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Abstract: In this paper, we consider a repair-cost limit replacement problem and develop a
graphical method to determine the optimal repair-cost limit which minimizes the expected cost
per unit time in the steady-state, using the Lorenz transformm of the repair-cost distribution
function. The method proposed can be applied to an estimation problem of the optimal repair-
cost limit from empirical repair-cost data.
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1. INTRODUCTION

The repair-cost limit replacement policies can provide how to design the recovery mechanism of
a system using two maintenance options: repair and replacement. in terms of cost minimization.
That is. if the repair cost of a failed unit is greater than the replacement cost, one should replace
a failed one. otherwise should repair it. First this problem was considered by Drinkwater and
Hastings [1] and Hestings [2] for army vehicles. Especially. Hestings [2] proposed three methods
of optimizing the repair-cost limit replacement policies by simulation, hill-climbing and dynamic
programming.- Since the seminal contributions above, a number of authors developed differcut
probability models. For instance. Kaio and Osaki [3] reformulated the Hastings’ original problem
from the viewpoint of renewal reward argument and discussed both continuous and discrete
models under the discounted cost criteria. Love. Rodger and Blazenko [4] examined the similar
problem for vehicle replacement using Potal Canada data which is constructed by dividing the
life of the vehicle into discrete ages. Park [5] considered a simple but interesting cost limit
replacement policy nnder minimal repair. Love anitd Guo [6] extended the repair-linit analysis
by incorporating a changing force of mortality as the unit ages i the framework of a Markov or
semi-Markov decision process.

As Love and Guo [6] pointed out implicitly. it is often assumed that the vepair-cost distribution
function is arbitrary but known. Of course. this scems to bhe rather restrictive in many practical
situations. To this end. practitioners have to determine the repair-cost limit under incomplete
information on the vepair-cost distribution in most cases. Dohi. Koshimae. Kaio and Osaki [7]
and Dohi. Kaio and Osaki [8] proposed non-parametric estimators of the optimal repair-cost
limit from the empirvical cost data. More precisely. they applied the total time on test (TTT)
statistics to those estimation problems in accordance with the graphical idea by Bergmman [9]
and Bergman and Klefsjo [10]. If the optimal repair-cost limit has to be estimated from the
sample data with unknown repair-cost distribution. their method will be useful in practice. sinee:
one need not specify the repair-cost distribution.

However. it should be noted that the repair-cost limit replacement problems in [7. 8] were
very interesting but somewhat different from existing ones. The main objective in [7. 8] was
to derive the optimal cost-limit to retire the repair action, i.e. if the repair is not completed
within a cost limit, the failed unit is scrapped and then a new spare is ordered. Such a policy
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seems-to be plausible in many practical situations, but should be distinguished from the original
repair-cost limit problem. In this paper, we consider a repair-cost limit replacement problem
in the framework of renewal reward processes and propose an estimation method based on the
Lorenz curve. Notice that the basic idea in this paper is similar to the graphical one used in
[7, 8] but the statistical device employed here is different from the TTT statistics. The Lorenz
curve was introduced first by Lorenz [11] into Economics to describe income distributions. Since
the Lorenz curve is essentially equivalent to the Pareto curve used in the quality control, it will
be one of the most important statistics in every social sciences.

The more general and tractable definition of the Lorenz curve was made by Gastwirth [12].
Goldie [13] proved the strong consistency of the empirical Lorenz curve and discovered its sev-
eral convergence properties. Chandra and Singpurwalla [14] and Klefsjo [15] investigated the
relationship between the TTT statistics and the Lorenz statistics and derived a few aging and
partial ordering properties. Recently, the further results on two statistics were examined by
Pham and Turkkan [16] and Perez-Ocon, Gamiz-Perez and Ruiz-Castro [17]. It is shown that
the estimator of the optimal repair-cost limit derived in this paper has also several powerful
properties proved in earlier contributions above.

The paper is organized as follows. In Section 2. we describe the repair-cost limit replacement
problem under. consideration. In Section 3 we develop a graphical method to calculate the
optimal repair-cost limit which minimizes the expected cost per unit time in the steady-state.
Then, it is seen that the Lorenz curve plays an important role to derive the optimal solution on
the graph. In Section 4. the statistical estimnation problem is discussed. We show that estimator
of the optimal repair-cost limit has a strong consistency and examine its convergence property.

2. MODEL DESCRIPTION

Consider a single-unit repairable system. where cach spare is provided only by an order after
a lead time L (> 0) and cach failed unit is 1'(‘pairal)l(‘ The original unit begins operating at. time
0 and the mean time to failure for each unit is my (> 0). When the unit has failed. the decision
maker wishes to determine whether he or she should repair it or order a new spare. If the decision
maker estimates that the repair is completed within a prespecified cost limit ¢y € [0.oc). then
the repair is started immediately at the failure time. The mean repair time is mg (> 0) when
the repair cost does not exceed vg. On the other hand. if the decision maker estimates that the
repair. cost exceeds the cost limit vg. then the failed unit is scrapped immediately and a new
spare unit is ordered. Then the spare unit is delivered after the lead tiine L. Without any loss
of generality, it is assumed that the unit once r(‘pau(‘d is presumed as good as new and that the
time 19(1mred for replacement is negligible.

The repair cost for each unit is an i.i.d. random variable and unknown. The decision maker
has a subjective probability distribution function H (v) on the repair cost. with density 7i(v) and
finite mean m,, (> 0). Suppose that the distribution function H(¢) is arbitrary. continuous
and strictly increasing in € [0.2¢) . and has an inverse function. s.e. H='(-). Under these
model assumptions. define the interval from the start of the operation to the following start
as one cvele. Figure 1 depicts the configuration of the model under consideration. The costs
considered i this paper are the following: ‘

k(> 0): a cost per unit shortage time.

¢ (> 0): a cost for cach order.

We make the following additional assunptions:
(A-1) my, > L.

(A-2) kymg < kL +ec.
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Figure 1: Configuration of Model 1.

The assumption (A-1) implies that the mean repair time g is strictly longer than the lead time.
In the assumption (A-2). the shortage cost when the repair cost does not exceed v is less than
the total cost when the new spare is ordered. - It is noticed that these -assumptions motivate the
underlyving problem to determine the optimal repair-cost limit.

Let us formulate the expected cost during one cycle. “If the decision maker judges that a
new spare unit should be ordered. then the ordering cost for one cycle is ¢H (vg). where H(-) =
1 — H(-). In this case. the expected shortage cost for one cycle is & rLH (vg). On the other hand,
if he or she selects the repair option. the expec ted repair cost for one cycle is [j° vdH(v) and
the oxp(\(tod shortage cost for one cycle is kymyH (10) Thus the total expected cost for one
cvele is

Ec(ro) = /0 edH (0) + k{m,H(vo) + L (v0)} + cH(xo). Y

Also. the mean time of one cvele is
Eyp(eg) = my 4 my H(u))+LH(1()) (2)

It may be appropriate to adopt an expected cost per unit time in the steadyv-state over an infinite
])Lmnmu horizon. The total expec ted cost per unit time in the steady-state is: from the renewal
reward argmment [18]. : '

TC(ry) = Ilim Efthe total (:M on (0.4]]
-

= Ec(rg)/Ey(ro). BEE))

Then the problem is to determine the optimal repairv-cost limit 0g* such as

TC(vg) = min TC(vg). (4)

0<np<¢
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3. GRAPHICAL METHOD

In stead of differentiating TC(vg) with respect to vy directly, we here employ the following
graphical method. Define the Lorenz transform of the repair-cost distribution p = H(v) by

qs(p)-:-,-n% [ H s, 0 <p<. NG

Then the curve £ = (p, ¢(p)) € [0, 1] x[0,1] is called the Lorenz curve [12-17]. It should be noted
that the curve L is absolutely continuous from the continuity of H(v). From simple algebraic
manipulations, we have

THEOREM 3.1: Suppose that the assumption (A-1) holds. The minimization problem in
Eq.(4) is equivalent to

d(p) + &
p+n

i
—

(@)
~—

J2i, M (1); ¢(p))

where

emg — {ke(mg — L) —ctm _
¢ = {ky( ‘ ) —cimy @)
my, (my — L) ,

my+ L
me— L

n =

The proof is omitted for brevity. Counsequently. the optimal repair-cost limit is determined by

p* = H(vy) which minimizes the tangent slope from the point B = (—y. =€) € (—oc.0) x(—2<.0)

to the curve £ in the plane (z,y) € (—oc. +20) X (—20. +oc¢) under the assumption (A-2).
AMore precisely. we prove the uniqueness of the optimal repair-cost limit.

THEOREM 3.2: Suppose that the assumptions (A-1) and (A-2) hold. Then there exists a
unique optimal solution p* = H(vg) (0 < v§ < oo) minimizing M (p. ¢(p)). where p* is given by
the x-coordinate at the point of contact for the curve £ from the point B.

PROOF: From (A-1) and (A-2), it can be seen that £ > 0 and 7 > 0. Differentiating M (p. o(p))
with respect to p and setting it equal to zero implies

A q(p) = (do(p) [dp)(p + 1) = (o(p) +€).- ' (9)
where do(p)/dp = H='(p)/m,,. Further. we have
dy(p)/dp = d*o(p) [dp*(p+ 1) >0 ' (10)

and the function M (p.o(p)) is strictly convex in p. since do(p) fdp* = 1/1:1/,,,/1 (H 1)))}
From.g(0) = =€ < 0 and ¢(1) — >. the proof is completed. (Q.I. )
EXAMPLE 3.3: We give an <*\(11111>1( for the graphical method proposed above, Suppose that

the repair-cost (hstillmhon H(r) is known and obeys the Weibull distribution:

H(v) = exp{—(L

Al -y

with the shape parameter 3 = 4.0 and the scale parameter 8 = 0.9. The other model parameters
are ¢ = 0.4500 ($), L = 0.4000 (day), k; = 0.4000 ($/day) rn; = 0.3000 (day), m, = 1.5000 (day)
and m,, = 0.8157 ($). The determination of the optimal repair-cost limit is presented in Fig. 2.
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Figure 2: Determination of optimal repair-cost limit on the Lorenz curve.

i this case, we have B = (—0.6364. —0.7556) and the optimal point with minimum slope from
B is (p*. &(p*)) = (0.4980.0.3849). Thus. the optimal repair-cost limit is o5 = H~1(0.4980) =
0.8200.

4. STATISTICAL ESTIMATION METHOD

Based on the graphical idea in Section 3. we propose a non-parametric method to estimate the
optimal repair-cost limit replacement policy. Suppose that the optunal repair-cost limit has to
be estimated from an ordered (()mpl(\t(‘ sample 0 = xp < ) <9 < --- < 1, of repair cost data
from an absolutely continuous repair-cost distribution H. which is unkno\\ n. The estimator of
H(v) = p is the empirical distribution given by

' ifn for  wp <a <. _
CHiy () =23 o = ! _ (12)
1 for ay <o,
where ¢ = 0.1.2.---.n — 1. Then the sample Lorenz curve [13] is defined as
inp
(),,,_Z /Zl, (13)
= '
where [a] is the greatest integer in a. Plotting the point (i/n.op). (0= 0.1.2.--- ). and

connecting them by line segments. we obtain the sample Lorenz curve £, € [() 1] x [0.1].
As (111])111((11 counterpart of THEORENI 3.1. we propose a non- 1)(11(1111(“1( estimater of the
optimal 1(*1)<111 -cost lhnit, .

THEOREM 4.1: (i) The optimal repair-cost limit can be estimated by ¢4, * = a4+ where
{'i* | min P+ 8 } | : | ! (14)

0<i<n i/n 4+
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ii) The estimator vg,* = z;+ in Eq. 14 is strongly consistent, i.e. v, = z; — v as n — 00.
q g 0

The result in (i ) is trivial. The proof of (ii) is based on the asymptotic property ¢in — ¢(p) as
n — oo, which is due to Goldie [13].

EXAMPLE 4.2: The repair-cost data were made by the random number following the Weibull
distribution with shape parameter 3 = 4.0 and scale parameter 6§ = 0.9. The other model
parameters are same as EXAMPLE 3.3 except that m,, = 0.8567 ($). The empirical Lorenz
curve based on the 30 sample data is shown in Flg 3. Slnce B = (—0.6364, —0.7195), the optimal
point with minimum slope from B becomes (i*/n, ¢i-n) = (14/30, d14, 30) = (0.4667,0.3711).
Thus, the estimator of the optimal repair-cost limit is o3, = 0.8393 (9).

‘pu(]’) 1

¢ =0.4500

L = 0.4000

ky=0.4000
my = 0.3000
m, = 1.5000
i,y = 0.8567 03710 e :
Ty = 0.8393 :
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e 04667 _ P
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Figure 3: Estimation of optimal repair-cost limit on the empirical Lorenz curve.

If the estimator vj,* = 2= is obtained. it is casy to calculate the minimum expected cost. That
is. differentiating of Eq.(3) with respect to g vields the first condition of optimality:
dE¢(ro)/deg dE;(vo)/dey .

][((.0)—‘]’ r(ro) = éﬁ(/‘()) E¢(ry). . (15)

This equation leads to

e . D -+ ]\',g § /\' ‘.[‘ — C
TC(r)y = 0TI 7 i 7 0 (16)

me —L

Substituting vg,” into ¢j. we can derive an estimator of the minimum expected cost TC(eg)
which may he strougly consistent.

Of our next nterest is the convergence sp( sod of the estimators g, and TC'(g,). We examine
nuinerically the strong consistency ()f the estimator derived in THEORENM 4.1.

EXAMPLE 4.3: Suppose that the repair-cost distribution and model parameters are similar
to those in EXAMPLE 4.2. Then the real optimal repair-cost limit and the minimum expected
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cost become v} = 0.8200-($) and TC(vj) = 0.7364 (8), respectively. On the other hand,
the asymptotlc behavxours of estimators for the optimal repair-cost limits and their assoc1ated
minimum expected cost are depicted in Figs. 4 and 5. From these figures, we observe that
the estimators converge to the corresponding real values around which the number of data is
20. In other words, without specifying the repair-cost distribution, the proposed nonparametrlc
method may function to estimate the optimal repair-cost limit prec1sely

oA
Von A

0.8200

o O - SR
[ 4 K0 120 1o 2 H

Figure 4: Asymptotic property of the estimator for the optimal repair-cost limit.
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Figure 5: Asy mp‘ro‘ru property of the estimator for the associated minimum expected cost.
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