(z), =z € [t*,00),
Uob'(e) = Unfo*](a). | (2.74)
From Lemma 4, for z € [0,t*), ' ‘
Ul*)(z) = min{U: [v*|(z), U2[v*](z)} = U1 [v*](2), : (2.75)
and for z € [t*, 00), ,
U*)(z) = min{U; [v*](), U2 [v*](z)} = Uz[v*](z). (2.76)
Then
@) =URIE,
v)fe)s-g* [ Fleyds. 247

From Theorem 2, R1 is optimal for z € [0,t*) and R2 is optimal for z € [t*, 00). It means that t—policy
is optimal. O :

3 The case that only R1 is optimal

Now, we consider the case of pjc; —pee; > 0 in this chapter. Then, pyce > pecy > 0, that is p; > 0.

Lemma 6 There exist a constant § and a relative function ¥ which is bounded and continuously differ-
entiable s.t.

v(z) = + 1}_;(_5)1 {/:o o(s) f(s)ds — f]/:o F(s)ds} ) (3.1)
" /;oo o(s) f(s)ds — g/ooo F(s)ds=0. O (3.2)

(Proof) If such function exists, it satisfies from Lemma 1
v(z) = U, [ (2). (3.3)

We can describe its solution with a integration constant C for p; > 0

b(z) = a, (C - fl) FPi(z) 4+ (1 —pl)gﬁ’_m(l‘)/ FP1(s)ds. (3.4)
b Y51 0.
And 9(0) = ¢, then C = ¢, it means
7 _a 1-p [—P1 gEF—Pt § ['P1 |
o(z) = — — aF P (z)+(1=p1)gF P (z) | FP*(s)ds. (3.5)
41 D1 0 )
And we rewrite 7,
C1 1-— P1 (6] - /'v — .
() =— — =—~ ¢ = — FPi(s)ds ). 3.6
(=) P Fri(z) {Zh g 0 (s) } (3.6)
When z — oo, the denominator of its second part tends to 0, then it is necessarily
C1 B [oe] Lt
= -3 FPi(s)ds =0 (3.7



That is ,
. (&}
9= —"F=w
D / FPi(s)ds
0
We can consider that .

1S ——F—————
p1/ FP(s)ds
0

and .
'171 (.’L) = C—l - —h
Y41 y 4!

i F7 Py () + (1= p1)g1 F P (x) /Om FPi(s)ds
satisfy (77),(3.2). O
Lemma 7 Ifpic; —pacy > 0, then there exists §; and 1 () suéh thdt

B o 51(2) = U [in) (@) = Ufor) (&),

/oo () f(s)ds —§/°o F(s)ds=0.
0 0 ‘
O

(Proof) We define .
Wi(z) = Ua[ti](z) — Ur[t1](2),

then

- h
Now we describe

FPI L) ——
B1(e,31) = 7, ),
: —P1 i
then . oz
: N PiC2 —p2C1 - G 7
dy(e) = B2 TR gy G / 71 (s)ds.
( pl(p2 *Pl) ' ( ) D 51 o ( ) »
And P
' a_ﬂh(m,ﬁi) = —FP(2)D(z,41) ,
_ PiC2 — p2Cy P
= —Fri(g){ &= 27 () +
( ){ P2 —p1 (@) 91}
< 0. ~

Now @, (z, §1) is decreasing in z,

. Ly D162 — D201 | e L [
1 (00, = —==_FPl(0) + — — / FP1(s)ds
100, 1) pi(p2 — py) ()5~ 7

= &—f}/ FP1(s)ds
0.

Then for Vz € [0, oo),‘zbl (z,9) > 0,that is

Uz[o1)(x) > U1[t1)(z).

And U, = U, U, = Us, then
9 () = Ul (2).

a

Wi(z) = 22" R4 | p2p—1p1 c1 F7PL(z) — (pp — pr) g1 F P (w)é FP(s)ds.
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(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

k(3.1'3)
(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Theorem 4 prlczv—— peer > 0, then for all z € [0, +00), R1 is optimal action. O

(Proof) From the Lemma 1, 2, §1,7; satisfy

B, = Ul (z) (3.21)

A " 1(s)f(s)ds — § A ” Frids =0, (3.22)

By the theorem 2, for all z € [0, o) the activity R1 is optimal. O

4 Concluding Remarks

In this paper we discuss the optimal imperfect repair problem under the average cost criterion. We
formulated the problem as semi-Markov decision process, and showed that an optimal policy for all
policies is in the class of t—policies under some weak assumptions. Although preventive replacement is
a very important maintenance activity, we could not consider it here. The study of the models which
include this activity is left our future research. -
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model (imperfect repair system)

maintenance activity
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The boundary picz — p2c; = 0 between strictly t—policy and only R1 policy is independent in the

shape of reliability function.
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