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n RICEHEZEH RP" NOW S 2 2 BITE M AR (developable) & 1&, €D Gauss
Efg v : M — Gr(n, R™1) = Gr(1, (R**)*) = RP™ #* rank(y) < dim(M) =n -1 % I
724k EICWS, 22T, rank(y) & vy OMAEZOREED M ECTORKEZERT 5.

3 KICZEf D developable surface D HLEIBI L LT, cylinder, cone, ZERHIFRD tangent
developable 2815 TV 5745, TOHT, HEZEM RP? WCHEAZRE 20V H DI
TICRS. TEBHEAIGEES2ELRTVOT, FFFE compact ] B I IEE TR
BhaLEETES, L AR LR EERETEL S L, WFIHLZER CP" WO
FRNTHY (T b b 2 OBEUEEY) compact TEBHE IS TFEICES Z Mo
T\ % (Griffiths-Harris 1979). EHHZEMMIZBWVTH, [FR Monge-Ampere HREAOE
M E R 5RO I L Db ho TV a!

T3 1 (Morimoto-I [IM]) M~ C RP™ %% compact 7] @M % 5 ¥, r =rank(y) &
BETHY, r£0%256IE, n< %r(r-l—3) Thb. £IZ, rank(y) <1 TH 5B D DTG
BEATHICEA. 72, M2CRP® 7213 M* CRP® Ok i3, M B5REFEICRD
ns. O

EH ] THRHBOEMERIRENTH L. £, KD X% compact ] B T O 7 FE
22l & ZOEE, OB TE 5!

FE2 (1)) n =4,7,13,25 I3 LT n RIUEHEEMIC 3 REMRFIEFE Rl R B
EAEET 5. FHROIEZFNENEE SO3),SU(3),Sp(3), Fy DHEREMOBEE D, £
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DEEIGHE, K = R,C,H,O(Cayley 8 JGft#, Octonians) (ZB8¥ % §%FH KP? @
Veronese embedding @ linear projection & 7% 5. T b DEMRBHTRBHIE X, ThE
N 2359 HOMBOEHEEY DD (IEMEIZIE, KP?2 C RP" ® normal bundle @ section
DZe & WRR/NETZAIZH D & 9 %) compact C° T EBBHERANOEEzH>2. O

R" O properly embedded T, rank(y) <1 7% 51 cylinder IZfR4 (Hartman-
Nirenberg 1959). C" O¥A b FAADERENSTMON TS (Abe 1972). R* O cylinder
ThWw ¢ T RBHEORMDOHIE Sacksteder(1960) IZ& W HEx bz M = {z4 =
Ty coszs + zosinxz}. F 72, Mori(1994) id deformable submanifolds DEFZE L DEE T,
R* O cylinder TZWIIBBHEEREOFIZ 52 TW5h. $72, Akivis(1987) & RP* O O
complete T EBHTE CHEBFE TR VD OOFELMOTRDOER D HFEH L T 5%
EARBIL S 2 TWwizvy, BT Fischer-Wu(1995) 124 ) CP™ C*",R™ DRRITLDE 45
EHEBHEDTRHSSHREPHREINTWS, Wu OFRXOHFT, R* AD cylinder TZ
WEM BB TR T OB (Bourgain 1ZX A b D, unpublished) 2L TW5A: M =
{z122 + zo(zs — 1) +a3(es —2) = 0}. L22L, TOBITIE (Sacksteder DFIFEIKE) M C RP*
REEREE RS TV 5.

SEH 2 ORIV ELR T2 HHER, Jordan B OFEFRBT (MM TH 5., —i&
12, TR HREARIZIE Monge-Ampere foliation & IFIEN 5, % leaf L CHZEMI—ET
&5 LD 7% foliation DSH B HS, 7-& 21 Fy DIFE, £hid fibration

OP! = Spin(9)/Spin(8) — F,/Spin(8) — F4/Spin(9) = OP?

® fiberwise Z/27Z quotient & L THLNS.

SEH 2 TR S NABIE, T TIT, Zak(1985) I X AMREMKL (72 213 C k) DiHF
72D Severi varieties M3H, Cartan(1939) %12 X % EKME D isoparametric 8 HTH D 734H
I ECEM LR THEDNRTWbDTH L. Zh b DONRONENZRREBIEZHEFTT
5.

[I] : G. Ishikawa, Developable hypersurfaces and algebraic homogeneous spaces in a real

projective space, Preprint.

[IM] : G. Ishikawa, T. Morimoto, Solution surfaces of Monge-Ampere equations, Hokkaido
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DT o dHERRTTH 5.

0. INTRODUCTION

In this paper we present new examples of dvelopables hypersurfaces, which are algebraic
and homogeneous, in real projective spaces. All constructions are explained in an explicit

manner.

A C'* hypersurface M in the n-dimensional real projective space RP™ is called devel-

opable if its Gauss map
v: M — Gr(n, R"t1) 2 Gr(1,(R"1)*) = RP™

defined by v(z) = T, M C R™*! (z € M) has rank(y) < dim(M) = n — 1. Here, we mean
by T, M the linear subspace defined by T; M C RP™ considered as a projective subspace,
by RP™ the dual projective space, and by rank(+y) the maximum of the rank of differential
maps vy : Ty M — T,RP™ (z € M) of 4. See [FW][W] for developable submanifolds of

arbitrary codimension. Here we treat mainly on hypersurfaces.

It is well-known, as classical examples of developable surfaces in the three dimensional
space, cylinders, cones and tangent developables of space curves [Cay][I]: Among them,
only the planes have no singularities in the projective space. Observing the singularities of
developable hypersurfaces, we expect, also in the general case, that non-singular compact
developable hypersurfaces are heavily restrictive. In fact, it is known that a non-singular
complex algebraic developable hypersurface in CP™ is necessarily a projective hyperplane
([GH][W][L1]). Also in a real projective space, we see the following analogy, via the
geometrical investigation of homogeneous Monge-Ampere equations based on projective

duality:

Theorem 1 ([IM]). For a compact developable C*> hypersurface M in RP™, the maximal
rank r = rank(y) of the Gauss map v : M — RP™ is an even integer and satisfies
n < (1/2)r(r + 3), provided r # 0. In particular, if r < 1, then M is necessarily a
projective hyperplane of RP™. Any compact developable C*° hypersurfaces in RP?® or
RP?® are projective hyperplanes.
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It is essential the rank condition appeared in Theorem 1; in fact we will show in the

present paper the following result.

Theorem 2. For n = 4,7,13,25, there exists a real algebraic cubic non-singular devel-
opable hypersurface in RP™. These developable hypersurfaces have the structure of homo-
geneous spaces of groups SO(3),SU(3), Sp(3), Fy, respectively. Their projective duals are
linear projections of Veronese embeddings of projective planes KP?, for K = R,C,H, O
(the Cayley’s octonians). Fach of these real algebraic developable hypersurfaces admits de-
formations to C'*° developable hypersurfaces with 2,3,5,9 functional parameters, or more
rigorously, with the space of sections of normal bundles to KP? C RP" as the infinitesimal

space of C*° developable deformations.

Notice that it is classically known that a properly embedded developable hypersurface in
R" of rank(y) < 1 is necessarily a cylinder (Hartman-Nirenberg’s theorem [HN][Ste][Sto]).
Similar result is known for C® by Abe [Ab]. For this direction, see the survey [B]. The
first example of non-cylindrical C*° developable hypersurfaces in R* is given by Sacksteder
[Sac]:

M = {($1,$2,$3,$4) € R4 | Ty =T1€CO8Z3+ o SiIlSC3}.

Mori [M] gives an example of families of non-cylindrical developable hypersurfaces in R*,
in connection with the study of deformable submanifolds. On the other hand, Akivis [Ak]
proves the existence of C*™ complete developable hypersurfaces in RP* which is not a
projective hyperplane, using the theory of differential systems. (See also [AG] Ch. 4, for
the method of construction). However it is not given any concrete examples. Recently,
Fischer and Wu ([FW][W]) study developable submanifolds in CP™,C™ and R" of higher
codimension. In [W], it is introduced an (unpublished) example of non-cylindrical real

algebraic developable hypersurfaces in R* by Bourgain:
M = {(z1,29,23,24) € R* | 212} + z2(z4 — 1) + 23(24 — 2) = 0}.

Then, M is non-singular in R* and even in C* after complexification, while the Zariski
closure M C RP* of M has singularities in RP*. (The singular loci is an RP? in the
projective hyperplane at infinity).

In general, developable submanifolds has the Monge-Ampeére foliation so that the

tangent spaces to the submanifold are constant along each leaf. For instance, in the case
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of Fy in Theorem 2, the Gauss mapping is a submersion and the Monge-Ampere foliation

is given by the fiberwise Z/2Z quotient of the fibration
OP! = Spin(9)/Spin(8) — F4/Spin(8) — F,/Spin(9) = OP?,

arising from the filtration F;, D Spin(9) D Spin(8). Remark that there exists natural

identification OP! & $8, and the antipodal map induces the involution on OP?.

In the next section, we recall the notion of projective duality and the seconf fundamental
form of submanifold in a projective space. In §3, we prove Theorem 2: The main tool for

the construction of Theorem 2 is the real projective-contact geometry [M1}[M2] over Jordan

algebras.

It is interesting to ask the connection between the construction of Theorem 2 and the
classification of Severi varieties in the projective spaces over algebraically closed field of
characteristic zero, for instance, over C, by Zak [Z] (cf. [FL][LV, p.15]) and the classi-
fication of isoparametric hypersurfaces in the spheres by Cartan [Car] (cf. [CR]), where
similar objects appear. See also [L1][L2][K] in complex projective geometry on the second

fundamental forms and degenerate secant varieties, related to homogeneous spaces and

Clifford algebras.

1. PROJECTIVE DUALITY AND SECOND FUNDAMENTAL FORMS

Let M C RP™ be a submanifold of dimension m, (m < n). Consider the projective

conormal bundle of M:
M ={(p,q) € RP" xRP™ |pe M, T,M C¢"},

where ¢V is the hyperplane of RP" determined by ¢ € RP™, and we identify T, M
as the corresponding m-dimensional plane through p in RP™. Then we see M isa C®
submanifold in RP™ x RP™ of dimension n—1. Let p : M — RP" (resp. p': M — RP™)
denotes the projection to the first (second) component. Then p(M) = M and p' (M) =M
is the projective dual of M.

We call M is developable if the Gauss map v : M — Gr(m + 1,R"*!), defined by
v(z) = T M satisfies rank(y) < dim M.
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If M is developable and rank(y) = r, then there exists an (m — r)-dimensional foliation
on @ = {z € M |rank,(y) = r}, which we call Monge-Ampére foliation [D]. Moreover in
this case, MV is ruled by r-parameter (n —m — 1)-planes, and rank(p') < dimM =n — 1.

Remark that, if m = n — 1, then p is diffeomorphic and the Gauss map is decompésed
asy=p opl.

Let g : W — RP™ be an immersion. For x € W, the second fundamental form of

g at z is a linear family of quadratic forms (Hessians) on T, W parametrized by conormal
vector space N* = (Ty(;)RP™ /g.(T:W))* to g at z:
IT* : N* — S*(TM) (the symmetric product).

Then we recall the following fundamental result [IM], which we are going to use for showing

Theorem 2:

Lemma 3. For an immersed submanifold W of RP™ of codim > 2, the following condi-

tions are equivalent to each other:
(i) W is a projective dual of a properly immersed hypersurface in RP"™.

(ii) The second fundamental form at each point of W does not contain any singular

quadratic forms.

ii1) For any projective hyperplane H C RP™*, each singular point of the hyperplane
g yperp

section W N H on W is non-degenerate.

Proof. The condition (i) is equivalent to that p : W — RP™ is an immersion. For a local
equation

Yr1 = Pra1(Y1s-- 5 Yr)s <oy Yn = @n(Y15- -5 Yr)
of W, W is defined by F = 0F /3y, =--- = 0F /0y, = 0, where

F(X;yla tee 7yr) = XOSOn +---+ Xn—r—lﬁor+1 + Xn—'ryr + -+ Xn+1y1 + Xrn

for a homogeneous coordinates (Xo,X1,...,X,) of RP". Then p is an immersion on W

if and only if the second fundamental form

n—r—1 8290 .
II*(Xo,..., Xnor_1) = X ( n- )
; 0yi0y; ) 1<ij<r

does not represent a singular matrix, provided (X, ..., Xn—r-1) # (0,...,0). This condi-

tion is equivalent to (ii). The equivalence (ii) < (iii) is clear.
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1. PROOF OF THEOREM 2

First we show the construction of a cubic non-sungular developable hypersurface M in
RP*. For this, first we construct the projective dual MY, then M is obtained as the dual
of MV.

Define ¢ : RP? — RP* by

1

ollu,v,]) = [ (62 = 07), 5(02 = w?), wo, v, wul,

which is an embedding obtained after a linear projection of the Veronese embedding % :

RP? — RP5* defined by

1,151
—u”, —v°, =W, uv, VW, wu

P([o]) = [0, 50 5 ]

Then we set MY = o(RP?). Further we set
Lo o L o 2
F = X0§(u —v°) + X1§(v —w?) + Xouv + Xzow + Xywu.
Then the p-projection of the projective conormal bundle MY of MV is obtained by elimi-
nating u,v,w from

o OF _OF _OF _

ou _ ov Ow
Then we have
Xo Xs X4
X Xo+X: X3 | =0,
Xy X, -X;

which is the equation of required M C RP*.

In fact, M is the projectivization of the set of real symmetric matrices of determinant

zero and of trace zero. Since SO(3) acts on M transitively, we see M is non-singular and

M = SO(3)/H, where H is the subgroup of SO(3) of order 8:

0 1 0 0 “10 0 -1 0 0
o},{o -1 o},{o0o 1 o],[0 -10
1 0 0 -1 0 0 -1 0 0 1

o O =
O == O

—
O O
o O =
IOO
—_
\—/
N
ol o
’—J
o O =
- O O
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In general, we set K = R,C,H, O. Then dimg K = 2!"!, ; =1,2,3,4. Consider
J ={A¢c M;(K) | A* = A},

the space of “Hermitian” matrices of size 3 ([H|[Y]). Each element A of J has the form

61 21 <3
A= Z1 €2 29 ,ijR, ZjEK,jI].,z,S.
Z3 zZ3 &3

We see
dimp J =3-2""1 +3=6,9,15, 27.

For A, B € J, we define the Jordan product
1
AoB = §(AB+BA)€J.
Moreover we set trA =& + & + & € R and
det A = 16283 + 2Re((2223)21) — €122 — £22323 — £3217) € R,

for A € J. The bilinear form tr(A o B) on the real vector space J is positive definite and
induces the isomorphism between J and its dual vector space J*.
Set
Y={AeJ|detA=0}.

Then the projectivization P C PJ = (J — 0)/R* = RP32 742 is a real cubic hyper-

surface. Setting

Jo={A € J|trA =0},

we will see

M = PJ,N PY c PJ, = RP*, RP" RP3 RP?,

is a non-singular real cubic developable hypersurface. The projective dual MV = KP? is
embedded in PJy = RPY ,RP™* RP!3* RP?%* as a linear projection of the Veronese
embedding of KP? in PJ = PJ*. Remak that rank(y) = 2,4,8,16 and the dimension of

the Monge-Ampeére foliation is 1,2, 4, 8, respectively.
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Recall that the projective plane over K is defined by

KP?={XeJ|X*=X, trX = 1},
= {xx*| 'x = (z1,29,23) € K3 —0,|x|| = 1,z1(z923) = (z122)73}
which is embedded in PJ. The embedding KP? — PJ is called the Verenose em-

bedding [F][H, Lemma 14.90][L2][Z]. This definition fits with the ordinary one in cases
K = R, C,H by the correspondence

1
KP? 35 [z1,22, 23] = ['x] = Wxx*.
X

In cases K = R,C,H, we set G = O(3),U(3),Sp(3). Then G acts on J by f(A) =
P~ YAP,(f = P € G). In the case K = O, we take as G the exeptional simple Lie group

Fy={f:J — J, R-linear isomorphism | f(Ao B) = f(A)o f(B)}.

Then G preserves the Jordan product, the trace and the determinant, so G naturally acts

on PJy, PX, so on M = PJy NPT, as well as it acts on OP?. Furthemore G acts on M

& 00
transitively. In fact, for A € J, there exists a f € G such that f(A)=| 0 & 0 |,

0 0 &
for some &;,&5,€3 € R. Moreover the diagnals are permuted freely by an element of G.
0 0 0
Then, an A € JyN X is transformed into f(A)=(0 ¢ 0 ) , by some f € G, for some
0 0 —¢

¢ € R. (See, for K = O, [H] Page 313, [Y] Page 35). Also the action of G on KP? is
transitive. ([H] Theorem 14.99, [Y] Theorem 2.21).

Now set

Q ={([4],[B]) € PJ x PJ | tr(Ao B) =0},

the incident hypersurface of projective duality ([Sch][IM]). Then G acts on @ naturally by
f([A],[B]) = ([f(A)],[f(B)]). Then, since the action on M is transitive, the action on M
is also transitive. Here we remark that M projects diffeomorphically to M by p. Then the
key fact is the following:

Lemma 4. The projective conormal bundle of KP? C PJ* is described by

KP? = PT% . PT* = {([A],[X]) € Q| X e KP?, Ao X = O}.
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Moreover its projection S = p(PTg p. PJ*) by p: PT p. PJ* — PJ to the first compo-
nent coinsides with '

PY ={[A] € PJ | det A = 0}.

Proof. We show for K = Oj; other cases are treated similarly. Let x = (z1,22,23) €
K3 — 0. Write z; = Zzzox,’jej, ¢ = 1,2,3, with the the standard basis eg = 1,e4,...,e7
and z;; € R. Then the linear subspace TZA’XOOP2 C J of the tangent space to OP? at

xo = %(1,0,0) is generated over R by

2 0 0 010 0 —e O
88:000,58—=100,8—8f:ei00,
T10 0 0 0 T20 00 0 T2 0 0 O
0 0 1 0 0 —e
8 1

88 = 0 0 0 75‘""2 0 0 0 ’ 1<]<7a
30 1 0 0 T3i e, 00

) &1 w1 ws
while T = 0,1 <37 Set A= |w & wy |. Then the condition that A
Ty _ e
w3 wg &3
annihilates TXOOP2 via the inner product tr(A4 o B), namely that tr(A4 o 62—) = 0,1 =
ij
1,2,3,0 <5 <7, is equivalent to that £&; = 0,w; = 0,ws = 0. This is equivalent to that

1 0 0 1 251 w1 w3
Ao 0 0 0] = 3 w; 0 0
0 0 O wg 0 0

equals to 0. By the trasitivity we have the first half. The second half follows from the

following Lemma.

Lemma 5. For A€ J, (1) Ao X = O, for some X € KP?, if and only (2) det A = 0.

1 00

Proof. (1) = (2): Choose f € G such that f(X) = Xo = |0 0 0 ). Then, since
0 00

f(A)o Xy = f(AoX) = O, we see det A = det f(A) =0. (2) = (1): Take f € G such that

&0 0
0 0 &

for some £1,£&5,€3 € R. Then det f(A) = det A = 0, so ;€263 = 0, thus {; = 0, for some 3.
Changing f if necessary, we may assume & = 0. Then Ao f71(Xy) = f(A)oXo =0. O
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Thus we see the projective dual of the hyperplane section M = SN PJy C PJy is
the linear projection of KP? C PJ & PJ* from the point in PJ* corresponding to the
hyperplane PJ, C PJ.

Set
0 0 O
Ag=(10 1 0 ceJoNY, and, Xy=
0 0 -1

Then ([Ao], [Xo]) € M. Let K = O and G = Fy. Then the isotropy group for [Xo] € PJ
of the Fy-action is isomorphic to Spin(9) ([H] Theorem 14.99, [Y] Theorem 2.10). Further

o o =
o O O
o OO

)GOPQCJ.

the isotropy group for Ay € J of the Fy-action on J is
{f € Fy | f(E,) =F; 1= 1,2,3},

which is isomorphic to Spin(8). Here E; is the 3 x 3 matrix with (¢,7)-element 1 which is
the only non-zero element. (So Eq = X, Ag = E; — E3). ([H] Page 313, [Y] Theorem 2.7).
Then the isotropy group for [Ay] in M is isomorphic to a Z/2Z-extension of Spin(8). Thus
we see that the Monge-Ampere foliation is in fact a fibration v : M — OP? described as
in §0.

Similarly we have, in cases K = R, C,H, that the Monge-Ampére foliation is given
by the fibration v : M — KP? which is described as the fiberwise Z/2Z-quotient (with
respect to the antipodal involution of KP?! = Szi_l(z' = 1,2,3) of the following fibration:
For K =R,

RP! > 0(2)/0(1) x O(1) — 0(3)/0(1) x O(1) x O(1) — 0(3)/0(2) x O(1) ~ RP?,
For K = C,

CP' = U(2)/U(1) x U(1) — U(3)/U(1) x U(1) x U(1) = U(3)/U(2) x U(1) = CP?,
and for K = H,
HP' 2 8p(2)/Sp(1) xSp(1) — Sp(3)/Sp(1) xSp(1) xSp(1) — Sp(3)/Sp(2) xSp(1) = HP?.

In particular, M € RP", (n = 3-2"! +1, 7+ = 1,2,3,4) is a homogeneous space of
SO(3),SU(3),Sp(3) and Fy, respectively.
The last statement of Theorem 2 is clear, since the condition of Lemma 3 is an open

condition for immersions KP? — RP"™*.
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